Kybernetika 51 no. 1, 36-58, 2015

Transformation of nonlinear state equations into the observer form: Necessary and sufficient conditions in terms of one-forms

Vadim Kaparin and Ülle KottaDOI: 10.14736/kyb-2015-1-0036

Abstract:

Necessary and sufficient conditions are given for the existence of state and output transformations, that bring single-input single-output nonlinear state equations into the observer form. The conditions are formulated in terms of differential one-forms, associated with an input-output equation of the system. An algorithm for transformation of the state equations into the observer form is presented and illustrated by an example.

Keywords:

nonlinear control system, state and output transformations, observer form, differential one-form

Classification:

93C10, 93B10, 93B17

References:

  1. G. Besançon: On output transformations for state linearization up to output injection. IEEE Trans. Automat. Control 44 (1999), 10, 1975-1981.   DOI:10.1109/9.793789
  2. D. Bestle and M. Zeitz: Canonical form observer design for non-linear time-variable systems. Int. J. Control 38 (1983), 2, 419-431.   DOI:10.1080/00207178308933084
  3. D. Boutat, A. Benali, H. Hammouri and K. Busawon: New algorithm for observer error linearization with a diffeomorphism on the outputs. Automatica 45 (2009), 10, 2187-2193.   DOI:10.1016/j.automatica.2009.05.030
  4. J. Chiasson: Nonlinear differential-geometric techniques for control of a series DC motor. IEEE Trans. Control Systems Technol. 2 (1994), 1, 35-42.   DOI:10.1109/87.273108
  5. G. Conte, C. H. Moog and A. M. Perdon: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Springer-Verlag, London 2007.   DOI:10.1007/978-1-84628-595-0
  6. A. Glumineau, C. H. Moog and F. Plestan: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 4, 598-603.   DOI:10.1109/9.489283
  7. M. Guay: Observer linearization by output-dependent time-scale transformations. IEEE Trans. Automat. Control 47 (2002), 10, 1730-1735.   DOI:10.1109/tac.2002.803547
  8. M. Halás and Ü Kotta: A transfer function approach to the realisation problem of nonlinear systems. Int. J. Control 85 (2012), 3, 320-331.   DOI:10.1080/00207179.2011.651748
  9. Institute of Cybernetics at Tallinn University of Technology: NLControl website. (2014).    www.nlcontrol.ioc.ee
  10. A. Isidori: Nonlinear Control Systems: An Introduction. Lect. Notes Control Inform. Sci. 72, Springer-Verlag, Berlin 1985.   DOI:10.1007/bfb0006368
  11. W. P. Johnson: The curious history of Faà di Bruno's formula. Amer. Math. Monthly 109 (2002), 3, 217-234.   DOI:10.2307/2695352
  12. P. Jouan: Immersion of nonlinear systems into linear systems modulo output injection. SIAM J. Control Optim. 41 (2003), 6, 1756-1778.   DOI:10.1137/s0363012901391706
  13. V. Kaparin and Ü. Kotta: Necessary and sufficient conditions in terms of differential-forms for linearization of the state equations up to input-output injections. In: UKACC International Conference on CONTROL 2010 (K. J. Burnham and V. E. Ersanilli, eds.), IET, Coventry 2010, pp. 507-511.   DOI:10.1049/ic.2010.0334
  14. V. Kaparin and Ü. Kotta: Theorem on the differentiation of a composite function with a vector argument. Proc. Est. Acad. Sci. 59 (2010), 3, 195-200.   DOI:10.3176/proc.2010.3.01
  15. A. J. Krener and A. Isidori: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 1, 47-52.   DOI:10.1016/0167-6911(83)90037-3
  16. A. J. Krener and W. Respondek: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 2, 197-216.   DOI:10.1137/0323016
  17. T. Mullari and Ü. Kotta: Transformation the nonlinear system into the observer form: Simplification and extension. Eur. J. Control 15 (2009), 2, 177-183.   DOI:10.3166/ejc.15.177-183
  18. D. Noh, N. H. Jo and J. H. Seo: Nonlinear observer design by dynamic observer error linearization. IEEE Trans. Automat. Control 49 (2004), 10, 1746-1750.   DOI:10.1109/tac.2004.835397
  19. W. Respondek, A. Pogromsky and H. Nijmeijer: Time scaling for observer design with linearizable error dynamics. Automatica 40 (2004), 2, 277-285.   DOI:10.1016/j.automatica.2003.09.012
  20. M. T{õ}nso, H. Rennik and Ü. Kotta: WebMathematica-based tools for discrete-time nonlinear control systems. Proc. Est. Acad. Sci. 58 (2009), 4, 224-240.   DOI:10.3176/proc.2009.4.04