
KYB ERNET IK A — VO LUME 5 1 ( 2 0 1 5 ) , NUMBER 1 , PAGES 1 3 7 – 1 4 9

FINITE-TIME SYNCHRONIZATION OF CHAOTIC SYSTEMS
WITH NOISE PERTURBATION

Jie Wu, Zhi-cai Ma, Yong-zheng Sun, Feng Liu

In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic
systems with noise perturbation. We propose new adaptive controllers, with which we can
synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic
synchronization are derived based on the finite-time stability theory of stochastic differential
equations. Finally, some numerical examples are examined to demonstrate the effectiveness
and feasibility of the theoretical results.
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1. INTRODUCTION

Christian Huygens firstly picked up the appearance of synchronization about 350 years
ago. In fact, the significance of synchronization, especially for chaotic systems, was not
completely achieved until Pecora and Carroll published their pioneering work on chaos
synchronization in 1990 [31]. After that, a large variety of synchronization phenomena, in
many chaotic systems [7] and dynamical networks [12, 18], have been widely investigated
in different areas including physics, chemistry, biology, etc [28]. And lots of important
real applications have been found in many fields, such as information processing, hori-
zontal platform systems [13], secure communication [4, 5], biological system [15], rotating
pendulums [14], control processing, chemical reactions and so on [6, 10, 20, 30, 32]. As
we all known, a focused problem, in chaos synchronization, is to make the states of the
slave system follow the master system with an appropriate controller. Due to a wide
variety of applications, many approaches and controllers have been presented, including
adaptive control [17, 21, 25], optimal control [9, 34], sliding mode control [33], delayed
Lur’e systems control [19], the open-loop-closed-loop coupling technology [16], linearly
coupled ordinary differential systems analysis [27] and so on.

Recently, the finite-time synchronization of two chaotic systems has been investigated
by many researchers [1, 2, 3, 8, 24, 26, 35, 37, 40]. Finite-time generalized synchroniza-
tion of chaotic systems with different order has been studied in Ref. [8]. The adaptive
feedback controller was proposed to realize the finite-time synchronization for a class
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of chaotic and hyperchaotic systems [35]. In Ref. [1], a robust adaptive controller was
introduced to realize finite-time chaos synchronization between two different chaotic
systems in the presence of model uncertainties, external disturbances, fully unknown
parameters, and input nonlinearities. In Ref. [26], the author implemented and tested
experimentally a four-dimensional hyperchaotic system and investigated the synchro-
nization of the system in a finite time, based on the finite-time stability theory. In Ref.
[37], the authors investigated the global finite-time synchronization of a class of second-
order nonautonomous chaotic systems via a master-slave coupling. In Ref. [40], the
adaptive finite-time synchronization of different coupled chaotic systems with unknown
parameters was explored.

However, the problems of finite-time synchronization in Refs. [1, 8, 26, 35, 37, 40] did
not take noise perturbation into consideration. It deserves pointing out that noise per-
turbation is widespread in both natural and artificial systems. For instance, because the
atmospheric effects and processes such as cloud cover, pollution, etc., are seasonal and
stochastic in nature, sunshine duration and solar irradiation are modeled in a stochastic
way. Therefore, it has more practical value to explore the influence of circumstance
noise on the finite-time synchronization of chaotic systems. The main contribution of
this paper is to propose an adaptive feedback controller, which can realize the finite-time
stochastic synchronization between two chaotic systems with noise perturbation. Based
on the finite-time stability theory for stochastic differential equations, sufficient condi-
tions for the finite-time stochastic synchronization are obtained. Finally, some numerical
examples are examined to illustrate the effectiveness of the analytical results. The ef-
fects of control parameters and noise intensity on the convergence time are numerically
demonstrated.

The rest of this paper is organized as follows. In Section 2, the problem statement
and some useful preliminaries are given. Based on the stability theory of stochastic
differential equations, sufficient conditions for the finite-time stochastic synchronization
are derived analytically in Section 3. In Section 4, some numerical examples are given
to show the effectiveness of the theoretical results. Finally, some conclusions are drawn
in Section 5.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following system described by:

dxi = fi(x)dt, i = 1, 2, . . . , n, (1)

where x = (x1, x2, . . . , xn)T ∈ Rn is the state vector of the chaotic system, f(x) =
(f1(x), f2(x), . . . , fn(x))T : Rn → Rn is a continuously differentiable nonlinear vector
function. To realize the complete synchronization of two chaotic systems, we refer to
system (1) as the master system, and the slave system is given by:

dyi = [fi(y) + ui(t)]dt+ σi(ei(t))dW (t), i = 1, 2, . . . , n, (2)

where y = (y1, y2, . . . , yn)T ∈ Rn is the state vector of the slave system, ei(t) = yi(t)−
xi(t) (i = 1, 2, . . . , n) are the state errors between the master system (1) and the slave sys-
tem (2), ui(t) (i = 1, 2, . . . , n) are the controllers to be designed. The noise term in sys-
tem (2) is mostly applied to demonstrate the coupling process influenced by surrounding
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fluctuation, inaccurate design of coupling strength, etc. Where σi : Rn → Rn×m is con-
tinuous nonlinear matrix-valued function, and W = (w1, . . . , wm)T is an m-dimensional
Brownian motion which is defined on a complete probability space (Ω,F , P ) with a
natural filtration {Ft}t≥0. Accordingly, Ẇ is an m-dimensional white noise.

Throughout this paper, we here make the following assumption:

Assumption 2.1. For function f(x) there exists a nonnegative constant l satisfying

[x(t)− y(t)]T [f(x(t))− f(y(t))] ≤ [x(t)− y(t)]T l[x(t)− y(t)],∀x, y ∈ Rn. (3)

For the noise intensity function, because the speed of the environmental fluctuations
is far less than the change rate of practical systems, we have the following assumption:

Assumption 2.2. The noise intensity function σi(ei(t)) (i = 1, 2, . . . , n) satisfies the
Lipschitz condition and there exists a nonnegative constant q such that

trace(σT
i (ei(t))σi(ei(t))) ≤ 2qeT

i (t)ei(t).

Moreover, σ(0) ≡ 0.

Consider the following n-dimensional stochastic differential equation [29]:

dx = φ(x)dt+ ψ(x)dW (t), (4)

where x ∈ Rn is the state vector, and φ : Rn → Rn and ψ : Rn → Rn×m are continuous
and satisfy φ(0) = 0, ψ(0) = 0. It is assumed that Eq. (4) has a unique and global
solution denoted by x(t;x(0)) (0 ≤ t < +∞), where x(0) is the initial state.

For each V ∈ C2,1(Rn × R+, R+), the operator LV associated to Eq. (4) is defined
as follows:

LV =
∂V

∂t
+
∂V

∂x
· φ+

1
2
trace

[
ψT ∂

2V

∂2x
· ψ

]
, (5)

where ∂V/∂x = (∂V/∂x1, . . . , ∂V/∂xn), ∂2V/∂2x = (∂2V/∂xi∂xj)n×n.
For getting our main results in the next section, we state two necessary concepts and

a lemma about stochastic differential equation.

Definition 2.3. (Yin et al. [38]) The trivial solution of (4) is said to be finite-time
stable in probability, if the equation admits a unique solution for any initial data x(0) ∈
Rn, denoted by x(t;x(0)), moreover, the following statements hold:

(i) For every pair of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r) > 0 such that

P{|x(t;x(0))| < r, for all t ≥ 0} ≥ 1− ε,

where |x(0)| < δ.

(ii) For every initial value x(0) ∈ Rn, the stochastic setting time T0 = inf{T :
x(t;x(0)) = 0,∀ t ≥ T} is finite almost surely, that is,

P{|x(t;x(0))| = 0} = 1, for all t ≥ T0.
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Definition 2.4. Systems (1) and (2) are said to achieve the finite-time stochastic syn-
chronization if, for any initial states xi(0), yi(0) ∈ Rn \ {0}, there exists a finite time
function T0 such that

P{|xi(t;xi(0))− yi(t; yi(0))| = 0} = 1, i = 1, 2, . . . , n, for all t ≥ T0, (6)

where T0 = inf{T : xi(t;xi(0)) = yi(t; yi(0)),∀ t ≥ T} is called the stochastic setting
time.

Lemma 2.5. (Yin et al. [39]) For system (4), define T0(x0) = inf{T ≥ 0 : x(t;x0) =
y(t; y0),∀ t ≥ T}. Assume that system (4) has the unique global solution. If there exists
a positive definite, twice continuously differentiable and radially unbounded Lyapunov
function V : Rn → R+, K∞ class functions µ1 and µ2, positive real numbers c > 0 and
0 < γ < 1, such that for all x ∈ Rn and t ≥ 0,

µ1(|x|) ≤ V (x) ≤ µ2(|x|),

LV (x) ≤ −c · (V (x))γ
,

where |x| denotes the Euclidean norm |x| =
√∑n

i=1 x
2
i , then the origin of system (4)

is globally stochastically finite-time stable, and the stochastic settling time function T0

satisfies

E[T0(x0)] ≤
(V (x0))1−γ

c(1− γ)
.

3. SUFFICIENT CONDITIONS FOR FINITE-TIME STOCHASTIC
SYNCHRONIZATION

In this section, we will investigate the finite-time stochastic synchronization of chaotic
systems, and the main results are given in the following theorem.

Theorem 3.1. Suppose that the Assumptions 2.1 and 2.2 hold and there exist a suf-
ficiently large positive constant L satisfying L ≥ l + q, then systems (1) and (2) can
achieve finite-time stochastic synchronization under the following adaptive controllers:

ui(t) = εiei + kisign(ei)−
ki + k̄

|ei|
sign(ei), if ei 6= 0,

ui(t) = 0, if ei = 0, (7)

where ei = yi − xi, positive constant k̄ ≥ 1. For ei 6= 0, the feedback gains εi and ki are
adapted according to the following updated laws:

ε̇i(t) = −e2i (t), k̇i(t) = −|ei(t)|. (8)

For ei = 0, we set ki ≡ −k̄ and εi ≡ −L.

P r o o f . From Eqs. (1) and (2), we can get the error system as follows:

ėi = fi(y)− fi(x) + ui + σi(ei(t))Ẇ (t), i = 1, 2, . . . , n. (9)
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Therefore, under Assumptions 2.1 and 2.2, it is from the theory of stochastic differential
equation that the error system (9) possesses a unique global solution on t ≥ 0, denoted by
ei(t, ei(0)) for any initial data ei(0) = yi(0)−xi(0). And ei(t, 0) ≡ 0 is a trivial solution
of the error dynamics (9). Obviously, if this trivial solution is globally stochastically
finite-time stable, then the finite-time stochastic synchronization between systems (1)
and (2) could be realized for every initial data.

Consider the following Lyapunov function:

V =
1
2

n∑
i=1

e2i +
1
2

n∑
i=1

(ki + k̄)2 +
1
2

n∑
i=1

(εi + L)2. (10)

Thus the diffusion operator L defined in (5) onto the function V along the error system
(9) gives

LV (t) =
n∑

i=1

ei(t)[f(yi)− f(xi) + εiei(t) + kisign(ei)

−ki + k̄

|ei|
sign(ei)] +

1
2

n∑
i=1

trace(σT
i σi)

+
n∑

i=1

(ki + k̄)k̇i +
n∑

i=1

(εi + L)ε̇i. (11)

Substituting k̇i and ε̇i into the rihgt-hand side of Eq. (11), we have

LV (t) =
n∑

i=1

ei(t)[f(yi)− f(xi)] +
n∑

i=1

εie
2
i +

n∑
i=1

ki|ei|

−
n∑

i=1

(ki + k̄) +
1
2

n∑
i=1

trace(σT
i σi)

−
n∑

i=1

(ki + k̄)|ei| −
n∑

i=1

(εi + L)e2i . (12)

Simplify Eq. (12), we get

LV (t) =
n∑

i=1

ei(t)[f(yi)− f(xi)]− L

n∑
i=1

e2i −
n∑

i=1

k̄|ei|

+
1
2

n∑
i=1

trace(σT
i σi)−

n∑
i=1

(ki + k̄). (13)

From Assumptions 2.1 and 2.2, we obtain

LV (t) ≤ −
n∑

i=1

(L− l − q)e2i −
n∑

i=1

k̄|ei| −
n∑

i=1

(ki + k̄). (14)
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Since L ≥ l + q and k ≥ 1, we have

LV (t) ≤ −(
n∑

i=1

k̄|ei|+
n∑

i=1

(ki + k̄))

≤ −
( n∑

i=1

|ei|+
n∑

i=1

(ki + k̄)
)
. (15)

Using the fact that[ n∑
i=1

|ei|+
n∑

i=1

(ki + k̄)
]
≥

[ n∑
i=1

e2i +
n∑

i=1

(ki + k̄)2
] 1

2
,

we obtain

LV (t) ≤ −
[ n∑

i=1

e2i +
n∑

i=1

(ki + k̄)2
] 1

2

, −(2V1)
1
2 ,

where V1 = 1
2

( ∑n
i=1 e

2
i +

∑n
i=1(ki + k̄)2

)
.

Note that LV ≤ 0. Then
EV̇ = LV ≤ 0.

Thus, V is non-increasing in mean square. Then, there exists a upper bound V ∗, such
that

V1 ≤ V ≤ V ∗.

Let θ = V1
V ∗ ≤ 1, then

θV ≤ θV ∗ = V1.

Thus, we have

LV (t) ≤ −
√

2θV
1
2 . (16)

According to Lemma 2.5, the trivial solution of the error system (9) is globally stochas-
tically finite-time stable. This means that the synchronization between systems (1) and
(2) could be achieved in finite time for almost every initial data, and the finite time is
estimated by

E[T0] ≤ T1 =

√
2
θ
V

1
2 (0), (17)

where V (0) = [
∑n

i=1 ei(0)2 +
∑n

i=1(ki(0) + k̄)2
]
/2. This completes the proof. �

Remark 3.2. From the inequality (14) we can see that, for any high level noise, there
exits a sufficiently large positive constant L such that the finite-time stochastic syn-
chronization is realized in probability. Hence the synchronization is robust to the noise
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perturbation. The convergence time of proposed algorithm is closely related to the vi-
olation of noise intensities. From the inequality (14) and the Itô formula, one can also
see that for fixed V (0), the synchronization time is inversely proportionally to the noise
intensity.

If system (4) is free of noise perturbation, namely σi(ei(t)) ≡ 0(i = 1, 2, . . . , n), from
Theorem 3.1, we have the following corollary:

Corollary 3.3. Let Assumption 2.1 holds. If σi(ei(t)) ≡ 0 in system (2) and L ≥ l ,
then the chaotic systems (1) and (2) can achieve finite-time synchronization under the
following control scheme:

ui(t) = εiei + kisign(ei)−
ki + k̄

|ei|
sign(ei), ei 6= 0, i = 1, 2, . . . , n.

For ei 6= 0, the feedback gains εi and ki are adapted according to the following updated
laws ε̇i(t) = −e2i (t), k̇i(t) = −|ei(t)|; For ei = 0, we set ki ≡ −k̄ and εi ≡ −L.

4. SIMULATION RESULTS

In this section, a three-dimensional chaotic system and a hyperchaotic system are per-
formed to verify the feasibility and effectiveness of the above analytical results.
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Fig. 1. Chaotic attractor generated by the system (18) when

a = 10, b = 8/3, and c = 28.

Example 4.1. We take the Lorenz system as the first example, which can be described
as follows [11]:  ẋ1 = −ax1 + ax2

ẋ2 = cx1 − x2 − x1x3

ẋ3 = −x1x2 − bx3,
(18)

where x = (x1, x2, x3)T ∈ R3 is the state vector. System has a double-scrolling chaotic
attractor when a = 10, b = 8/3, and c = 28 as shown in Figure 1.
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To confirm that the complete synchronization is achieved in finite time, we choose the
initial conditions of the Lorenz system as follows: x(0) = [−2, 3, 1]T , y(0) = [3,−2, 2]T ;
and εi(0) = ki(0) = 0, L = 13, k̄ = 3. For simplicity, we take σi(ei(t)) = σei(t), i =
1, 2, . . . , n. Additionally, assume that Ẇ (t) is a one-dimensional white noise. Then,
σi(ei(t)) satisfies the locally Lipschitz condition and the linear growth condition. The
corresponding numerical results are shown in Figures 2 (a) and (b). Figure 2 (a) shows
the temporal evolutions of synchronization errors between Eqs. (1) and (2), and the
temporal evolutions of variable strengths εi, ki are shown in Figure 2 (b). The control
parameters εi and ki converge to -13 and -3 respectively. The simulation results show
that the slave system (2) synchronizes the master system (1) after T1 = 0.7902.
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Fig. 2. (a) The evolutions of synchronization errors between two

coupled Lorenz systems. (b) The evolutions of the feedback strengths

εi and ki. The initial values are [x, y]T = [−2, 3, 1, 3,−2, 2]T ,

εi(0) = ki(0) = 0. The noise intensity σ = 4.

To study the effect of the violations of noise intensities σ on the settling time, we sim-
ulate the evolutions of two chaotic systems with the controllers defined in Eq.(7) through
taking different values of σ. Figure 3 gives the evolutions of the total errors function
E(t) with different values of σ, where E(t) = ‖e(t)‖. It shows that the synchronization
time is inversely proportionally to the noise intensity.

Example 4.2. To show the generality of the present method, we take the hyperchaotic
Rössler system as the second example. The hyperchaotic Rössler system can be described
by a four-dimensional differential equation as follows [22, 23]:

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2 + x4

ẋ3 = x1x3 + b
ẋ4 = −cx3 + dx4,

(19)

where x = (x1, x2, x3, x4)T ∈ R4 is the state vector. System (19) has a chaotic attractor
when a = 0.25, b = 3, c = 0.5, and d = 0.05 as shown in Figure 4.
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For the hyperchaotic Rössler system, we choose the initial conditions of the master
system (1) and the controlled slave system (2) as x(0) = [−4, 1, 3,−1]T and y(0) =
[2,−4, 3, 1]T respectively; and the other parameters as εi(0) = ki(0) = 0, L = 7, k̄ = 2.
At the same time, take σi(ei(t)) = σei(t) (i = 1, 2, . . . , n). From Figures 5 (a) and
(b), one can find that the slave system (2) synchronizes the master system (1) after
T1 = 0.8709. And the control parameters εi and ki converge to -7 and -2 respectively.
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Fig. 5. (a) The evolutions of synchronization errors between two

hyperchaotic Rössler systems. (b) The evolutions of the feedback

strengths εi, ki. The initial values are

[x, y]T = [−4, 1, 3,−1, 2,−4, 3, 1]T , εi(0) = ki(0) = 0 and the noise

intensity σ = 1.

The above two examples show that chaotic or hyperchaotic synchronization can be
quickly achieved by the present method (i. e., the settle time is short) with noise pertur-
bation. The time-varying feedback gains εi and ki automatically converge to suitable
constants.

5. CONCLUSIONS

In this paper, we have investigated the finite-time synchronization of chaotic systems
with noise perturbation. We proposed an adaptive controller which can synchronize two
chaotic or hyperchaotic systems in finite time. In comparison with previous methods, the
proposed scheme is simple to implement in practice. Numerical simulations are provided
to illustrate the effectiveness and feasibility of the above method. In addition, time
delay due to the finite information transmission between two coupled chaotic systems is
unavoidable. The present study does not consider the effect of time delay. Therefore,
this is our next research topic.
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[10] S. Čelikovský: Observer form of the hyperbolic-type generalized Lorenz system and its
use for chaos synchronization. Kybernetika 40 (2004), 649–664.
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