Kybernetika 50 no. 6, 849-868, 2014

Bayesian nonparametric estimation of hazard rate in monotone Aalen model

Jana TimkováDOI: 10.14736/kyb-2014-6-0849

Abstract:

This text describes a method of estimating the hazard rate of survival data following monotone Aalen regression model. The proposed approach is based on techniques which were introduced by Arjas and Gasbarra \cite{gasbarra}. The unknown functional parameters are assumed to be a priori piecewise constant on intervals of varying count and size. The estimates are obtained with the aid of the Gibbs sampler and its variants. The performance of the method is explored by simulations. The results indicate that the method is applicable on small sample size datasets.

Keywords:

Bayesian estimation, Gibbs sampler, monotone Aalen model, small sample size

Classification:

62N02, 62G05

References:

  1. O. O. Aalen: A model for nonparametric regression analysis of counting processes. Springer Lect. Notes in Statist. 2 (1980), 1-25.   CrossRef
  2. O. O. Aalen: A linear regression model for the analysis of life times. Statist. Med. 8 (1989), 907-925.   CrossRef
  3. P. K. Andersen, A. Borgan, R. D. Gill and N. Kieding: Statistical Models Based on Counting Processes. Springer, New York 1993.   CrossRef
  4. E. Arjas and D. Gasbarra: Nonparametric bayesian inference from right censored survival data, using Gibbs sampler. Statist. Sinica 4 (1994), 505-524.   CrossRef
  5. D. R. Cox: Regression models and life-tables. J. Roy. Statist. Soc. 34 (1972), 2, 187-220.   CrossRef
  6. P. De Blasi and N. L. Hjort: Bayesian survival analysis in proportional hazard models with logistic relative risk. Scand. J. Statist. 34 (2007), 229-257.   CrossRef
  7. P. De Blasi and N. L. Hjort: The Bernstein-von Mises theorem in semiparametric competing risks models. J. Statist. Planning Inf. 34 (2009), 1678-1700.   CrossRef
  8. K. Doksum: Tailfree and neutral random probabilities and their posterior distributions. Ann. Statist. 2 (2006), 183-201.   CrossRef
  9. P. J. Green: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995), 711-732.   CrossRef
  10. N. L. Hjort: Nonparametric Bayes estimators based on beta processes in models for Life history data. Ann. Stat. 3 (1990), 1259 - 1294.   CrossRef
  11. F. W. Huffer and I. W. McKeague: Weighted least squares estimation for Aalen's additive risk model. J. Amer. Statist. Assoc. 86 (1991), 114-129.   CrossRef
  12. E. L. Kaplan and P. Meier: Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 (1958), 457-481.   CrossRef
  13. Y. Kim: The Bernstein-von Mises theorem for the proportional hazard model. Ann. Statist. 34 (2006), 1678-1700.   CrossRef
  14. Y. Kim and J. Lee: A Bernstein-von Mises theorem in the nonparametric right-censoring model. Ann. Statist. 32 (2004), 1492-1512.   CrossRef
  15. D. Sinha and K. D. Dipak: Semiparametric Bayesian analysis of survival data. J. Amer. Statist. Assoc. 92 (1997), 1195-1212.   CrossRef
  16. J. Timková: Bayesian nonparametric estimation of hazard rate in survival analysis using Gibbs sampler. In: Proc. WDS 2008, Part I: Mathematics and Computer Sciences, pp. 80-87.   CrossRef