Kybernetika 51 no. 1, 4-19, 2015

A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics

Masayasu Suzuki and Noboru SakamotoDOI: 10.14736/kyb-2015-1-0004

Abstract:

In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control inputs. This work is a new attempt to systematically design a control system based on symbolic dynamics in the sense that one estimates the magnitude of control inputs and analyzes the Lyapunov stability.

Keywords:

symbolic dynamics, global stability, chaos control

Classification:

37B10, 74H65, 93D15

References:

  1. G. D. Birkhoff: Dynamical Systems. American Mathematical Society, New York 1927.   DOI:10.1002/zamm.19280080636
  2. E. M. Bollt and M. Dolnik: Encoding information in chemical chaos by controlling symbolic dynamics. Phys. Rev. E 55 (1997), 6, 6404-6413.   DOI:10.1103/physreve.55.6404
  3. N. J. Corron and S. D. Pethel: Experimental targeting of chaos via controlled symbolic dynamics. Phys. Lett. A 313 (2003), 192-197.   DOI:10.1016/s0375-9601(03)00754-0
  4. C. M. Glenn and S. Hayes: Targeting Regions of Chaotic Attractors Using Small Perturbation Control of Symbolic Dynamics. Army Research Laboratory Adelphi MD 1996, No. ARL-TR-903.   CrossRef
  5. J. Hadamard: Les surfaces à curbures opposés et leurs lignes géodesiques. J. Math. Pure Appl. 5 (1898), 27-73.   CrossRef
  6. S. Hayes, C. Grebogi and E. Ott: Communicating with chaos. Phys. Rev. Lett. 70 (1993), 20, 3031-3034.   DOI:10.1103/physrevlett.70.3031
  7. Y.-C. Lai: Controlling chaos. Comput. Phys. 8 (1994), 1, 62-67.   DOI:10.1063/1.4823262
  8. N. Levinson: A second order differential equation with singular solutions. Ann. of Math. (2) 50 (1949), 1, 126-153.   DOI:10.2307/1969357
  9. D. Lind: Multi-dimensional symbolic dynamics. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2004), 61-80.   DOI:10.1090/psapm/060/2078846
  10. R. M. May: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467.   DOI:10.1038/261459a0
  11. M. Morse and G. A. Hedlund: Symbolic dynamics. Amer. J. Math. 60 (1938), 815-866.   DOI:10.2307/2371264
  12. J. Moser: Stable and Random Motions in Dynamical Systems. Princeton University Press, 1973.   CrossRef
  13. E. Ott, C. Grebogi and J. A. Yorke: Controlling chaos. Phys. Rev. Lett. 64 (1990), 11, 1196-1199.   DOI:10.1103/physrevlett.64.1196
  14. C. Robinson: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, 1999.   CrossRef
  15. E. A. Robinson and Jr.: Symbolic dynamics and tiling of $\R^d$. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2002), 81-120.   DOI:10.1090/psapm/060/2078847
  16. S. Smale: Diffeomorphism with many periodic points. In: Differential and Combinatorial Topology (S. S. Cairns, ed.), Princeton University Press 1963, pp. 63-80.   CrossRef
  17. S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, 1991.   DOI:10.1007/978-1-4757-4067-7