Kybernetika 51 no. 1, 4-19, 2015

A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics

Masayasu Suzuki and Noboru SakamotoDOI: 10.14736/kyb-2015-1-0004


In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control inputs. This work is a new attempt to systematically design a control system based on symbolic dynamics in the sense that one estimates the magnitude of control inputs and analyzes the Lyapunov stability.


symbolic dynamics, global stability, chaos control


37B10, 74H65, 93D15


  1. G. D. Birkhoff: Dynamical Systems. American Mathematical Society, New York 1927.   DOI:10.1002/zamm.19280080636
  2. E. M. Bollt and M. Dolnik: Encoding information in chemical chaos by controlling symbolic dynamics. Phys. Rev. E 55 (1997), 6, 6404-6413.   DOI:10.1103/physreve.55.6404
  3. N. J. Corron and S. D. Pethel: Experimental targeting of chaos via controlled symbolic dynamics. Phys. Lett. A 313 (2003), 192-197.   DOI:10.1016/s0375-9601(03)00754-0
  4. C. M. Glenn and S. Hayes: Targeting Regions of Chaotic Attractors Using Small Perturbation Control of Symbolic Dynamics. Army Research Laboratory Adelphi MD 1996, No. ARL-TR-903.   CrossRef
  5. J. Hadamard: Les surfaces à curbures opposés et leurs lignes géodesiques. J. Math. Pure Appl. 5 (1898), 27-73.   CrossRef
  6. S. Hayes, C. Grebogi and E. Ott: Communicating with chaos. Phys. Rev. Lett. 70 (1993), 20, 3031-3034.   DOI:10.1103/physrevlett.70.3031
  7. Y.-C. Lai: Controlling chaos. Comput. Phys. 8 (1994), 1, 62-67.   DOI:10.1063/1.4823262
  8. N. Levinson: A second order differential equation with singular solutions. Ann. of Math. (2) 50 (1949), 1, 126-153.   DOI:10.2307/1969357
  9. D. Lind: Multi-dimensional symbolic dynamics. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2004), 61-80.   DOI:10.1090/psapm/060/2078846
  10. R. M. May: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467.   DOI:10.1038/261459a0
  11. M. Morse and G. A. Hedlund: Symbolic dynamics. Amer. J. Math. 60 (1938), 815-866.   DOI:10.2307/2371264
  12. J. Moser: Stable and Random Motions in Dynamical Systems. Princeton University Press, 1973.   CrossRef
  13. E. Ott, C. Grebogi and J. A. Yorke: Controlling chaos. Phys. Rev. Lett. 64 (1990), 11, 1196-1199.   DOI:10.1103/physrevlett.64.1196
  14. C. Robinson: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, 1999.   CrossRef
  15. E. A. Robinson and Jr.: Symbolic dynamics and tiling of $\R^d$. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2002), 81-120.   DOI:10.1090/psapm/060/2078847
  16. S. Smale: Diffeomorphism with many periodic points. In: Differential and Combinatorial Topology (S. S. Cairns, ed.), Princeton University Press 1963, pp. 63-80.   CrossRef
  17. S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, 1991.   DOI:10.1007/978-1-4757-4067-7