Kybernetika 51 no. 1, 137-149, 2015

Finite-time synchronization of chaotic systems with noise perturbation

Jie Wu, Zhi-cai Ma, Yong-zheng Sun and Feng LiuDOI: 10.14736/kyb-2015-1-0137

Abstract:

In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.

Keywords:

synchronization, finite-time, noise perturbation, adaptive feedback controller

Classification:

34F05, 34H10

References:

  1. M. P. Aghababa and H. P. Aghababa: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69 (2012), 1903-1914.   DOI:10.1007/s11071-012-0395-1
  2. M. P. Aghababa and H. P. Aghababa: A novel finite-time sliding mode controller for synchronization of chaotic systems with input nonlinearity. Arab. J. Sci. Eng. 38 (2013), 3221-3232.   DOI:10.1007/s13369-012-0459-z
  3. M. P. Aghababa, S. Khanmohammadi and G. Alizadeh: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35 (2011), 3080-3091.   DOI:10.1016/j.apm.2010.12.020
  4. G. Alvarez, L. Hernández, J. Muñoz, F. Montoya and S. J. Li: Security analysis of communication system based on the synchronization of different order chaotic systems. Phys. Lett. A 345 (2005), 245-250.   DOI:10.1016/j.physleta.2005.07.083
  5. F. Argenti, A. DeAngeli, E. DelRe, R. Genesio, P. Pagni and A. Tesi: Secure communications based on discrete time chaotic systems. Kybernetika 33 (1997), 41-50.   CrossRef
  6. Z. Beran: On characterization of the solution set in case of generalized semiflow. Kybernetika 45 (2009), 701-715.   CrossRef
  7. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101.   DOI:10.1016/s0370-1573(02)00137-0
  8. N. Cai, W. Q. Li and Y. W. Jing: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64 (2011), 385-393.   DOI:10.1007/s11071-010-9869-1
  9. S. Cheng, J. C. Ji and J. Zhou: Fast synchronization of directionally coupled chaotic systems. Appl. Math. Model. 37 (2013), 127-136.   DOI:10.1016/j.apm.2012.02.018
  10. S. Čelikovský: Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization. Kybernetika 40 (2004), 649-664.   CrossRef
  11. S. Čelikovský and G. R. Chen: On the generalized Lorenz canonical form. Chaos Solition. Fract. 26 (2005), 1271-1276.   DOI:10.1016/j.chaos.2005.02.040
  12. K. Ding and Q. L. Han: Effects of coupling delays on synchronization in Lur'e complex dynamical networks. Int. J. Bifur. Chaos 20 (2010), 3565-3584.   DOI:10.1142/s0218127410027908
  13. K. Ding and Q. L. Han: Master-slave synchronization criteria for horizontal platform systems using time delay feedback control. J. Sound Vibration 330 (2011), 2419-2436.   DOI:10.1016/j.jsv.2010.12.006
  14. K. Ding and Q. L. Han: Master-slave synchronization of nonautonomous chaotic systems and its application to rotating pendulums. Int. J. Bifur. Chaos 22 (2012), 1250147.   DOI:10.1142/s0218127412501477
  15. K. H. G. Enjieu, O. J. B. Chabi and P. Woafo: Synchronization dynamics in a ring of four mutually coupled biological systems. Commun. Nonlinear Sci. Numer. Simul. 13 (2008), 1361-1372.   DOI:10.1016/j.cnsns.2006.11.004
  16. I. Grosu, E. Padmanabanm, P. K. Roy and S. K. Dana: Designing coupling for synchronization and amplification of chaos. Phys. Rev. Lett. 100 (2008), 234102.   DOI:10.1103/physrevlett.100.234102
  17. W. L. He and J. D. Cao: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372 (2008), 408-416.   DOI:10.1016/j.physleta.2007.07.050
  18. W. L. He, W. L. Du, F. Qian and J. D. Cao: Synchronization analysis of heterogeneous dynamical networks. Neurocomputing 104 (2013), 146-154.   DOI:10.1016/j.neucom.2012.10.008
  19. W. L. He, F. Qian, Q. L. Han and J. D. Cao: Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches. IEEE Trans. Neur. Net. Lear. Systems 23 (2012), 1551-1563.   DOI:10.1109/tnnls.2012.2205941
  20. D. Henrion: Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems. Kybernetika 48 (2012), 1089-1099.   CrossRef
  21. D. B. Huang: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71 (2005), 037203.   DOI:10.1103/physreve.71.037203
  22. J. P. Lasalle: The extend of asymptotic stability. Proc. Natl. Acad. Sci. U. S. A. 46 (1960), 363-365.   DOI:10.1073/pnas.46.3.363
  23. J. P. Lasalle: Some extensions of Liapunov's second method. IRE Trans. Circuit Theory 7 (1960), 520-527.   DOI:10.1109/tct.1960.1086720
  24. H. Y. Li, Y. A. Hu and R. Q. Wang: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567.   CrossRef
  25. J. S. Lin and J. J. Yan: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal. Real. 10 (2009), 1151-1159.   DOI:10.1016/j.nonrwa.2007.12.005
  26. Y. J. Liu: Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system. Nonlinear Dyn. 67 (2012), 89-96.   DOI:10.1007/s11071-011-9960-2
  27. W. L. Lu and T. P. Chen: New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D 213 (2006), 214-230.   DOI:10.1016/j.physd.2005.11.009
  28. V. Lynnyk and S. Čelikovský: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1-18.   CrossRef
  29. X. Mao: Stochastic Differential Equations and Applications. Horwood 1997.   CrossRef
  30. J. M. Ottino, F. J. Muzzio, M. Tjahjadi, J. G. Franjione, S. C. Jana and H. A. Kusch: Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing process. Science 257 (1992), 754-760.   DOI:10.1126/science.257.5071.754
  31. L. M. Pecora and T. L. Carroll: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824.   DOI:10.1103/physrevlett.64.821
  32. S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano and W. L. Ditto: Controlling chaos in the brain. Nature 370 (1994), 615-620.   DOI:10.1038/370615a0
  33. J. J. Yan, M. L. Hung, T. Y. Chiang and Y. Q. Yang: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225.   DOI:10.1016/j.physleta.2006.03.047
  34. J. Ma, A.H. Zhang, Y.F. Xia and L. Zhang: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326.    DOI:10.1016/j.amc.2009.10.020
  35. U. E. Vincent and R. Guo: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326.   DOI:10.1016/j.physleta.2011.04.041
  36. H. Wang, Z. Z. Han, Q. Y. Xie and W. Zhang: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal. Real. 10 (2009), 2842-2849.   DOI:10.1016/j.nonrwa.2008.08.010
  37. Y. Q. Yang and X. F. Wu: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dyn. 70 (2012), 197-208.   DOI:10.1007/s11071-012-0442-y
  38. J. L. Yin and S. Khoo: Comments on ``Finite-time stability theorem of stochastic nonlinear systems''. Automatica 47 (2011), 1542-1543.   DOI:10.1016/j.automatica.2011.02.052
  39. J. L. Yin, S. Khoo, Z. H. Man and X. H. Yu: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47 (2011), 2671-2677.   DOI:10.1016/j.automatica.2011.08.050
  40. J. K. Zhao, Y. Wu and Y. Y. Wang: Generalized finite-time synchronization between coupled chaotic systems of different orders with unknown parameters. Nonlinear Dyn. 74 (2013), 479-485.   DOI:10.1007/s11071-013-0970-0