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A STUDY ON GLOBAL STABILIZATION OF PERIODIC
ORBITS IN DISCRETE-TIME CHAOTIC SYSTEMS
BY USING SYMBOLIC DYNAMICS

Masayasu Suzuki and Noboru Sakamoto

In this report, a control method for the stabilization of periodic orbits for a class of one- and
two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical
systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe
map. A periodic orbit is assigned as a target by giving a sequence in which symbols have
periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized
by using arbitrarily small control inputs. This work is a new attempt to systematically design
a control system based on symbolic dynamics in the sense that one estimates the magnitude of
control inputs and analyzes the Lyapunov stability.
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1. INTRODUCTION

Chaos, signifying randomness and irregularity, is ubiquitous in nonlinear dynamical
systems. The hallmark of chaos is sensitive dependence of the system’s state on initial
conditions. That is, a small error in the initial conditions can lead to a large error in
the state of the system after a finite time interval. In many practical situations it is
desirable if chaos can be avoided. The OGY-method was proposed as the first method
controlling chaos in 1990 [7, 13], and since then, much related research has been carried
out. The principal purpose of chaos control is stabilization of a periodic orbit embedded
in an attractor.

Symbolic dynamics is introduced in order to characterize the orbit structure of a
dynamical system via infinite sequences of “symbols” [12, 17]. The study on symbolic
dynamics has a long history. The first application was shown in Hadamard’s work of
geodesics on surfaces of negative curvature [5]. Birkhoff used symbolic dynamics in his
studies of dynamical systems [1]. Morse and Hedlund studied symbolic dynamics as an
independent subject [11]. Levinson applied it for the study of the forced van der Pol
equation [8], and from his result, Smale introduced the well-known horseshoe mapping
[16]. In chaos engineering, symbolic dynamics is used for chaos communication [6], and

DOI: 10.14736/kyb-2015-1-0004

http://doi.org/10.14736/kyb-2015-1-0004


Global stabilization of periodic orbits using symbolic dynamics 5

the targeting problem in which trajectories from initial states to the neighborhood of a
target orbit are designed [2, 3, 4].

This paper is concerned with the global stabilization of a periodic orbit embedded in
a chaotic trajectory. To this end, first, a control law is designed in the sequence space
such that the target periodic orbit becomes asymptotically stable. Next, the control law
is transformed to the state space. By the proposed method, we design a one-dimensional
control system for a population model in an ecosystem, and a two-dimensional control
system with one input for the Smale horseshoe map. Although we follows an idea
[2, 3, 4, 6] that one evaluates the states of systems and controls them on the side of
symbolic dynamics, our work is the first exposition using symbolic dynamics in order to
design control systems systematically in the sense that one can estimate the magnitude
of control inputs and analyze the Lyapunov stability. The use of symbolic dynamics
for design is effective since it is possible to globally stabilize any periodic orbit with
arbitrarily small inputs by a uniform control law that does not switch from targeting to
local stabilization, which is not an easy task with the conventional state space approach.

2. SYMBOLIC DYNAMICS

2.1. Symbolic dynamics

Consider the following discrete-time dynamical system defined on R or R2 that has an
invariant set X.

xn+1 = f(xn), xn ∈ X ⊂ R or R2. (1)

Let S = {0, 1, . . . , N} be a set of symbols, and let N + 1 subsets X0, . . . , XN be disjoint
sets, the union of which is the invariant set X. That is,

X = X0 ∪X1 ∪ · · · ∪XN , Xi ∩Xj = ∅ (i 6= j)

holds. Furthermore, for a state x ∈ X, consider a correspondence to give the i times
iteration of f , f i(x), a symbol with an index, si ∈ S, as follows:

f i(x) ∈ Xk =⇒ si = k.

Then, we define a set Σ as the infinite direct product of S, Σ :=
∏∞

i=−∞ Si, Si = S (∀ i),
and a mapping Ψ : X → Σ by

Ψ(x) = · · · s−2s−1•s0s1s2 · · · , x ∈ f−i(Xk).

Here, we add the decimal point to the sequence to indicate that the symbol lying at the
right of it corresponds to the non-iterated state. Moreover, define a mapping σ : Σ → Σ
as

σ(· · · s−2s−1•s0s1 · · · ) = · · · s−1s0•s1s2 · · · .

The set Σ, for which one can give some mathematical structures in fact, is called the
sequence space, and the mapping σ the shift. In this paper, we consider the following
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metric between two-side infinite sequences ρ and ρ′:

dΣ(ρ, ρ′) =
∞∑

i=−∞

1
2|i|

|si − s′i|
1 + |si − s′i|

. (2)

Denote the dynamics of the mapping f on its invariant set X as (X, f), and the
dynamics of the mapping σ on Σ as (Σ, σ). When Ψ is a homeomorphic mapping and
satisfies σ ◦Ψ = Ψ ◦ f , the pairs (X, f) and (Σ, σ) are said to be topological conjugate,
which is represented by the commutative diagram in Figure 1. Then, the system (Σ, σ)
is called symbolic dynamical system for the system (X, f).

Σ Σ

X X

-

-

? ?

f

σ
Ψ Ψ

Fig. 1. The commutative diagram between the dynamical system

(X, f) and the symbolic dynamical system (Σ, σ).

Remark 2.1. The study on symbolic dynamics has a history of over a century. The
advantages of using symbolic dynamics are as follows. If symbolic dynamics can be
introduced for a dynamical system in the state space, the description of its time evolution
in the sequence space, that is, shifting symbols, is simpler than that of the original
system. It is easier to focus on certain properties of a dynamical system. For example,
the existence of a periodic orbit with any period can be easily proven, and it is even
possible to show there is a dense orbit in the state space.

Remark 2.2. The class of dynamics to which symbolic dynamics can be introduced
is large. Actually, it is known that, for dynamics satisfying the axiom A1, the non-
wandering set can be divided into finite basic sets and each of basic sets introduces
Markov sub-shift2 by Markov partition (See [14]). Many dynamics, for example, Morse-
Smale system, Anosov system, DA map and horseshoe, satisfy the axiom A.

2.2. Periodic orbits and the stability

Definition 2.3. If a trajectory {x0, x1, . . .} of the dynamics (X, f) satisfies that xn+T =
xn for some constant T ∈ N, the trajectory is called a T -periodic orbit or simply periodic
orbit. Then, each point of the T -periodic orbit is called a T -periodic point or simply
periodic point.

1 A diffeomorphism f : M →M (M is a manifold) such that the non-wandering set Ω(f) is hyperbolic
and a set of all periodic points Per(f) is dense in Ω(f), is said to satisfy axiom A.

2 Markov sub-shift is a restriction of the shift σ to ΣA, where ΣA ⊂ Σ is a σ-invariant subset given
by a transition matrix describing how sequences evolve.
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We find that a state x ∈ X is a T -periodic point if and only if the sequence ρ ∈ Σ
corresponding to x consists of infinitely repeated T -length blocks of symbols.

ρ = Ψ(x) = · · · s1s2 · · · sT︸ ︷︷ ︸
T -length block

s1s2 · · · sT︸ ︷︷ ︸
T -length block

· · · ,

which means that all periodic orbits in the invariant set can be specified by periodic
sequences.

In this paper, we describe a periodic point in X and the corresponding sequence in
Σ by adding “ ¯ ”, as x̄ and ρ̄ = Ψ(x̄) = · · · s̄0s̄1 · · · , respectively. Furthermore, denote
a T -periodic orbit by a finite set γT = {x̄0, x̄1, . . . , x̄T−1}, and let PT be a set of the
sequences corresponding to γT as follows:

PT = {ρ̄0, ρ̄1, . . . , ρ̄T−1}, ρ̄i = Ψ(x̄i), i = 1, 2, . . . , T.

We define the distance between a state x ∈ X and a periodic orbit γT ⊂ X by
d∗(x, γT ) := miny∈γT

d(x, y), where d is some metric in X. Then, we consider the
following stability of a periodic orbit in the sense of Lyapunov.

Definition 2.4. A periodic orbit γT is said to be stable if, for all ε > 0, there exists
a δ = δ(ε) > 0 such that, for any solution {fn(x0)} satisfying d∗(x0, γT ) < δ, we have
d∗(fn(x0), γT ) < ε for all n ≥ 0. A periodic orbit is said to be unstable if it is not
stable.

Definition 2.5. A periodic orbit γT is said to be globally asymptotically stable if it is
stable and, for any initial state x0, we have limn→∞ d∗(fn(x0), γT ) = 0.

3. DESIGN OF A CONTROL SYSTEM BASED ON SYMBOLIC DYNAMICS

Now, let us consider the following control system for system (1).

xn+1 = f(xn) + un. (3)

We formulate the problem to be tackled in this paper as follows:

Problem Design a control law un in (3) that globally stabilizes the unstable peri-
odic orbit γT in system (1). Furthermore, design a control law that accomplishes the
stabilization of γT with inputs whose magnitudes are less than a value given arbitrarily.

3.1. Control law in the sequence space

In the sequence space Σ, the time evolution of sequences by the shift mapping σ is
described as

ρn+1 = σ(ρn).

Here, ρn is the sequence corresponding to the state xn, i. e. ρn = Ψ(xn). To address the
above problem, we first design a control law in the sequence space Σ, which means to
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alter σ so that an orbit starting at an arbitrary initial sequence ρ0 converges to PT ⊂ Σ
corresponding to γT ⊂ X. Due to the metric of (2) in Σ, we notice that the more
symbols from the decimal point toward both sides agree in ρ and ρ′, the closer ρ and
ρ′ are. Therefore, a new σ, which we denote as π, requires rewriting symbols in the
sequence. Let k and l be integers with k ≥ 0 and l ≥ 1, respectively. Assume that
each of the T -periodic sequences in PT consists of infinitely repeated T -length block
PT = r1r2 · · · rT . The mapping of the new closed-loop system,

ρn+1 = π(ρn) (4)

should have the following time evolution.

ρ = · · · •s0 · · · sk−1sk · · · sk+l−2sk+l−1 · · · sk+2l−3 · · · ,

π(ρ) = · · · •s1 · · · s̄k s̄k+1 · · · s̄k+l−1sk+l · · · sk+2l−2 · · · ,

π2(ρ) = · · · •s2 · · · s̄k+1s̄k+2 · · · s̄k+l s̄k+l+1 · · · s̄k+2l−1 · · · , (5)

...
...

The above underlined blocks of l-length consist of a part of PT or several PT ’s with
its part. The parameter k is the place that the target symbols are inserted in. The
parameter l is the length of the inserted target symbols. As a consequence, the orbit
{πn(ρ)}∞n=0 converges to PT .

d∗Σ(πn(ρ),PT ) → 0 (n →∞)

where d∗Σ(ρ,PT ) = minξ∈PT
dΣ(ρ, ξ). The following proposition gives us the specific

description of the mapping π.

Proposition 3.1. The mapping π in (5) can be denoted as a composition of the shift
mapping σ and a mapping φ : Σ → Σ as follows:

π = φ ◦ σ.

P r o o f . We prove the existence of such a mapping φ constructively. Consider a se-
quence ρ = · · · s−1•s0s1 · · · . Let ρ̄ = · · · s̄−1•s̄0s̄1 · · · be the closest sequence to ρ in
PT . Furthermore, let m be larger than k and satisfy, for k + 1 ≤ i ≤ m − 1, si = s̄i,
and sm 6= s̄m. We define a rewriting mapping φ : Σ → Σ such that l-length block L,
that consists of l symbols from (m + 1)-th symbol in ρ̄, is inserted between m-th and
(m + 1)-th symbols in ρ which mean sm−1 and sm, respectively. That is, we define φ as
follows: For two sequences

ρ̄ = · · · •s̄0s̄1 · · · s̄k s̄k+1 · · · s̄m−1︸ ︷︷ ︸

=

l-length block L︷ ︸︸ ︷
s̄m︸︷︷︸

6=

s̄m+1 · · · s̄m+l−1· · ·,

ρ = · · · •s0s1 · · · sk

︷ ︸︸ ︷
s̄k+1 · · · s̄m−1

︷︸︸︷
sm sm+1· · ·,
↑ insert the l-length block L
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the image of ρ by φ is

φ(ρ) = · · · •s0s1 · · · sks̄k+1 · · · s̄m−1s̄ms̄m+1 · · · s̄m+l−1 · · · .

Then, the composition of φ and σ gives the time evolution as (5). �

3.2. Control law in the state space

In the sequence space Σ, rewriting a sequence means controlling the time evolution of
the sequence. Now, we design a control law in the state space X to realize the closed-
loop system (4) in Σ. We define a new mapping f̃ , instead of f in (1), corresponding to
the mapping π as Figure 2.

X X

Σ Σ

-

-

? ?

π

f̃
Ψ−1 Ψ−1

Fig. 2. A mapping f̃ in X corresponding to π in Σ.

The closed-loop system in the state space is induced from π as follows:

xn+1 = f(xn) + u(xn), (6)

where

u(x) = f̃(x)− f(x),

f̃(x) = (Ψ−1 ◦ π ◦Ψ)(x).

The input un = u(xn) is the function of the state xn, therefore, system (6) is a state
feed-back system (See Figure 3). The design parameter k, which specifies the position
of the modification of symbols, dominates the magnitude of the inputs in the sense that
the magnitude of the inputs can be smaller by choosing a larger k. Also, the design
parameter l, which is the length of the modified symbols, dominates the convergence
rate of πn(ρ) (See the next section).

Remark 3.2. The number of the inputs of the above control system does not necessarily
have to be equal to the dimension of the state space X. The state space of a chaotic
system with hyperbolic structure is stretched and compressed at the same time, as
shown in the Smale horseshoe map (9) and (10) in Section 5.3. For such a dynamical
system, since rewriting symbols in the right-hand side of the decimal point corresponds
to controlling the system so as to transfer the state in the direction in which X is
stretched, one does not need the inputs in the compression direction of X. Therefore,
it may be accomplished to stabilize periodic orbits by a small number of inputs if the
directions of the inputs transversely intersects with the compression directions, as shown
in the two-dimensional system with one input (11) in Section 5.3.



10 M. SUZUKI AND N. SAKAMOTO

xn+1 = f(xn) + un

f

xnun

Ψ
−1 φ σ Ψ

Fig. 3. The state feed-back system.

4. AN ESTIMATION OF THE MAGNITUDE OF THE CONTROL INPUTS AND
THE STABILITY ANALYSIS

In this section, for the feedback system (6), we estimate the magnitude of the inputs,
and analyze the stability of periodic orbits.

4.1. An estimation of the magnitude of the control inputs

To stabilize a periodic orbit of the original system (1), the feedback system (6) must
also have the same periodic orbit. The following proposition guarantees it.

Proposition 4.1. The T -periodic orbit γT in dynamics (X, f) is also a T -periodic orbit
in the feedback systems (6). Moreover, u|γT

= 0.

P r o o f . Suppose that a state xn coincides with a periodic point x̄n∈γT . Since π =σ
on PT , we have (π ◦ Ψ)(xn) = (σ ◦ Ψ)(xn). Therefore, we get f̃(xn) = f(xn) and
un =u(xn)=0. Since xn+1 =f(xn)+un =f(x̄n), it turns out that xn+1 = x̄n+1∈γT . �

Furthermore, we have the theorem concerning the magnitude of the inputs of (6).

Theorem 4.2. For all ε > 0, there exists a K = K(ε) > 0 such that if the design
parameter k is larger or equal to K, then we have ‖un‖ < ε for all n ≥ 0.

P r o o f . The sequences corresponding to f̃(xn) and f(xn) are

ρ̃n+1 := Ψ(f̃(xn)) = · · · sn︸ ︷︷ ︸

=

• sn+1sn+2 · · · sn+k︸ ︷︷ ︸

=

s̄n+k+1 · · ·

ρn+1 := Ψ(f(xn)) =
︷ ︸︸ ︷
· · · sn •

︷ ︸︸ ︷
sn+1sn+2 · · · sn+k sn+k+1 · · · ,

respectively, that is, all left symbols and at least k right symbols from the decimal point
in two sequences agree. From the metric in Σ, it turns out that dΣ(ρ̃n+1, ρn+1) < 1/2k−1.
Since Ψ−1 is continuous, the smaller the distance between ρ̃n+1 and ρn+1 is, the smaller
the distance between f̃(xn) and f(xn) is. Therefore, given ε > 0, there exists a δ
such that, if dΣ(ρ̃n+1, ρn+1) < δ, then d(f̃(xn), f(xn)) < ε. If we choose k such that
k > log2(1/δ) + 1, then dΣ(ρ̃n+1, ρn+1) < δ, and thus, we have ‖un‖ < ε. �
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4.2. The stability analysis of periodic orbits

In order to analyze the stability of periodic orbits of the feedback system (6), we define
the neighborhood Vj of a sequence ρ in Σ by

Vj(ρ) := {ρ̃ ∈ Σ|s̃i = si, |i| < j}.

For an integer j and a periodic orbit γT = {x̄0, x̄1, . . . , x̄T }, we define a maximum radius
εj of a neighborhood of γT by

εj := max
0≤n≤T−1

sup
ρ∈Vj(ρ̄n)

d(Ψ−1(ρ), x̄n),

where ρ̄n = Ψ(x̄n). We have the following Lemma.

Lemma 4.3. For all integer j, εj exists. If j′ ≥ j, then εj′ ≤ εj . Furthermore, we have
limj→∞ εj = 0.

For the feedback system (6), we can prove the following theorem.

Theorem 4.4. Let l ≥ 2. Then, γT is globally asymptotically stable.

P r o o f . From Proposition 4.1, it is proven that γT is a periodic orbit in the feedback
system (6).

For given ε > 0 and k ≥ 0, let δ = min{ε, 1/2k+1}. For ρ̄ = · · · s̄0s̄1 · · · ∈ PT , if
ρ = · · · s0s1 · · · satisfies dΣ(ρ, ρ̄) < δ, then we have

si = s̄i, |i| ≤ η,

where η is the largest integer less than or equal to max{log2(1/ε) − 1, k}. Since some
symbols in π(ρ) and π(ρ̄) agree as follows,

π(ρ) = · · · s̄−η · · · s̄0︸ ︷︷ ︸

=

• s̄1s̄2 · · · s̄η︸ ︷︷ ︸

=

s̄η+1 · · · s̄∗︸ ︷︷ ︸

=

s∗+1 · · ·

π(ρ̄) = · · ·
︷ ︸︸ ︷
s̄−η · · · s̄0

→

•
︷ ︸︸ ︷
s̄1s̄2 · · · s̄η

→

︷ ︸︸ ︷
s̄η+1 · · · s̄∗

→

s̄∗+1 · · · .

(η+1)-length η-length more than l-length

it turns out

dΣ(π(ρ), π(ρ̄)) < dΣ(ρ, ρ̄) < δ.

Therefore, we have

dΣ(πn(ρ), πn(ρ̄)) < δ ≤ ε, n ≥ 0.

Note that, for a sequence ρ, if a periodic sequence ρ̄i is the closest to ρ in PT , then
π(ρ̄i) is the closest to π(ρ) in π(PT ). Therefore, it turns out that, if d∗Σ(ρ,PT ) < δ, then
d∗Σ(πn(ρ),PT ) < ε for all n ≥ 0.
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By the continuity of Ψ−1, we prove that, for all λ > 0, there exists a ε = ε(λ) > 0
such that, if d∗Σ(πn(Ψ(x)),PT ) < ε, then d∗(Ψ−1(πn(Ψ(x))), γT ) = d∗(f̃n(x), γT ) < λ.
Similarly, by the continuity of Ψ, it turns out that, for all δ > 0, there exists a ν =
ν(δ) > 0 such that, if d∗(x, γT ) < ν, then d∗Σ(Ψ(x),PT ) < δ. Therefore, one concludes
that, for all λ > 0, there exists a ν > 0 such that, if d∗(x, γT ) < ν, then we have
d∗(f̃n(x), γT ) < λ. The stability of γT is proven.

The global asymptotic stability is proven as follows. For an arbitrary initial state x0,
the sequence at time n(≥ k), πn(Ψ(x0)), has k + n(l − 1) (=: jn) symbols from the left
being equal to those of a periodic sequence in PT . Therefore, a state xn satisfies that
d∗(xn, γT ) ≤ εjn . Since limn→∞ jn = ∞, we have limn→∞ εjn = 0. Therefore, it turns
out that, for an arbitrary initial state x0 ∈ X, we have limn→∞ d∗(xn, γT ) = 0. �

5. APPLICATION EXAMPLES

In this section, we show application examples of the proposed method.

5.1. A modification of the control law for calculation

Since it is difficult for calculation to treat infinite-length sequences, we modify the feed-
back system (6). For a state x ∈ X and the corresponding sequence Ψ(x), consider
a finite-length subsequence in Ψ(x) consisting of l symbols rewritten by π and cen-
tered (2m + 1) symbols: s−m · · · s−1•s0s1 · · · smsm+1 · · · sm+l (underline: the rewritten
l symbols). Denote this correspondence from x to the subsequence as Ψ̂. And also, for a
finite-length sequence ρ̂ = ŝ−p · · · ŝ−1•ŝ0 · · · ŝq, consider a set of infinite-length sequences
having ρ̂ as a subsequence:

Sρ̂ = {ρ∗l ρ̂ρ∗r ∈ Σ |ρ∗l and ρ∗r are arbitrary left- and right-side
infinite-length sequences, respectively},

and a mapping giving an interior point of a set Ψ−1(Sρ̂) ⊂ X for ρ̂, which is denoted
as Ψ̂∗. The interior point can be chosen arbitrarily. Furthermore, for finite-length
sequences, define σ̂ and φ̂ by

σ̂(s−p · · · s−1•s0s1 · · · sq) = s−p · · · s−1s0•s1 · · · sq

φ̂(s−(m+1) · · · s−1•s0 · · · sm · · · sm+l−1) = s−(m+1) · · · s−1•s0 · · · s̄m · · · s̄m+l−1,

and let π̂ = φ̂ ◦ σ̂. By replacing f̃ of the feedback system (6) with f̂ = Ψ̂∗ ◦ π̂ ◦ Ψ̂,
the feedback law is realized on a calculator. We can prove that the control performance
confirmed in Section 4 remains the same after this modification.

Remark 5.1. The distance between xn and γT converges to 0 more rapidly by choosing
larger l. l ≥ 2 means, however, the calculation amount is getting larger actually. If one
wants to avoid it, one has to let l = 1. We note that, although the asymptotic stability
cannot be guaranteed for l = 1, the states can keep in a narrow tube around the periodic
orbit by choosing reasonably large k.
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5.2. Control of an ecosystem

One of the simplest systems an ecologist can study is seasonally breeding populations in
which generations do not overlap [10]. For example, many natural populations such as
temperate zone insects are of this kind. Such a relationship is expressed by a discrete-
time system xn+1 = f(xn) (variable xn is the magnitude of the population). There are
other examples expressed in this form, as, for example, in biology the theory of genetics
and epidemiology. In economics the models for the relationship between commodity
quantity and price and for the theory of business cycles. In sociology, the theory of
learning and the propagation of rumors in variously structured societies are described
by this kind of equation. In many of these contexts, and for biological populations in
particular, there is a tendency for the variable xn to increase from one generation to the
next when it is small, and for it to decrease when it is large. The discrete-time system
below is a model representing such a tendency.

xn+1 = rxn(1− xn), xn ∈ [0, 1]. (7)

This system is called Logistic map, and known to show chaotic behavior by choosing
parameter r suitably. In particular, when r = 4, the system generates chaos [14], and
the closed interval [0, 1] is an invariant set. Furthermore, divide the interval [0, 1] into
two regions with the boundary value 1/2 and give symbols “0” and “1” to the regions,
respectively. That is, denote these regions as X0 = [0, 1/2), X1 = [1/2, 1]. Then,
symbolic dynamics (Σ, σ) can be introduced into the system (7) with r = 4. Here,
sequences are one-side infinite sequences because (7) is not invertible. However, since
the control law rewrites symbols being located on right side from the decimal point, our
control method can be applied to this system (7).

Now, by adding or removing individuals in (7), we try to fluctuate the population
of the individuals periodically. In particular, it is intended that the magnitude of the
population always returns to the initial magnitude every 3 generations. For such a
purpose, we give a 3-periodic sequence repeating “011” as a target orbit and design
a control system by using the proposed method. The simulation results are shown
below. Figure 4 illustrates the time evolution of the state starting at the initial condition
x0 = 0.3 with no control. That is, a chaotic behavior can be observed.

st
a
te

x
n

time step n

Fig. 4. Time evolution of the state without control input; initial

condition x0 = 0.3.

Figure 5 (a) shows the time evolutions of the states starting at the same initial
condition x0 = 0.3 with the design parameters (k, l) = (1, 2). For the state value
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(a)
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u
n

time step n

(b)

Fig. 5. Stabilization of a 3-periodic orbit embedded in a Logistic

map; initial condition x0 = 0.3: (a) design parameter k = 1, l = 2;

(b) design parameter k = 10, l = 2.

x0 = 0.3, the corresponding finite sequence, where we consider sequences of 10 symbols
to explain the proposed procedure, is ρ̂ = Ψ̂(x0) = •s0s1 · · · s9 = •0111000101 because
we have f(x0) = 0.84, f2(x0) = 0.5376, f3(x0) = 0.9943, f4(x0) = 0.0225, and so on.
Then the sequence ρ̂ is shifted as 0•111000101. However, since the symbol at the left of
the decimal point has no meaning for controlling this system, one can omit it. Therefore
we treat the shift as truncation, that is, σ̂(ρ) = •s1s2 · · · s9 = •111000101. Next we
compare the truncated sequence with a periodic sequence ρ̄ = •011011 · · · . Since k = 1,
subsequence s2s3 · · · s9 = 11000101 is compared to the periodic sequence ρ̄ in turn from
the left symbol. We find that s2 disagrees, and hence, l(= 2) symbols “01” in ρ̄ is inserted
between s1 and s2. This is the rewriting operation: φ̂(•111000101) = •1011100010.
Denote this rewritten sequence as ρ̌ = •š0š1 · · · š9. Then we calculate the inverse image
of the rewritten sequence under Ψ̂, Ψ̂−1(ρ̌) = {x ∈ R | f i(x) ∈ Xši , i = 0, 1, . . . , 9},
which is derived by solving simultaneous inequalities. For the system of (7), the inverse
image is always an connected interval: For the above sequence, it is [0.1464, 0.3087] 3.

3 The shown numerical values are rounded.
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Finally, we choose an interior point in the inverse image and calculate an input value.
We here assign the midpoint of the interval as the interior point, which is denoted by
x∗: For the above interval, it is x∗ = 0.2276. Therefore the mapping Ψ̂∗ is defined as
the correspondence ρ̌ 7→ x∗ and, f̂ (:= Ψ̂∗ ◦ φ̂ ◦ σ̂ ◦ Ψ̂) as x0 7→ x∗. For each time k,
the above procedures are performed against the current state xk instead of x0. Note
that the periodic sequence compared at the rewriting step is time-variant, that is, it
is chosen from {ρ̄, f(ρ̄), f2(ρ̄)} in turn. It is also reasonable to choose the nearest one
to the corresponding sequence, where this choice is can be said to be state-depended
rather than time-depended. In Figure 5 (a), the state values (the magnitude of the
population) are plotted in the top figure and the input values are plotted in the bottom
figure, respectively.

Figure 5 (b) shows the simulation results with (k, l) = (10, 2). From Figures 5 (a)
and (b), it is confirmed that the states converge to the 3-periodic orbit. Furthermore,
by comparing Figures 5 (a) and (b), it can be verified that the system with the input
magnitude parameter k = 10 has smaller input values than those of the system with
k = 1.

5.2.1. Comparison with the OGY-method
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time step n

Fig. 6. Stabilization of a 3-periodic orbit embedded in Logistic map

with the OGY-method; initial condition x0 = 0.3.

In the OGY-method [13], the control inputs are added so that trajectories transit onto
a local stable manifold, only when the state enters in a control region given in advance.
The waiting time is derived statistically, and, in general, the smaller the control region
is, the longer the time is. In our method, however, one can clearly know when the state
will enter the neighborhood of the target even if it is small.

Figure 6 illustrates a simulation result of stabilization of the 3-periodic orbit by
applying the OGY-method. The control region is a neighborhood of the 3-periodic orbit
with a radius 0.001. It can be verified that it takes longer time to stabilize the 3-periodic
orbit than the proposed control method.
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5.2.2. A simulation of the feedback system with noise

For the logistic map (7), we consider a feedback system with white Gaussian noise {vn}
as follows.

xn+1 = f(xn) + u(xn) + vn. (8)

We set the mean and the standard deviation of noise as {vn} to 0 and 10−4, respectively,
and simulate (8) in the case when (i) k = 5, l = 2 and (ii) k = 10, l = 2. Figure 7 shows
the time evolutions of the states in these cases.

k
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5
;
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n
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n

time step n

Fig. 7. Responses of the feedback system with white Gaussian noise:

(i) Top figure; design parameter k = 5, l = 2: (ii) Bottom figure;

design parameter k = 10, l = 2.

From Figure 7, it turns out that, the 3-periodic orbit is stabilized in the case (i),
but it is not done in the case (ii). One concludes that, if the design parameter k is not
sufficiently small, that is, the upper limit of the inputs is not sufficiently large, to remove
the effect of the noise, then periodic orbits in (6) cannot be stabilized.

5.3. Control of the Smale horseshoe map—two-dimensional system with
one input

Smale horseshoe map was introduced as the first example of diffeomorphism that had
an infinite number of periodic points and were structurally stable [16]. Furthermore,
understanding of the Smale horseshoe is absolutely essential for understanding what is
meant by term “chaos”.

Consider a square D = [0, 1]× [0, 1] on the plane, and the subsets H0 = [0, 1]× [0, 1/µ]
and H1 = [0, 1]× [1−1/µ, 1], where µ > 2. The simplified Smale horseshoe map is given
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as follows [17].[
xn+1

yn+1

]
= f(xn, yn), (9)

f(x, y) =


[

λ 0
0 µ

] [
x
y

]
,

[
x
y

]
∈ H0,[

−λ 0
0 −µ

] [
x
y

]
+

[
1
µ

]
,

[
x
y

]
∈ H1

(10)

where λ < 1/2 and H0, H1 are compressed in the direction of x-axis and stretched in the
direction of y-direction. This system (9) has an invariant set Λλ,µ = {(x, y) | fk(x, y) ∈
D, ∀ k ∈ Z}, which is known to be a Cantor set. Let X0 = H0∩Λλ,µ and X1 = H1∩Λλ,µ.
Then, symbolic dynamics can be introduced.

For the system (9) with µ = 3 and λ = 1/3, we try to stabilize a 4-periodic orbit in
Λ1/3,3 by the following two-dimensional control system with one input:[

xn+1

yn+1

]
= f(xn, yn) +

[
0
1

]
un (11)

where un is a scalar function. We give a 4-periodic sequence repeating “0011” as a
target orbit. Figure 8 shows the time evolutions of the states and the inputs with the
initial value (x0, y0) = (1/9, 1/9) ∈ Λ1/3,3 and the design parameter (k, l) = (5, 2). From
Figure 8, it is confirmed that states converge to 4-periodic orbit.
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Fig. 8. Stabilization of a 4-periodic orbit embedded in a Smale

horseshoe map; initial condition (x0, y0) = (1/9, 1/9); design

parameter k = 5, l = 2
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6. CONCLUSION

In this paper, for a class of discrete-time systems that are topologically conjugate to
symbolic dynamics, we proposed a control method to stabilize periodic orbits. We
also showed application examples of the proposed control method, which were a one-
dimensional control system for a population dynamics represented by a Logistic map and
a two-dimensional control system with one input for the Smale horseshoe map. This is
a new attempt to design control systems by using symbolic dynamics systematically in
the sense that one estimates the magnitude of control inputs and analyzes the Lyapunov
stability. The proposed control method can stabilize any periodic orbits with arbitrarily
small inputs without switching the control law from targeting to local stabilization, and
can ensure the robustness against noise by choosing the design parameter suitably. It
is difficult with the conventional state space approaches to accomplish the stabilization
like this, showing the effectiveness of the use of symbolic dynamics.

Applying theoretical results in terms of symbolic dynamics to the control system
design may allow us to simultaneously accomplish the local stabilization and global tar-
geting by small inputs for a wide class of complex systems. To generalize the proposed
method, we need to investigate more practical situations such as cases in which sys-
tems are higher dimensional and the number of control variables is restricted. For the
former case, high dimensional symbolic dynamics [9, 15] should be introduced, where
multi-dimensional arrays of symbols rather than one-dimensional sequences are treated.
Although we considered the latter problem for a simplified system in the previous sec-
tion, careful geometric analysis for the dynamics in the state space will be required for
general systems. Some concepts in control theory field such as accessibility and reach-
ability may give us some hints. It is one of the main future works to characterize the
possibility of desired changes in one- or multi-dimensional symbolic dynamics by a small
number of degree-of-freedom of control.

The evaluation for the computational cost for calculating control inputs in our ap-
proach is also needed because it will increase as the governing equation becomes complex.
The OGY method for the local stabilization just requires systems linearized around each
periodic points. This low computational burden is one of its advantages. While our ap-
proach covers the global targeting and the control law is uniform even for different
periodic orbits, we have to refine the proposed method so that the calculation cost is
reasonable, which is another future work.

(Received June 21, 2014)
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