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In this study we merge the concepts of Choquet-like integrals and the Choquet integral with
respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent
capacities our approach can be represented as a ϕ-ordinal sum of Choquet-like integrals acting
on subdomains of the considered scale, and thus it can be regarded as extension method. The
approach is illustrated by several examples.
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1. INTRODUCTION

Based on the problem of integration with respect to inner and outer measures, Vitali [14]
proposed to merge the information hidden in a monotone measure m (not necessarily
σ-additive) and in a non-negative measurable function f into one source, namely a real
function hm,f : [0,∞]→ [0,∞] given by

hm,f (t) = m({f ≥ t}),

where {f ≥ t} stands for the set of all arguments where the function f attains a value
which is at least t, i. e., {f ≥ t} = {ω ∈ Ω|f(ω) ≥ t}. Note that this is an idea related to
the probability theory approach, when survival functions, i. e., complementary functions
to distribution functions, are considered. Note that a survival function SP,X is given
by SP,X(t) = P ({X ≥ t}), where (Ω,A, P ) is a given probability space and X a non-
negative random variable on (Ω,A, P ). Recall that then the expected value of X can be
computed by means of the (improper) Riemann integral

EP (X) =

∞∫
0

SP,X(t) dt, (1)
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independently of the type of random variable X (discrete, with density, etc.). Consid-
ering capacities, Choquet [1] introduced an integral, which is now called the Choquet
integral

Chm(f) =

∞∫
0

hm,f (t) dt. (2)

A deep study and discussion concerning the Choquet integral can be found in Den-
neberg’s monograph [2], Pap’s handbook [7], see also [15], and also in many scientific
papers. From among several generalizations of the Choquet integral, we will consider
the concept of Choquet-like integrals [5] and the concept of the Choquet integral with
respect to level-dependent capacities [4]. The main aim of this paper is the introduction
of Choquet-like integrals with respect to level-dependent capacities and the study of
representation of these integrals by means of special ordinal sums introduced in [6], see
also [3].

The paper is organized as follows: In Section 2, we recall the concept of Choquet-like
integrals. Section 3 explains the concept of level-dependent capacities and the related
Choquet integral. Then, in Section 4, these two concepts are merged into Choquet-like
integrals with respect to level-dependent capacities. In Section 5, ϕ-ordinal sums are re-
called, and Section 6 is devoted to finite spaces and piece-wise constant level-dependent
capacities. In this section, Choquet-like integrals with respect to level-dependent capaci-
ties are represented as ϕ-ordinal sums of Choquet-like integrals. Finally, some concluding
remarks are provided.

2. CHOQUET-LIKE INTEGRALS

Let (Ω,A) be a fixed measurable space. A set function v : A → [0, 1] is called a capacity
if it is monotone (i. e., v(A) ≤ v(B) whenever A ⊆ B), and v(∅) = 0, v(Ω) = 1. The set
of all A-measurable functions f : Ω→ [0, 1] will be denoted by FA.

Definition 2.1. (Choquet, Denneberg [1, 2]) Let v be a capacity on (Ω,A). Then the
functional Chv : FA → [0, 1] given by

Chv(f) =

1∫
0

hv,f (t) dt =

1∫
0

v({f ≥ t}) dt (3)

is called the Choquet integral.

Remark 2.2.

(i) Having in mind aggregation functions on the interval [0, 1] [3], we have constrained
the range of considered functions to be contained in [0, 1] and the boundary value
of the set function v to be v(Ω) = 1. However, all the next results also stay valid
without these constraints, if we suppose the range of functions to be a subset of
[0,∞] and ask the positivity of v(Ω) only.
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(ii) Due to Schmeidler [10, 11], we also have an axiomatic characterization of the
Choquet integral. Recall that two functions f, g ∈ FA are comonotone whenever

(f(ω1)− f(ω2))(g(ω1)− g(ω2)) ≥ 0

for any ω1, ω2 ∈ Ω (i. e., the orderings on Ω induced by f and g, respectively, are
not contradictory). Then every comonotone additive functional I : FA → [0, 1],
I(1Ω) = 1 and I(f + g) = I(f) + I(g) whenever f, g, f + g ∈ FA and f and g are
comonotone, is just the Choquet integral, I = Chv, where v(A) = I(1A) for every
A ∈ A.

The standard arithmetical operations + and · acting on the interval [0,∞] are the
background of several integrals, including the Lebesgue and Choquet integrals. Many
attempts to generalize these classical integrals were based on a generalization of these
operations into a pseudo-addition⊕ and pseudo-multiplication� [8, 9, 13]. In this paper,
we will consider a distinguished kind of couples (⊕,�) generated by an automorphism
ϕ : [0,∞]→ [0,∞].

Definition 2.3. Let ϕ : [0,∞] → [0,∞] be an increasing bijection. Then the couple
(⊕ϕ,�ϕ) of binary operations on [0,∞] given by

x⊕ϕ y = ϕ−1 (ϕ(x) + ϕ(y)) ,
x�ϕ y = ϕ−1 (ϕ(x)ϕ(y))

is called a ϕ-generated couple of pseudo-arithmetical operations.

A typical example of a ϕ-generated couple (⊕ϕ,�ϕ) is generated by a power function
ϕ : ϕ(x) = xp, p ∈]0,∞[, and denoted by (⊕p,�p). Clearly, for each p, �p is the standard
multiplication, while x⊕p y = (xp + yp)1/p is well known from Lp-spaces theory (when
p ≥ 1). Note that �ϕ has a neutral element e = ϕ−1(1), and thus we will often
require ϕ(1) = 1. Note also that for each automorphism ϕ on [0,∞], ϕ

ϕ(1) = ϕ∗ is an
automorphism that satisfies ϕ∗(1) = 1, ⊕ϕ = ⊕ϕ∗ and 1�ϕ∗ x = x�ϕ∗ 1 = x for every
x ∈ [0, 1]. This automorphism is called a normed automorphism.

Theorem 2.4. Let ϕ : [0,∞] → [0,∞] be a normed automorphism and let I : FA →
[0, 1] be a comonotone ⊕ϕ-additive functional (i. e., for any f, g ∈ FA such that f⊕ϕ g ∈
FA, and f, g are comonotone, it holds that I(f ⊕ϕ g) = I(f) ⊕ϕ I(g)), which satisfies
I(1Ω) = 1. Then

I(f) = ϕ−1 (Chϕ◦v(ϕ ◦ f)) = ϕ−1

 1∫
0

ϕ
(
v({f ≥ ϕ−1(t)})

)
dt

 , (4)

where v : A → [0, 1] is a capacity given by v(A) = I(1A).

P r o o f . We first note that f, g ∈ FA are comonotone if and only if ϕ ◦ f , ϕ ◦ g ∈ FA
are comonotone. For comonotone functions f, g ∈ FA such that f ⊕ϕ g is also in FA,
the comonotone ⊕ϕ-additivity of I can be written as

I(f ⊕ϕ g) = I ◦ ϕ−1(ϕ ◦ f + ϕ ◦ g) = I(f)⊕ϕ I(g) = ϕ−1 (ϕ(I(f)) + ϕ(I(g))) ,
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i. e., with the notation ϕ ◦ I ◦ ϕ−1 = J , we have

J(ϕ ◦ f + ϕ ◦ g) = J(ϕ ◦ f) + J(ϕ ◦ g).

Hence, J : FA → [0, 1] is a comonotone additive functional and by Remark 2.2 (ii),

J(h) = Chm(h),

where the capacity m : A → [0, 1] is given by

m(A) = J(1A) = ϕ
(
I
(
ϕ−1(1A)

))
= ϕ (I(1A)) = ϕ (v(A)) ,

with v(A) = I(1A). Now, the representation (4) of I follows. �

Recall that for a general monotone measure m : A → [0, 1] (i. e., with the properties
m(∅) = 0, m(Ω) > 0, and m(A) ≤ m(B) whenever A ⊆ B), a measurable function
f : Ω→ [0,∞] and an automorphism ϕ : [0,∞]→ [0,∞], the formula

ϕ−1 (Chϕ◦m(ϕ ◦ f)) = ϕ−1

 ∞∫
0

ϕ
(
m({f ≥ ϕ−1(t)})

)
dt

 (5)

defines a ϕ-generated Choquet-like integral introduced in [5]. If we denote this integral
by Chϕm, then the functional I given by (4) satisfies I = Chϕm. Thus, Theorem 2.4
provides an axiomatic characterization of Choquet-like integrals related to a normed
automorphism, i. e., such an automorphism ϕ, for which it holds that

Chϕm(1A) = v(A), for any capacity v : A → [0, 1].

3. LEVEL-DEPENDENT CAPACITIES AND THE CHOQUET INTEGRAL

Let X = {c1, . . . , cn} be a set of criteria. A capacity v : A → [0, 1] can be regarded as
a weighting function assigning a weight to a group of criteria A ∈ A. The idea of such
weight being dependent on the level of criteria satisfaction degrees to be aggregated led
Greco et al. [4] to the introduction of level-dependent capacities.

Definition 3.1. A mapping M : [0, 1]×A is called a level-dependent capacity whenever
M(t, ·) : A → [0, 1] is a capacity for each t ∈ [0, 1].

It is obvious that a level-dependent capacity M can be written in the form M =
(mt)t∈[0,1], i. e., as a system of capacities mt, t ∈ [0, 1]. Inspired by Vitali’s idea to
assign to any capacity v on (Ω,A) and any function f ∈ FA the function hv,f , one can
introduce the function hM,f : [0, 1]→ [0, 1] as follows:

hM,f (t) = mt({f ≥ t}). (6)

Note that the mentioned function hv,f is decreasing and thus Riemann integrable for
any capacity v and any f ∈ FA, but this need not be true in the case of hM,f (neither
monotonicity nor Riemann integrability is guaranteed). A function f ∈ FA, such that
for a given level-dependent capacity M the function hM,f is Lebesgue integrable, is
called an M -integrable function.
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Definition 3.2. (Greco et al. [4]) Let M be a fixed level-dependent capacity and let
f ∈ FA be M -integrable. Then the Choquet integral of f with respect to M (with the
notation ChM (f)) is defined by

ChM (f) =

1∫
0

hM,f (t) dt =

1∫
0

mt({f ≥ t}) dt, (7)

where the Lebesgue integral with respect to the standard Lebesgue measure on [0, 1] is
applied.

To ensure the M -integrability of every f ∈ FA, we introduce the notion of piece-wise
constant level-dependent capacities.

Definition 3.3. For a fixed k ∈ N, let 0 = a0 < a1 < . . . < ak−1 < ak = 1 and let, for
i = 1, . . . , k, v1, . . . , vk : A → [0, 1] be capacities. Put M = (mt)t∈[0,1], where

mt = vi if ai−1 ≤ t < ai, and m1 = vk.

Then M is called a piece-wise constant level-dependent capacity.

Proposition 3.4. Let Ω = {ω1, . . . , ωn} and A = 2Ω. Let M be a piece-wise constant
level-dependent capacity as is described in Definition 3.3. Then each f ∈ FA is M -
integrable.

P r o o f . The result follows from the fact that the function hM,f is piece-wise con-
stant. �

Remark 3.5. Note that in general, the finitness of Ω does not guarantee the M -
integrability of each f ∈ FA. Consider Ω = {ω1, ω2, ω3}, f(ωi) = (i − 1)/2 and let,
for a Borel non-measurable set E ⊂ [0, 1], 0 /∈ E,

mt(A) =
{

0 for each t ∈ E,A 6= Ω,
1 for each t /∈ E,A 6= ∅.

Then

hM,f (t) =
{

0 if t ∈ E,
1 if t /∈ E,

is not Borel measurable and thus not Lebesgue integrable.

4. CHOQUET-LIKE INTEGRALS WITH RESPECT TO LEVEL-DEPENDENT
CAPACITIES

In what follows, we merge the concepts discussed in Sections 2 and 3.

Definition 4.1. Let M be a level-dependent capacity, f ∈ FA, and let ϕ be a normed
automorphism. Let the function hϕM,f : [0, 1]→ [0, 1] given by hϕM,f (t) = ϕ

(
mt({f ≥ ϕ−1(t)})

)
be Lebesgue integrable. Then f is called ϕ−M -integrable and the value

ChϕM (f) = ϕ−1 (Chϕ◦M (ϕ ◦ f))

is called a ϕ-based Choquet-like integral of f with respect to M .
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The next result is obvious.

Corollary 4.2. Let Ω be a finite space, A = 2Ω, and let M be a piece-wise constant
level-dependent capacity. Then, for any normed automorphism ϕ, any function f ∈ FA
is ϕ−M -integrable.

Example 4.3. Let Ω = {ω1, ω2}. Then each f ∈ FA can be identified with a couple
(x, y) ∈ [0, 1]2, x = f(ω1), y = f(ω2). Define two capacities v1, v2 : 2Ω → [0, 1], by

v1({ω1}) = a, v2({ω1}) = c,

v1({ω2}) = b, v2({ω2}) = d,

with a, b, c, d ∈ [0, 1] (and obviously, vi(∅) = 0 and vi(Ω) = 1), and also define a piece-
wise constant level-dependent capacity M = (mt)t∈[0,1], where, for α ∈]0, 1[,

mt =
{
v1 if t ≤ α,
v2 if t > α.

For an arbitrary normed automorphism ϕ (i. e., ϕ|[0,1] is an automorphism of [0, 1]),
consider ϕ(x) ≤ α < ϕ(y). Then

hϕM,(x,y)(t) =


1 if t ≤ ϕ(x),
ϕ(b) if ϕ(x) < t ≤ α,
ϕ(d) if α < t ≤ ϕ(y),
0 else,

and

ChϕM ((x, y)) = ϕ−1 (ϕ(x) + (α− ϕ(x))ϕ(b) + (ϕ(y)− α)ϕ(d))
= ϕ−1 (ϕ(x)(1− ϕ(b)) + ϕ(y)ϕ(d) + α(ϕ(b)− ϕ(d)) .

It is not difficult to check that if (x, y) ∈ [0, ϕ−1(a)]2, then

ChϕM ((x, y)) = Chϕv1 ((x, y)) ,

while if (x, y) ∈ [ϕ−1(a), 1]2, then

ChϕM ((x, y)) = Chϕv2 ((x, y)) .

5. ϕ-ORDINAL SUMS OF AGGREGATION FUNCTIONS

Ordinal sums are well known for t-norms, copulas, semicopulas (the same formula based
on Min), as well as for t-conorms (a dual formula based on Max). In order to unify
all these formulae in a unique general formula, in [6], the concept of ϕ-ordinal sums of
aggregation functions was introduced. Before recalling this notion, we still note that an
(n-ary) aggregation function A : [a, b]n → [a, b] is defined as an increasing function in
each coordinate, which satisfies the properties A(a, . . . , a) = a and A(b, . . . , b) = b.
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Definition 5.1. For n, k ∈ N, let 0 = a0 < a1 < . . . < ak−1 < ak = 1, and let
Ai : [ai−1, ai]n → [ai−1, ai] be given aggregation functions. Let ϕ : [0, 1] → [0, 1] be an
automorphism. Then the function A : [0, 1]n → [0, 1], denoted by ϕ − (〈ai−1, ai, Ai〉,
i ∈ {1, . . . , k}) and given by

A(x1, . . . , xn) = ϕ−1

(
k∑
i=1

(ϕ (Ai(/x1/i, . . . , /xn/i))− ϕ(ai−1))

)
,

with /x/i = min {ai,max {ai−1, x}} for every i ∈ {1, . . . , k} and every x ∈ [0, 1], is called
a ϕ-ordinal sum (of summands 〈ai−1, ai, Ai〉, i ∈ {1, . . . , k}).

Note that if (x1, . . . , xn) ∈ [ai−1, ai]n, then A(x1, . . . , xn) = Ai(x1, . . . , xn), and thus
A is an extension of aggregation functions Ai acting on subdomains [ai−1, ai]n to the full
domain [0, 1]n. Note that ϕ-ordinal sums preserve continuity and symmetry of the A′is.
Moreover, if all aggregation functions Ai are t-norms (copulas, semicopulas, t-conorms),
then for an arbitrary automorphism ϕ of [0, 1] the corresponding ϕ-ordinal sum is also
a t-norm (copula, semicopula, t-conorm) coinciding with the above mentioned ordinal
sum of t-norms (copulas, semicopulas, t-conorms).

6. CHOQUET-LIKE INTEGRALS AND ϕ-ORDINAL SUMS

For a fixed finite space Ω = {ω1, . . . , ωn} and A = 2Ω, the Choquet integral as well as
Choquet-like integrals with respect to a fixed capacity v can be seen as n-ary aggregation
functions on [0, 1]. Note that they are idempotent, i. e., for a constant function f = c,
c ∈ [0, 1], Chv(c) = Chϕv (c) = c for any normed automorphism ϕ. However, this means
that for any subinterval [ai−1, ai] ⊆ [0, 1], Chv|[ai−1,ai] and Chϕv |[ai−1,ai] are also (idem-
potent) n-ary aggregation functions on [ai−1, ai]. When these integrals are considered
with respect to a piece-wise constant level-dependent capacity M , then the following
representation by means of ϕ-ordinal sums holds. Let us still note that Chv = Chidv ,
where id(x) = x, x ∈ [0,∞].

Theorem 6.1. Let Ω = {ω1, . . . , ωn} and A = 2Ω. For k ∈ N, let 0 = a0 < a1 <
. . . < ak−1 < ak = 1, and let M = (mt)t∈[0,1] be a piece-wise constant level-dependent
capacity with mt = vi whenever ai−1 ≤ t < ai. Let ϕ : [0,∞] → [0,∞] be a normed
automorphism. By abuse of notation we use the same letter ϕ for ϕ|[0,1]. Let A : [0, 1]n →
[0, 1] be an aggregation function. Then the following are equivalent.

(i) A = ChϕM .

(ii) A = ϕ−
(
〈ϕ−1(ai−1), ϕ−1(ai), Chϕvi〉, i ∈ {1, . . . , k}

)
.

P r o o f . It is not difficult to check that it is enough to prove the equivalence (i) ⇔
(ii) for one fixed normed automorphism only, in particular, for ϕ = id. Note that then
ChM = ChidM . It is enough to define ϕ-ordinal sums for k = 2 only, and then, the general
case can be obtained by induction. Thus, it is enough to prove the result for k = 2.
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For a finite space Ω = {ω1, . . . , ωn}, consider two capacities v1, v2 : 2Ω → [0, 1] and a
treshold value α ∈]0, 1[. Let M = (mt)t∈[0,1] be given by

mt =
{
v1 if t ≤ α,
v2 if t > α.

Each f ∈ FA can be represented in the form of an n-dimensional vector x = (x1, . . . , xn) ∈
[0, 1]n, xi = f(ωi). Let σ : {1, . . . , n} → {1, . . . , n} be a permutation such that xσ(1) ≤
xσ(2) ≤ . . . ≤ xσ(n), and let xσ(j−1) ≤ α ≤ xσ(j). Then

hM,f (t) =


v1({σ(i), . . . , σ(n)}) if i < j, t ∈]xσ(i−1), xσ(i)],
v1({σ(j), . . . , σ(n)}) if t ∈]xσ(j−1), α],
v2({σ(j), . . . , σ(n)}) if t ∈]α, xσ(j)],
v2({σ(i), . . . , σ(n)}) if i > j, t ∈]xσ(i−1), xσ(i)],

and for ChM (f) we have

ChM (f) =
j−1∑
i=1

(
xσ(i) − xσ(i−1)

)
v1({σ(i), . . . , σ(n)})

+
(
α− xσ(j−1)

)
v1({σ(j), . . . , σ(n)}) +

(
xσ(j) − α

)
v2({σ(j), . . . , σ(n)})

+
n∑

i=j+1

(
xσ(i) − xσ(i−1)

)
v2({σ(i), . . . , σ(n)}).

On the other hand, the id-ordinal sum is given by:

id− (〈0, α, Chv1〉, 〈α, 1, Chv2〉) (f) = Chv1(f ∧ α) + Chv2(f ∨ α)− α

=

(
j−1∑
i=1

(
xσ(i)−xσ(i−1)

)
v1({σ(i), . . . , σ(n)})+

(
α−xσ(j−1)

)
v1({σ(j), . . . , σ(n)})

)

+

α+
(
xσ(j)−α

)
v2({σ(j), . . . , σ(n)})+

n∑
i=j+1

(
xσ(i)−xσ(i−1)

)
v2({σ(i), . . . , σ(n)})

−α.
Hence both formulae coincide, i. e.,

ChM (f) = id− (〈0, α, Chv1〉, 〈α, 1, Chv2〉) (f),

which proves the theorem. �

Recall that if a capacity v is additive, i. e., v is a discrete probability measure, then the
Choquet integral on Ω = {ω1, . . . , ωn} is just the weighted arithmetic mean, Chv = Ww,
where Ww(x1, . . . , xn) =

∑n
i=1 wixi with wi = v({ωi}). Then, if a piece-wise constant

level dependent capacity M is linked to additive capacities v1, . . . vk, the corresponding
Choquet integral ChM can be seen as an ordinal sum of weighted arithmetic means
W1, . . . ,Wk. A similar consideration can be applied to Choquet-like integrals ChϕM , ϕ
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being a normalized automorphism and v1, . . . vk being ⊕ϕ-additive. Observe that then
each integral Chϕvj is a weighted quasi-arithmetic mean,

Chϕvj (x1, . . . , xn) = ϕ−1

(
n∑
i=1

ϕ
(
w

(j)
i

)
ϕ(xi)

)
,

where w(j)
i = vj({ωi}).

Example 6.2. Consider Ω = {1, 2}, f : Ω → [0, 1] such that f(1) = x, f(2) = y, and
define capacities v1, v2, v3 : 2Ω → [0, 1] as follows:
v1(∅) = 0, v2(∅) = 0, v3(∅) = 0,
v1({1}) = 0.3, v2({1}) = 0.5, v3({1}) = 0.7,
v1({2}) = 0.7, v2({2}) = 0.5, v3({2}) = 0.3,
v1(Ω) = 1, v2(Ω) = 1, v3(Ω) = 1.

Define the system M = (mt)t∈[0,1] of capacities mt by

mt =

 v1 if t ∈ [0, 1
3 ],

v2 if t ∈ ] 1
3 ,

2
3 ],

v3 if t ∈ ] 2
3 , 1].

(8)

Consider an aggregation function A known on subintervals depending on M and the
related probability measures vi as follows:

A(x, y) =

 0.3x+ 0.7y if (x, y) ∈ [0, 1/3]2,
0.5x+ 0.5y if (x, y) ∈ ]1/3, 2/3]2,
0.7x+ 0.3y if (x, y) ∈ ]2/3, 1]2.

(9)

The task is to extend A to the whole domain [0, 1]2. It can be made by means of the
formula (7), i. e.,

A(x, y) = ChM (f) =
∫ 1

0

hM,f (t) dt.

The related function hM,f is piece-wise constant but not monotone, in general.
For example, if (x, y) ∈ [ 2

3 , 1]× [0, 1
3 ] there are 5 possible values for hM,f (t):

1. t ≤ y ⇒ x > y ≥ t⇒ f(1) > t, f(2) ≥ t⇒ mt({f ≥ t}) = mt({1, 2}) = 1,

2. y < t ≤ 1
3 ⇒ mt({f ≥ t}) = mt({1}) = v1({1}) = 0.3,

3. y < 1
3 ≤ t <

2
3 < x⇒ mt({f ≥ t}) = mt({1}) = v2({1}) = 0.5,

4. 2
3 < t ≤ x⇒ mt({f ≥ t}) = mt({1}) = v3({1}) = 0.7,

5. x < t⇒ mt({f ≥ t}) = mt({∅}) = 0.



Choquet-like integrals with respect to level-dependent capacities 429

Thus for 0 ≤ y ≤ 1
3 and 2

3 < x ≤ 1 we have

hM,f (t) =


1 if t ≤ y,
0.3 if y < t ≤ 1

3 ,
0.5 if t < 2

3 ≤ x,
0.7 if 2

3 < t ≤ x,
0 if x < t.

(10)

In this case the Choquet integral ChM (f) is

ChM (f) = y · 1 +
(

1
3
− y
)
· 0.3 +

(
2
3
− 1

3

)
· 0.5 +

(
x− 2

3

)
· 0.7 = 0.7x+ 0.7y − 0.2,

which gives the corresponding values A(x, y).

The results obtained by this approach for all remaining subdomains are in Table 1.

A(x, y) x ∈ [0, 1
3 ] x ∈ [ 1

3 ,
2
3 ] x ∈ [ 2

3 , 1]

y ∈ [ 2
3 , 1] 0.3x+ 0.3y + 0.2 0.5x+ 0.3y + 0.4

3 0.7x+ 0.3y

y ∈ [ 1
3 ,

2
3 ] 0.3x+ 0.5y + 0.2

3 0.5x+ 0.5y 0.7x+ 0.5y − 0.4
3

y ∈ [0, 1
3 ] 0.3x+ 0.7y 0.5x+ 0.7y − 0.2

3 0.7x+ 0.7y − 0.2

Tab. 1. Results of Example 6.2.

Observe, that the obtained aggregation function A : [0, 1]2 → [0, 1] described in Ta-
ble 1 is continuous, idempotent and piece-wise linear on [0, 1]2.

Example 6.3. Consider Ω = {1, 2}, f : Ω → [0, 1], where f(1) = x, f(2) = y, and for
i ∈ {1, 2} define capacities vi : 2Ω → [0, 1] as follows:
v1({1}) = 0.2, v1({2}) = 0.4,
v2({1}) = 0.6, v2({2}) = 0.3,
vi(∅) = (0), vi(Ω) = 1, i = 1, 2.

Both v1 and v2 are nonadditive capacities. Define M = (mt)t∈[0,1] by

mt =
{
v1 if t ≤ 1/2,
v2 otherwise. (11)

Then M is a level dependent capacity. In this case, if x, y ∈ [0, 1/2] (or if x, y ∈ ]1/2, 1]),
we have to distinguish the cases x ≤ y and y < x. Then the resulting aggregation
function A is the Choquet integral with respect to v1 (v2). Extension of these Choquet
integrals to full domain [0, 1]2 can be computed by formula (7) and the obtained results
are in Table 2.
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A(x, y) x ∈ [0, 1/2] x ∈ [1/2, 1]

y ∈ [1/2, 1] 0.6x+ 0.3y + 0.05 0.7x+ 0.3y if x < y
0.6x+ 0.4y if y ≤ x

y ∈ [0, 1/2] 0.6x+ 0.4y if x < y 0.6x+ 0.8y − 0.2
0.2x+ 0.8y if y ≤ x

Tab. 2. Results of Example 6.3.

Observe, that aggregation function A : [0, 1]2 → [0, 1] described in Table 2 is again
continuous, idempotent and piece-wise linear on [0, 1]2.

7. CONCLUDING REMARKS

We have discussed Choquet-like integrals with respect to (piece-wise constant) level-
dependent capacities and shown their relation to ϕ-ordinal sums of aggregation functions.
We expect applications of our results in several decision problems, especially when a
different approach to evaluating the utility (aggregation of score vector) is expected,
when only low (middle, high) values are to be aggregated. Note also that for a capacity
v, the dual capacity vd is given by vd(A) = 1−v(Ac). Similarly, we can introduce a dual
Md to a level-dependent capacity M by Md(t, A) = 1−M(1− t, Ac). Note that if M =
(mt)t∈[0,1], then Md =

(
md

1−t
)
t∈[0,1]

. If the Choquet integral Chv is considered as an

aggregation function, Chv : [0, 1]n → [0, 1], its dual is given by Chdv(x) = 1−Chv(1−x).
Then Chdv = Chvd , see [3]. It can be shown that a similar claim is valid for the level-
dependent capacities-based Choquet integral, i. e., ChdM = ChMd .

To illustrate the above mentioned facts consider the extremal capacities v∗, v∗ : A →
[0, 1], v∗(A) = 0 for all A 6= Ω and v∗(A) = 1 for all A 6= ∅. Then vd∗ = v∗. For a fixed
α ∈]0, 1[, let Mα = (mt)t∈[0,1] be given by

mt =
{
v∗ if t ≤ α,
v∗ if t > α.

Then, representing f ∈ FA in the form x = (x1, . . . , xn), we have

ChMα(f) = med (min{x1, . . . , xn}, α,max{x1, . . . , xn}) =

 Chv∗(f) if f ≤ α,
Chv∗(f) if f ≥ α,
α else.

The corresponding dual Md
α = (µt)t∈[0,1] is given by

µt =
{
v∗ if t < 1− α,
v∗ if t ≥ 1− α.
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Then
ChdMα

= ChMd
α

= ChM1−α .

On the other hand, if M(α) = (mt)t∈[0,1] is given by

mt =
{
v∗ if t ≤ α,
v∗ if t > α,

it holds that

ChM(α)(f) =

 min{x1, . . . , xn} if f ≤ α,
max{x1, . . . , xn} if f ≥ α,
min{x1, . . . , xn}+ max{x1, . . . , xn} − α else.

In this case it also holds that ChdM(α)
= ChMd

(α)
= ChM(1−α) .
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