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BAYESIAN NONPARAMETRIC ESTIMATION OF HAZARD
RATE IN MONOTONE AALEN MODEL

Jana Timková

This text describes a method of estimating the hazard rate of survival data following mono-
tone Aalen regression model. The proposed approach is based on techniques which were in-
troduced by Arjas and Gasbarra [4]. The unknown functional parameters are assumed to be a
priori piecewise constant on intervals of varying count and size. The estimates are obtained with
the aid of the Gibbs sampler and its variants. The performance of the method is explored by
simulations. The results indicate that the method is applicable on small sample size datasets.
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1. INTRODUCTION

In survival analysis non- or semi-parametric approaches have become widely used. A func-
tional parameter of a model is often estimated as a piecewise constant function with
jumps at every failure time, rather than a pre-specified parametric function. Typical
examples are the Kaplan–Meier estimator of survival function in homogeneous case,
[12], or Breslow estimator of cumulative baseline hazard function in Cox’s proportional
hazard model, [5]. In most famous models like Cox’s proportional model or Aalen’s
additive model these estimators have proved to be consistent, their asymptotic features
are known and no need to impose a functional form in advance makes them perfect
candidates for usage in data analysis. The dimension of the functional space from which
the estimators are drawn is fixed to the number of observed failures. Fixed discontinu-
ities located at the failure times could be viewed as a sole drawback of the estimators.
The nonparametric estimators of regression functions based on least squares or weighted
least squares in Aalen additive model, [1, 2] and [11], are of exactly this type.

Bayesian approach to survival data analysis has become a popular alternative to
the aforementioned estimators which allows for more flexible estimation. Furthermore,
it enables one to solve concrete problems as integrals with respect to the posterior
distribution. Nowadays, the computational feasibility is less of an issue and the inference
from complicated models can be obtained using MCMC algorithm. Popular priors for
functional parameters of survival models are the nondecreasing independent increment
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processes (NII), a wider class of processes incorporating Gamma and Beta processes
(and also Dirichlet processes via the known relationship H(t) =

∫ t

0
dF (s)/1− F (s−)

between the survival function H and the distribution function F ). A process, let’s say
H, is a NII process if H is a nondecreasing right-continuous function having H(0) = 0,
jumps ∆H(t) ≤ 1 and either ∆H(t) = 1 for some t or limt→∞H(t) =∞, and obviously
it induces a proper cumulative hazard function. For more details see [8] or [14]. Lately
it was shown by several authors that the estimators of functional parameters based on
these priors are consistent and asymptotically equivalent to the standard nonparametric
estimators in the homogeneous case, the Cox model and the competing risk model, see
[6, 13, 14]. For a good overview of Bayesian analysis in survival models see e. g. [15].

Arjas and Gasbarra [4] suggested Bayesian inference of homogeneous lifetime data
using a simple piecewise constant process with dependent increments for prior for hazard
function, i. e. a random function which is piecewise constant on some intervals. Number
of the intervals and variation of the function from one interval to another is controlled
by four hyperparameters. This setting includes desirable possibility of changing the
dimension of the model in favor of best fit according to the data while moderated by
the prior information. The inference was conducted using Gibbs sampler resulting in a
set of piecewise constant trajectories of a process ruled by the posterior distribution of
the hazard function. Using these trajectories allowed one to approximate the posterior
expectation of the hazard function as well as the cumulative hazard function/survival
function or any other integrable function on space of the parameter trajectories.

In this paper we study Aalen additive model of Aalen [1] and [2], on a dataset of form
(Ti, δi, (xi,0, . . . , xi,p)>)n

i=1, where Ti = min(T 0
i , Ci) are observed right-censored survival

times, δi = I{Ti = T 0
i } and (xi,0, . . . , xi,p)> are (p + 1)-dimensional covariate vectors.

The number of the covariates p is usually quite small, for example up to p = 3. T 0
i is a

real lifetime of ith individual with distribution function Fi = F (·|(xi,0, . . . , xi,p)>) and
Ci is a censoring variable independent on T 0

i . Aalen additive model assumes that the
hazard rate for ith object is

hi(t) =
p∑

j=0

xi,jαj(t), i = 1, . . . , n, (1)

where α0, . . . , αp are unknown regression functions. Typically xi,0 ≡ 1,∀i, and α0

represents baseline risk of failure common for all individuals if there is no other risk
factor present. Aalen studied the model assuming that αjs take real values and only the
overall hazard function hi needs to be nonnegative. He estimated the cumulative versions
of regression function Aj(t) =

∫ t

0
αj(s) ds, j = 0, . . . , p by a least squares estimator. Let

us introduce processes Ni(t) = I{Ti ≤ t, δi = 1}, Yi(t) = I{Ti ≥ t}. We denote
α(t) = (α0(t), . . . , αp(t))>, A(t) = (A0(t), . . . , Ap(t))>, zi = (xi,0, . . . , xi,p)>, N(s) =
(N1(s), . . . , Nn(s))> and Z(s) = (z1Y1(s), . . . , znYn(s))>. Then the Aalen least squares
estimator equals to

Â(t) =
∫ t

0

(Z(s)>Z(s))−1Z(s)>dN(s). (2)

Huffer and McKeague [11] introduced a two-stage estimator which is in core a weighted
least squares estimator with a matrix of weights V ? = diag{Zα?}−1, where α? is ob-
tained in the first stage as a smoothed OLS estimator via kernel estimation. If certain
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mild conditions on the kernel function and bandwidth are fulfilled, α? is an uniformly
consistent estimator of the vector of regression functions (α0, . . . , αp)>. In the second
stage the regression processes are estimated by

A?(t) =
∫ t

0

(Z(s)>V ?(s)Z(s))−1Z(s)>V ?(s) dN(s).

Both Aalen’s and Huffer and McKeague’s estimators are under certain regularity con-
ditions consistent and their asymptotic distributions are (p + 1)-dimensional zero-mean
Gaussian martingales. Furthermore, as shown in [3], section VIII.4.4., the Huffer and
McKeague’s WLS estimator is asymptotically efficient in the sense that asymptotic dis-
tribution of any other estimator satisfying certain regularity conditions cannot be more
concentrated around the true value A, and therefore the WLS estimator is optimal.

In next we work with a submodel of Aalen model. First, let us suppose that we have
the intercept included in the model, xi,0 ≡ 1 for all i. Second, we suppose that all
the covariates xi,j are nonnegative. When working with an actual dataset, this can be
achieved by shifting the covariates to the positive values (and keeping this adjustment
in mind when interpreting the results). Finally, we assume that the regression functions
αj , j = 0, . . . , p, are nonnegative and we will call this model a monotone Aalen model.
The most obvious impact of this restriction is that the cumulative regression functions
are always positive valued and nondecreasing (hence they are monotone and inspiring
the name monotone Aalen model). Furthermore, it rules out the problematic issue with
non-monotonicity of the estimated survival functions when the standard Aalen model
approach is used (see bottom of pg. 910 in [2]).

Another advantage is that the monotone Aalen model is more natural in interpreta-
tion of the estimated regression functions. If the model is formulated in a way that an
individual with covariates xi,j = 0, j ≥ 1, represents an average healthy individual then
their hazard rate is contained in the regression function α0. The non-zero covariates
account for presence of additional risk factors, such as smoking, stressful lifestyle or
excess weight, contributing to the normal level. This formulation of the model can be
interpreted as a competing risks model with p + 1 cause-specific hazard functions. The
overall hazard function of the competing risks model is the same as in (1) and the ob-
served outcome is the failure due to one of the p+1 independent causes. Then T 0

i would
be viewed as the minimum of the p+1 independent life-time variables with hazard rates
α0, xi,1α1, . . . , xi,pαp. Unlike in the competing risk model we only have information on
the failure (if present: δi = 1, else δi = 0) and we do not know which of the present risks
caused the outcome. Furthermore, with the monotone Aalen model the failure can also
be a result of collective additive effect of the risk factors. Hence, the statistical methods
which apply well in the competing risks models cannot be used in the monotone Aalen
model.

In practice, it often happens that only little data contribute to the estimation at the
end of the observation window. When using the general Aalen model, it might happen
that a cumulative regression function corresponding to a covariate which is expected to
have a harmful effect, exhibits a distinctive decline or even runs into negative values. If
the knowledge on the particular risk factor known before the study strongly antagonizes
this kind of behaviour, then this undesired outcome is most likely attributed to the gen-
eral instability of the estimates at the end of the observation window. The monotone
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Aalen model is of a good use in case if we would like to utilize also the ending of the
time window and we need a nonnegative estimator. Further advantage of the restriction
imposed by the monotone Aalen model is that it can produce narrower confidence bands
around the estimators as it rules out the negative values. It is though important to con-
sider whether the assumption of nonnegativity for αjs is truly justified for the particular
dataset in hand. The decision about the usage of the monotone Aalen model should be
based on the beforehand knowledge of the effects of covariates on the outcome (using
results of previous studies, a mechanism of the experiment, etc.). Furthermore, this de-
cision should be done before looking in data as otherwise we might artificially increase
the precision of estimators by imposing the unsubstantiated restriction on monotonicity.

The estimation in the monotone Aalen model can be done using the classic Aalen
methodology. With small datasets, however, there is a risk of running into negative
values, what is in conflict with the model interpretation. Obviously, for large n the
consistency of these estimators is a certain guarantee of obtaining proper nonnegative
estimators. Hjort and Timková analysed the monotone Aalen model using two likelihood
based approaches with assumption of discontinuous cumulative regression functions (re-
sults not published yet). The likelihood of the data used in deriving the estimators
was

n∏
i=1

∏
s>0


p∏

j=0

{1− dAj(s)}xi,j(Yi(s)−dNi(s))

1−
p∏

j=0

{1− dAj(s)}xi,j

dNi(s)
 .

First of the applied methods was the nonparametric maximum likelihood method which
led to estimators for the cumulative regression functions Aj of following form∫ t

0

n∑
i=1

Vij(s)
Rj(s)

dNi(s) + op(n−1/2).

Here, Rj(s) =
∑n

i=1 Yi(s)xi,j and Vij(s), i = 1, . . . , n, j = 0, . . . , p. Vij served as (ran-
dom) weight functions of certain form satisfying

∑p
j=0 Vij(s) = 1. When we sent n→∞,

the estimators became closer and closer to a function of type
∫ t

0
bj(s) ds where bj 6= αj .

The second method was Bayesian where we assumed that a priori the cumulative regres-
sion functions Aj were distributed as Beta processes, see [10]. We arrived at estimators
for Ajs that were of the same form as NPML estimators, only with different weight
functions. Also these estimators proved to be inconsistent and they tended to different
functions than the NPML estimators. The reason of inconsistency of these estimators is
not clear to authors but it seems to be one of the problematic cases when even the reliable
methods like NPML estimation and Bayesian approach crush if an infinite-dimensional
parameter estimation is involved.

The motivation to seek a different way to estimation of regression parameters is
obvious. The main objective of this paper is to conduct yet another type of Bayesian
modelling. We assume that the regression functions are continuous, i. e. αjs exist, and
the piecewise constant process suggested by Arjas and Gasbarra [4] is applied as priors
for the regression functions. The advantage of this Bayesian approach as opposed to
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the analysis with Beta processes as priors is that the method estimates the regression
functions directly.

On the following pages such type of modelling is demonstrated. The method approx-
imates the baseline hazard rate and the regression functions using piecewise constant
functions with a random number and locations of jump times. In the next section the
process used as prior to regression function is explained. In Section 3 the posterior
distribution under Aalen model is derived and followed by explanation of the MCMC
algorithm used for estimation. Section 4 is devoted to simulation study conducted to
explore the performance of the method.

2. PRIOR DISTRIBUTION

Based on [4], we model the unknown regression functions α0(t), . . . , αp(t) in observed
time window [0, τ ], where τ = max{Ti}, as a correlated piecewise constant function. The
values of regression function αj are assumed to be constant within m(j) + 1 intervals
which emerge from dividing the time window [0, τ ] by m(j) jump times W

(j)
1 , . . . ,W

(j)

m(j) .

The value of regression function αj within the interval [W (j)
k−1,W

(j)
k ) is denoted as λ

(j)
k .

The number of jump times m(j) varies among the iterations of the Gibbs sampler through
adding and deleting jumps. The regression function αj can be expressed as a simple
jump process

αj(t) =
m(j)+1∑

k=1

I{W (j)
k−1≤t<W

(j)
k } λ

(j)
k , (3)

where W
(j)
0 = 0 and W

(j)

m(j)+1
= τ . The elements of the prior distribution of each

regression function αj , j = 0, . . . , p are specified as follows:

• m(j) jump times W
(j)
1 , . . . ,W

(j)

m(j) are a realization of an inhomogeneous Poisson
process with rate µ(t) = d exp{−ct}, t ≥ 0, c ≥ 0, d > 0

• m(j) + 1 parameters λ
(j)
1 , . . . , λ

(j)

m(j)+1
are gamma distributed random variables

λ
(j)
1 ∼ Γ(a0, b0)

λ
(j)
k ∼ Γ(a, a/λ

(j)
k−1), k = 2, . . . ,m(j) + 1.

The a0, b0, a, c and d are the pre-specified hyperparameters. The convention for the
Gamma distribution parametrization here is that if X ∼ Γ(a, b) then the density is
γ(x; a, b) = ba

Γ(a)x
a−1e−bx and for mean and variance we have EX = a

b , VarX = a
b2 .

The parameters of the prior distribution for λks are chosen as suggested by Arjas and
Gasbarra. Obviously, the prior and hence the posterior distribution of the level λ

(j)
k is

dependent on the value in the previous interval λ
(j)
k−1, thus we incorporate a martingale

structure into the model. It is easily seen from the properties of gamma distribution
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that the conditional mean of λ
(j)
k is set by the value in the previous interval

E (λ(j)
k | λ

(j)
k−1) =

a

a/λ
(j)
k−1

= λ
(j)
k−1, k = 2, . . . ,m(j) + 1,

while the conditional variation from the mean is adjusted by hyperparameter a

Var (λ(j)
k | λ

(j)
k−1) =

a(
a/λ

(j)
k−1

)2 =

(
λ

(j)
k−1

)2

a
, k = 2, . . . ,m(j) + 1.

In case the hyperparameter a is small, the regression function αj may change greatly
from one interval to another, while bigger a keeps the regression function more compact
and avoids huge jumps in it.

In original Arjas and Gasbarra paper [4] a homogeneous Poisson process was uti-
lized as the prior process for jump times splitting the observation window into disjoint
intervals. Here, as it will be clear from derivation in Section 3, the computational
evaluation of the posterior distribution of λks gets highly demanding, even intractable,
within the intervals with larger amount of uncensored events (for instance > 15). To
avoid the occurrence of extensive amount of observations in one interval it is wise to
split the observation window more frequently in the beginning where the observations
usually prevail. Hence, the inhomogeneous Poisson process with decreasing hazard
rate µ(t) = d exp{−ct}, t ≥ 0, c ≥ 0, d > 0 is a natural choice for the prior distribu-
tion for jump times positions while careful setting of hyperparameters c and d allows
one to control the number of jumps and their positions across the observation win-
dow. The likelihood of a realization (W (j)

1 , . . . ,W
(j)

m(j)) of the Poisson process with rate

µ(t) = d exp{−ct}, t ≥ 0, such that W
(j)
i < τ,∀i, is equal to

exp
{
−

∫ τ

0

µ(t) dt

} m(j)∏
i=1

µ(W (j)
i ) = exp

{
−d

c
(1− e−cτ )

} m(j)∏
i=1

d exp{−cW
(j)
i }.

The number of the jumps contained within the time interval [0, τ ] is a random variable
with Poisson distribution with parameter d

c (1− e−cτ ). The number of intervals of jump
functions is influenced by the choice of both hyperparameters c and d. Parameter c
defines the shape of the rate function with larger values implying higher concentration
of jump times close to the beginning of the observation window. Setting c = 0 gives a
homogeneous Poisson process with rate equal to d, i. e. the jump times are spread across
the observation window independently on time. Surely, the decreasing rate µ(t) is merely
a recommendation based on the authors findings. There are many other possibilities of
how to choose the rate µ(t), e. g. one might be particularly interested in behaviour of
the regression functions in a certain part of [0, τ ], hence he would choose a function with
greater values within the relevant region.

Finally, the conditional prior distribution for the jth regression function αj given the
values of a0, b0, a, c and d is proportional to

exp
{
−d

c
(1− e−cτ )

} m(j)∏
i=1

d exp{−cW
(j)
i } γ(λ(j)

1 , a0, b0)
m(j)+1∏

k=2

γ(λ(j)
k , a, a/λ

(j)
k−1).
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To obtain the posterior distribution the prior information is combined with the likelihood
of the observed data which under the hazard function hi as specified in (1) is proportional
to the following formula

L((Ti, zi, δi), i = 1, . . . , n) ∝
n∏

i=1

hi(Ti)δi exp
{
−

∫ Ti

0

hi(t) dt
}

=
n∏

i=1

 p∑
j=0

αj(Ti)xi,j

δi

exp
{
−

∫ Ti

0

p∑
j=0

αj(t)xi,j dt
}

.

3. THE POSTERIOR DISTRIBUTION AND THE GIBBS SAMPLER

Let us denote the set of parameters determining the jump function described in previous
section

H(j) = (λ(j)
1 ,W

(j)
1 , . . . , λ

(j)

m(j) ,W
(j)

m(j) , λ
(j)

m(j)+1
), j = 0, . . . , p.

In every iteration of MCMC we gain a new trajectory characterized by H(j) for every of
the regression function. When creating a new history H(j) for αj we proceed sequentially
by updating the pairs (λ(j)

k ,W
(j)
k ), k = 1, . . . ,m(j) conditionally on the rest of parameters

in H(j) and conditionally on current states of αl, l 6= j. The last interval is treated
differently as we allow a change of the number of the intervals induced by either adding
new jump times or discarding the last jump time if favourable for better fit. If we
denote by η the number of added intervals, then altogether we have 2(m(j) + η) + 1
steps within every iteration for αj . According to the MCMC methodology we provide as
many iterations as necessary to reach certain stability in obtained trajectories, then we
throw away several of the starting iterations (burn-in part) and use the rest to calculate
a mean/median curve which represents desired estimator of the unknown regression
function. This is done in pointwise fashion on a sufficiently thin net on interval [0, τ ].
Similarly we can obtain pointwise 95 % credibility bands for the estimator taking 0.025
and 0.975 quantile of the values in every point of the net from all the MCMC trajectories
but the burn-in part. Furthermore, by using the simulated histories it is possible to
approximate the posterior expectation of any integrable function of H(0), . . . ,H(p) with
respect to the posterior distribution, as is the predictive hazard function or survival
function of an individual with certain risk factors.

The sampling itself is done by Gibbs sampler with the simulation from a distribution
with the density proportional to exp(vW

(j)
k ) on a bounded interval for jump times and

the rejection sampling method for sampling the λ
(j)
k s within the intervals. The steps of

the sampling are explained in detail in next pages with overall summary of the algorithm
at the end of the section.

3.1. Posterior distribution of regression functions’ Levels within intervals

The values of the regression functions are tied together in the likelihood of the data,
however, we can derive the posterior distribution separately for a regression function,
say αj , as long as we work conditionally on all the other regression functions αl, l 6= j.
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In particular, we will look step-by-step into every level λ
(j)
k of the regression function αj

within the intervals created by the corresponding realization of the jump times. We will
evaluate the posterior distribution conditionally on the jump times and the other levels
of αj and all the characteristics of all other αls. Hence, the part of the likelihood of the
data containing the information within the examined interval is sufficient for specifying
the posterior distribution of single level λ

(j)
k .

The posterior probability of the level λ
(j)
k of regression function αj in interval I

(j)
k =

[W (j)
k−1,W

(j)
k ) is proportional to

p(λ(j)
k | λ

(j)
1 , . . . , λ

(j)
k−1, λ

(j)
k+1, . . . , λ

(j)

m(j)+1
,W

(j)
1 , . . . ,W

(j)

m(j) , {hi}ni=1, a0, b0, a, c, d, data)

= p(λ(j)
k | λ

(j)
k−1, λ

(j)
k+1,W

(j)
k−1,W

(j)
k , {(Ti, δi, zi, hi(−k)) : Ti ≥W

(j)
k−1}, a0, b0, a)

∝ p(λ(j)
k , λ

(j)
k+1, {(Ti, δi, zi, hi(−k)) : Ti ≥W

(j)
k−1}| λ

(j)
k−1,W

(j)
k−1,W

(j)
k , a0, b0, a)

= γ(λ(j)
k ; a, a/λ

(j)
k−1)γ(λ(j)

k+1; a, a/λ
(j)
k ) (4)

×
∏

i:Ti∈I
(j)
k

(
λ

(j)
k xi,j + hi(−j)(Ti)

)δi

× exp
{
−

∑
i:Ti∈I

(j)
k

λ
(j)
k xi,j(Ti −W

(j)
k−1)−

∑
i:Ti≥W

(j)
k

λ
(j)
k xi,j(W

(j)
k −W

(j)
k−1)

}

where we denoted by hi(−j)(t) = hi(t)−αj(t)xi,j the complement of the hazard function
for ith subject to term αj(t)xi,j = λ

(j)
k xi,j (conditionally on terms in hi from latest

iteration of the MCMC simulation). Breaking down the product in the expression we
get a sum of functions

∑R
r=0 βrfr(λ

(j)
k ), where R =

∑
i:Ti∈I

(j)
k

δi,

fr(λ
(j)
k ) = [λ(j)

k ]rγ(λ(j)
k ; a, a/λ

(j)
k−1)γ(λ(j)

k+1; a, a/λ
(j)
k )

× exp
{
−

∑
i:Ti∈I

(j)
k

λ
(j)
k xi,j(Ti −W

(j)
k−1)

−
∑

i:Ti≥W
(j)
k

λ
(j)
k xi,j(W

(j)
k −W

(j)
k−1)

}
, r = 0, . . . , R.

Let us have T ?
1 , . . . , T ?

R as an auxiliary notation for the set of the failure times in the
interval I

(j)
k corresponding to the subjects with jth covariate equal to x?

1,j , . . . , x
?
1,j .

Then the constants in the sum of functions are

βr =
R∑

l1=1

R∑
l2=l1+1

· · ·
R∑

lR−r=lR−r−1+1

 R∏
i=1

i/∈{l1,...,lR−r}

x?
i,j

hl1(−j)(T ?
l1) · · ·hlR−r(−j)(T ?

lR−r
).

(5)
This case of distribution can be viewed as a mixture of distributions proportional to fr

weighted by factors βr. In particular, note that every term βrfr represents a case, when r
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individuals of total R individuals who failed in interval [W (j)
k−1,W

(j)
k ), died because of the

risk imposed by factor αj(Ti)xi,j while the rest R−r individuals died of any other factor
hi(−j)(Ti) = hi(Ti) − αj(Ti)xi,j . This corresponds to aforementioned interpretation of
the monotone Aalen model when all the covariates in the model represent an additional
risk of death to the baseline risk α0 while every of the covariates increases the probability
of failure, however, only one causes the death. Generating a sample from this kind of
distribution can be done using classical approaches to mixtures of distributions. First
we calculate the weights wr = βr/

∑R
s=0 βs and then we generate a sample from U [0, 1].

If the sampled value falls in the interval [
∑r−1

s=0 ws,
∑r

s=0 ws) then we sample from the
distribution proportional to fr.

The simulation from the distribution proportional to function fr is done similarly as
in Arjas and Gasbarra’s work in [4]. Assuming ξ > 0 we could rewrite the function fr

in following form

fr(λ
(j)
k ) = dr,ξ(λ

(j)
k )gr,ξ(λ

(j)
k )

where

dr,ξ(λ) = λξ+r−1 exp
{
− λ

[ a

λ
(j)
k−1

+
∑

i:Ti∈I
(j)
k

xi,j(Ti −W
(j)
k−1)

+
∑

i:Ti≥W
(j)
k

xi,j(W
(j)
k −W

(j)
k−1)

]}
gr,ξ(λ) =

1
λξ

exp
{
− 1

λ
aλ

(j)
k+1

}
.

The first function dr,ξ(·) is the probability density function of gamma distribution
Γ(ξ+r, a

λ
(j)
k−1

+
∑

i:Ti∈I
(j)
k

xi,j(Ti−W
(j)
k−1)+

∑
i:Ti≥W

(j)
k

xi,j(W
(j)
k −W

(j)
k−1)). The function

gr,ξ(·) is the density of the distribution known as the inverse-gamma distribution with
parameters ξ + 1 and aλ

(j)
k+1.

As the following holds

dr,ξ(λ)gr,ξ(λ) ≤ dr,ξ(λ) max
λ

gr,ξ(λ) = dr,ξ(λ)gr,ξ(aλ
(j)
k+1/ξ),

the rejection sampling method may be directly applied. All we need is to simply sample
from gamma distribution with density dr,ξ as long as necessary to reach the acceptance.
To increase the probability of acceptance we set the value of ξ to let the modes of both
dr,ξ and gr,ξ equal. This is guaranteed when ξ satisfies following equation:

ξ + r − 1
a

λ
(j)
k−1

+
∑

i:Ti∈I
(j)
k

xi,j(Ti −W
(j)
k−1) +

∑
i:Ti≥W

(j)
k

xi,j(W
(j)
k −W

(j)
k−1)

=
aλ

(j)
k+1

ξ
.

The special case is the simulation of λ
(j)

m(j)+1
in the very last interval I

(j)

m(j)+1
=

[W (j)

m(j) , τ). The value of λm(j)+1 no more influences any subsequent level of the hazard
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function and therefore the posterior distribution for λm(j)+1 simplifies to a mixture of
gamma distributions, symbolically written as

R∑
r=0

βr γ
(
a + r, a/λ

(j)

m(j) +
∑

i:Ti∈I
(j)

m(j)+1

xi,j(Ti −W
(j)

m(j))
)

(6)

where βr is as in (5) and again R being total of observed deaths in I
(j)

m(j)+1
.

It is typical with lifetime distribution that the incidents are clustered in the begin-
ning of the observation window. However, if lots of observations fall into the examined
interval, the evaluation of the weighting coefficients βr, r = 0, . . . , R becomes a serious
computational problem, as we need to consider every r-combination of total R obser-
vations within the interval. This is exactly

(
R
r

)
possibilities of what caused the deaths

occurred within the examined time interval: either the actual αj(·)xi,j or the comple-
mentary hi(−j)(·). However, the number of all r-combinations, r = 0, . . . , R, equals to
2R and while for R = 10 we have 1024 options to explore, for R = 15 we get up to circa
3 · 105 combinations. A feasible approximation to calculate the βrs is in need. One of
the options is for every r such that it produces larger number of combinations than a
pre-fixed number then instead of using all the combinations in the evaluation of βr we
would randomly choose only L combinations, where L�

(
R
r

)
. To get the proportionally

equal number it is necessary to multiply the obtained number by ratio
(
R
r

)
/L. Choice

of the value for L is a question of balance of precision of the evaluation on the one hand
and computational feasibility on the other hand.

3.2. Posterior distribution of jump times

The posterior distribution for the particular jump time W
(j)
k in the level of the regression

function αj is again determined only by these parts of the likelihood and prior informa-
tion which are affected by W

(j)
k itself. The posterior probability of jump time W

(j)
k can

be written as

p(W (j)
k | W

(j)
1 , . . . ,W

(j)
k−1,W

(j)
k+1, . . . ,W

(j)

m(j) , λ
(j)
1 , . . . , λ

(j)

m(j)+1
, {hi}ni=1, a0, b0, a, c, d, data)

= p(W (j)
k | W

(j)
k−1,W

(j)
k+1, λ

(j)
k , λ

(j)
k+1, {(Ti, δi, zi, hi) : Ti ≥W

(j)
k−1}, c, d)

∝ p(W (j)
k , W

(j)
k−1,W

(j)
k+1, λ

(j)
k , λ

(j)
k+1, {(Ti, δi, zi, hi) : Ti ≥W

(j)
k−1}, c, d)

∝ d exp{−cW
(j)
k }

∏
i:Ti∈I

(j)
k

hi(Ti)δi

∏
l:Tl∈I

(j)
k+1

hl(Tl)δl (7)

× exp
{
−

∑
i:Ti≥W

(j)
k+1

[
λ

(j)
k xi,j(W

(j)
k −W

(j)
k−1) + λ

(j)
k+1xi,j(W

(j)
k+1 −W

(j)
k )

]
−

∑
i:Ti∈I

(j)
k+1

[
λ

(j)
k xi,j(W

(j)
k −W

(j)
k−1) + λ

(j)
k+1xi,j(Ti −W

(j)
k )

]
−

∑
i:Ti∈I

(j)
k

λ
(j)
k xi,j(Ti −W

(j)
k−1)

}
.



Bayesian nonparametric estimation of hazard rate in monotone Aalen model 859

The expression is in core similar to the result of Arjas and Gasbarra [4]. In the exam-
ined interval the posterior distribution is between the observation times proportional to
u exp(vW

(j)
k ). The sample for a new jump position can be generated from this piecewise

continuous distribution for example by using inverse sampling. A special case is when
we update the last jump time W

(j)

m(j) where the simulation is on [W (j)

m(j)−1
,∞) and the

probability of a jump falling out of [W (j)

m(j)−1
, τ) is proportional to∏

i:Ti∈[W
(j)

m(j)−1
,τ ]

hi(Ti)δi exp
{
−

∑
i:Ti=τ

λ
(j)

m(j)xi,j(τ −W
(j)

m(j)−1
)

−
∑

i:Ti∈[W
(j)

m(j)−1
,τ)

λ
(j)

m(j)xi,j(Ti −W
(j)

m(j)−1
)
}

.

If an updated jump is generated outside the window [W (j)

m(j)−1
, τ), this jump is simply

discarded and the iteration is ended. However, if this updated jump W
(j)

m(j) < τ then

we try to sample another new jump W
(j)

m(j)+1
on the interval [W (j)

m(j) , τ) and if this jump

falls into the observation window we keep it and instead of [W (j)

m(j) , τ) we introduce

two intervals [W (j)

m(j) ,W
(j)

m(j)+1
) and [W (j)

m(j)+1
, τ) into the sets of the intervals. We set

m(j) ← m(j) + 1 and sample value λ
(j)

m(j)+1
for the newly created interval at the end

of the observation window. Summed up, in one iteration we either add one or more
new jumps into the estimator or we erase one jump. For detailed explanation of the
algorithm see pp. 512–513 in Arjas and Gasbarra [4].

Another option is to use the Metropolis–Hasting algorithm. Let us denote the condi-
tional posterior distribution of W

(j)
k from (7) with ppost(W (j)

k ). As the proposal density
we may consider the density of the uniform distribution on interval [W (j)

k−1,W
(j)
k+1). Then

the proposal acceptance density of new jump time located in Wnew equals to

αpost(W (j)
k ,Wnew) = min

{
1,

ppost(Wnew)

ppost(W (j)
k )

}
.

Apart from sampling new positions of jump times from posterior distribution we would
like to allow adding a new jump into the last interval or deleting the very last jump
W

(j)

m(j) . The problem of adding/discarding of a jump can be formulated as birth and
death, i. e. a special case of reversible jump problem (for details see e. g. [9]). The set of
jump times represents the finite point process within the interval [0, τ ] with the density
(proportional to the posterior density of jump time) with respect to the unit intensity
Poisson process. Hence we may adopt the birth-death Metropolis–Hastings algorithm
to provide desired steps of adding or deleting particular jump times.

Now let U be the total number of the iterations of the Gibbs sampler and let us
denote

H(j)(u) =
(
λ

(j)
1 (u),W (j)

1 (u), . . . , λm(j)(u)(u),W (j)

m(j)(u)
(u), λ(j)

m(j)(u)+1
(u)

)
, u = 0, . . . , U,
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the uth member of the Markov chain {H(j)(u)}Uu=0 generated in uth iteration of the
Gibbs sampler. The chain {H(j)(u)}Uu=0 corresponds to jth regression function αj , j =
0, . . . , p. The steps of the algorithm can be summarized as follows:

Sampling algorithm:

• generate a starting trajectory H(j)(0) for j = 1, . . . , p from the prior distribution;
m(j)(0) let be the random number of jumps which comes from the inhomogeneous
Poisson process simulation of jump times

• for uth iteration, where u ∈ {1, . . . , U}, do

◦ for j = 1, . . . , p do

1. set m(j)(u)← m(j)(u− 1),
2. k ← 1,

3. sample λ
(j)
k (u) from posterior distribution in (4) (sampling from the mix-

ture distribution),

4. sample W
(j)
k (u) from posterior distribution in (7), k ← k + 1

5. repeat steps 3. and 4. until k = m(j)(u),

6. sample λ
(j)

m(j)(u)
(u) from posterior distribution in (4),

7. sample W
(j)

m(j)(u)
(u) from posterior distribution in (7), if W

(j)

m(j)(u)
(u)≥ τ

then discard it, else set m(j)(u)←m(j)(u)+1 and repeat steps 6 and 7,

8. sample λ
(j)

m(j)(u)+1
(u) from posterior distribution in (6).

The problem of ergodicity of every component H(j)(u) of the resulting Markov chain
is similar to the original Arjas and Gasbarra’s method as long as the other components
H(k)(u), k 6= j are held fixed. If the birth-death Metropolis–Hastings algorithm is used
for simulation of new jumps, the proposal density and the acceptance probability of
adding/discarding a new jump needs to be specified in the manner which allows for the
detailed balance condition to be fulfilled. The ergodicity is then ensured similarly as with
standard Hastings algorithms. More details on the ergodicity and proper specification
of the acceptance probability when switching between the subspaces can be found in [9].

4. SIMULATIONS

The posterior distribution of the method proposed in this paper is of rather complicated
structure not allowing us to gain straightforward asymptotic features. It estimates the
functional parameters or any integrable function of these parameters by approximating
the posterior expectation, in fact by averaging a set of jump functions, each with a
finite number of jumps. These jumps are not fixed through the iterations, hence the
method provides us with an estimator resembling a continuous function. The choice of
hyperparameters and no functional restriction allows for very flexible estimation. These
features are the assets of the method, however, to assess the performance of the obtained
estimators we have to rely on the aid of simulation techniques. The method was tested
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on 300 datasets sampled from a model hi(t) = α0(t)+α1(t)xi,1 +α2(t)xi,2 of the hazard
rate on interval [0, 1] with regression functions equal to

α1(t) = sin(πt) + 1.5,

α2(t) = exp(−3t) + 1,

and the baseline hazard rate α0(t) was chosen to be a piecewise constant function with
jumps in (0.2, 0.35, 0.6, 0.7, 0.9) and values (0.8, 2.2, 3, 0.9, 1.5, 2). The time-constant
covariates were sampled randomly for every dataset from gamma distributions with pa-
rameters Γ(2, 2) and Γ(1, 2) for xi,1 and xi,2, respectively. We have chosen various shapes
of the regression functions to compare how well different functions can be approximated
by the proposed method. We estimated the regression functions under two different
priors

PRIOR 1: a0 = 0.1, b0 = 0.1, a = 0.5, c = 1, d = 25,

PRIOR 2: a0 = 0.1, b0 = 0.1, a = 0.2, c = 0.5, d = 35.

The parameters of prior 1 was chosen to produce jump functions with smaller variations
from one level to another and less intervals while smaller a in prior 2 allowed for greater
variability. The number of the jump times on [0, 1] is a priori Poisson distributed with
mean approximately equal to 16 and 28 for prior 1 and prior 2, respectively. When
choosing the parameters for the prior distribution one should consider how much flexi-
bility he or she requires. Due to the computational issues it is advisable to choose the
parameters c and d so that the average number of jumps will not be a priori smaller
than say the number of observations divided by 15. Also the parameters a0 and b0

defining the first level should allow for a great variability. The number of observations
was n = 25, 50 and 80 and we generated 100 datasets for every n. The observations
were independently right-censored with non-censoring rate equal to ≈ 0.8. If a gen-
erated failure time fell out of the interval [0, 1], it was right-censored at time 1. For
every dataset we calculated the estimators based on both PRIOR 1 and PRIOR 2. The
expectations of the posterior distribution for regression functions were approximated by
pointwise averages of members of gained Markov chains H(j), j = 1, 2, 3 after discarding
the first 100 from total U = 500 iterations of the Gibbs sampler. The sampling of the
levels λ

(k)
j within intervals was done by rejection sampling as described in Section 3.1

and the jump times were generated from the piecewise continuous density proportional
to u exp(vW

(j)
k ) using inverse sampling. Alongside Aalen’s least squares estimators were

calculated with 95 % pointwise confidence bands.
The choice of the burn-in and the total number of members of the Markov chain

was based on the study of the MCMC traces in various time points in interval [0, 1]
(not displayed here). Most of the traces showed certain stability after 50 to 100 iter-
ations. Furthermore, as explained at the end of Section 3.1, if there are more failures
present within an interval, the computational demands become huge. We evaluated the
parameters of the mixture distribution in exact fashion whenever the number of the
failures within the interval was smaller than 11. In case that the total of the failures
exceeded this number, we used the approximation suggested at the end of Section 3.1
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n A0 Bayes A0 Aalen A1 Bayes A1 Aalen A2 Bayes A2 Aalen
PRIOR 1 25 BIAS 0.013 -0.001 0.001 0.005 0.001 0.002

MSE 0.001 0.017 0 0.016 0 0.028
MAE 0.013 0.038 0.004 0.035 0.005 0.046

Sup 0.131 0.44 0.051 0.431 0.054 0.598
Surface 0.066 0.165 0.069 0.153 0.094 0.206

50 BIAS 0.011 -0.004 -0.001 0.004 -0.001 -0.001
MSE 0.001 0.005 0 0.005 0 0.011
MAE 0.011 0.021 0.004 0.021 0.004 0.032

Sup 0.114 0.273 0.054 0.291 0.05 0.413
Surface 0.062 0.107 0.063 0.101 0.091 0.144

80 BIAS 0.009 -0.003 -0.002 0.001 -0.002 -0.001
MSE 0.001 0.004 0 0.003 0 0.006
MAE 0.01 0.019 0.004 0.016 0.005 0.024

Sup 0.105 0.229 0.056 0.214 0.051 0.312
Surface 0.056 0.084 0.059 0.076 0.087 0.109

PRIOR 2 25 BIAS 0.013 -0.001 0.001 0.005 0.001 0.002
MSE 0.002 0.017 0.003 0.016 0.004 0.028
MAE 0.013 0.038 0.004 0.035 0.005 0.046

Sup 0.131 0.44 0.051 0.431 0.055 0.598
Surface 0.066 0.165 0.069 0.153 0.094 0.206

50 BIAS 0.011 -0.004 -0.001 0.004 -0.001 -0.001
MSE 0.003 0.005 0.001 0.005 0.002 0.011
MAE 0.011 0.021 0.005 0.021 0.004 0.032

Sup 0.116 0.273 0.056 0.291 0.058 0.413
Surface 0.062 0.107 0.064 0.101 0.091 0.144

80 BIAS 0.009 -0.003 -0.002 0.001 -0.003 -0.001
MSE 0.002 0.004 0.001 0.003 0.002 0.006
MAE 0.015 0.019 0.006 0.016 0.005 0.024

Sup 0.105 0.229 0.058 0.214 0.053 0.312
Surface 0.059 0.084 0.062 0.076 0.091 0.109

Tab. 1. Results of simulation study: average values of measures of

precision calculated from 100 instances for every prior and every

number of observations per dataset n = 25, 50 and 80. Statistics for

Aalen estimators were calculated alongside.

with L = 20. In addition we conducted a thorough study of the efficiency of the approx-
imation in a simple setting with no jumps and only one interval. We generated 1000 of
datasets with 10 uncensored observations, calculated the exact posterior distributions
(which are mixtures of exactly gamma distributions) and calculated the approximated
posterior using L = 20 and L = 50. The posterior distributions and estimators obtained
in the exact and approximated manner were in great agreement. The approximation
using L = 50 did not show much improvement over the one with L = 20. The mean
computation time needed for the calculation of the estimators for a simulated dataset
with n = 10 was on average 43.3 seconds for the exact derivation of the posterior and
34.5 seconds for the approximated posteriors with L = 20. The difference in the time
cost needed for evaluation of the exact and approximated posterior distribution will be
more apparent once the number of observations within the intervals is greater than 15.
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A0 A1 A2

Bayes Aalen Bayes Aalen Bayes Aalen
95% 99% 95% 95% 99% 95% 95% 99% 95%

PRIOR 1 n = 25 0.97 0.97 0.74 0.99 0.99 0.63 0.99 0.99 0.52
n = 50 0.96 0.98 0.82 0.97 0.97 0.43 0.96 0.97 0.49
n = 80 0.93 0.93 0.66 0.92 0.93 0.4 0.98 1 0.37

PRIOR 2 n = 25 0.97 0.97 0.74 0.99 0.99 0.63 0.99 0.99 0.52
n = 50 0.97 0.98 0.82 0.97 0.97 0.43 0.96 0.98 0.49
n = 80 0.94 0.94 0.66 0.92 0.92 0.4 0.99 1 0.37

Tab. 2. Results of simulation study: average values of coverage of

95% and 99% pointwise credibility bands for Bayesian estimation and

95% pointwise confidence bands for Aalen. The values are calculated

from 100 instances for every prior and every number of observations

per dataset n = 25, 50 and 80.

We considered several measures of precision of both Bayesian and Aalen estimators,
in detail the functional BIAS

BIAS(Âj) =
∫ τ?

0

(
Âj(t)−Aj(t)

)
dt,

and analogically calculated functional MSE, functional mean absolute error (MAE),
supremum of the absolute differences between real and estimated regression functions
and surface. The last characteristic is the surface of the area contained between 95 %
pointwise credibility/confidence bands. The integrals were approximated by summation
on a thin net of 100 time points within the interval [0, τ?]. We chose the right end τ?

so that the interval [0, τ?] represented the part of the whole interval [0, 1] where in all
instances the Aalen estimators were calculated. The minimal value of τ? for all datasets
was equal to 0.17. The estimators proposed in this paper are able to estimate the
unknown parameters on the whole observation window [0, τ ] but similarly as the classic
Aalen estimators they suffer from great instability at the end where few observations
appear. Therefore we decided to evaluate the statistics only on the interval with enough
observations in hand, where both Aalen and Bayesian estimators are stable. The average
values of the statistics are displayed in Table 1. Further we examined the coverage of
the pointwise credibility/confidence bands for Bayesian estimation and Aalen estimators
on [0, τ?]. The coverage was calculated as the proportion of the datasets where the true
cumulative regression function was contained within the pointwise credibility/confidence
bands (again, evaluated on a thin grid on [0, τ?]). See Table 2 for the results.

From the results in Table 1 it is obvious that the Bayesian estimators in comparison
to standard least squares Aalen estimators can suffer from greater functional BIAS,
see in particular the estimator of A0. Overall, the average of the functional BIAS
of the Bayesian estimators does not suggest any discrepancy from the consistency, as
also for A0 it has a decreasing tendency for both priors. Interestingly, the proposed
Bayesian estimators have consistently smaller functional MSE, functional MAE and
supremum of the differences, suggesting that while on average these estimators might
be for some regression functions less precise, the variation from the true value of the
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Fig. 1. Graphs of the pointwise averages of the estimators obtained

from 100 repetitions for prior 1 and numbers of observations n = 25,

50 and 80. The true regression function is plotted in solid line,

average of the Bayesian estimators in dashed line and average of the

Aalen’s estimators in dotted line. The average pointwise

credibility/confidence bands are included: Bayesian credibility bands

in dark gray and Aalen’s confidence bands in light gray.

sought parameter is fairly small. Further, from the coverage results in Table 2 we see
that the incidences when the real regression function is contained in the 95 % pointwise
credibility bands on the shortened interval [0, τ?] varies from 92% to 99% of all cases,
while the coverage of pointwise 95 % confidence bands based on the Aalen estimators
was a lot worse with 40 % to 82 %. Obviously, these bands are pointwise, hence, they
are not expected to fulfil the required 95% coverage. Another appealing result is that
the surface of the estimated credibility bands is for smaller datasets (n = 25) about
half of the area contained within the Aalen pointwise confidence bands. With growing
number of observations the surface of the Aalen pointwise confidence bands is rapidly
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decreasing, however, not in the single case it reached the average surface of the Bayesian
credibility bands. It is to be expected, though, that for datasets with several hundreds of
observations the Aalen confidence bands would by narrower than the Bayesian credibility
bands. This follows in the first place from the consistency of the Aalen estimators,
secondly it is suggested by the rate of decline of the averaged surfaces of Aalen confidence
bands displayed in the simulations in comparison to the Bayesian credibility bands.

The fact that the characteristics describing the variability of the estimators are smaller
for Bayesian estimators than for the Aalen’s least squares estimators is not a great
surprise, though. The Bayesian estimators work with more information from the start
as they are restricted to the positive values, while Aalen estimators span the whole real
line at every time point.

The outcome from both priors is rather similar, with slightly larger values of char-
acteristics on variation from the true values, what was expected from the setting of the
parameters of the priors.

For illustration we included graphs of the pointwise averages of the estimators ob-
tained from 100 repetitions for every size of dataset and for PRIOR 1, see Figure 1. The
true regression functions are plotted in solid line, the averages of the proposed Bayesian
estimators are in dashed line and the averages of the Aalen estimators are in dotted line.
When looking at the graphs, the BIAS of the Bayesian estimator of A0 from the true
value is apparent. We added average pointwise credibility bands for Bayesian estimators
(dark gray area) and confidence bands for Aalen estimators (light gray area) into the
graphs. It can be seen that for small datasets (n=25) the classic Aalen’s estimation
and the proposed Bayesian solution on average produce similar estimators. The average
credibility bands of the Bayesian estimator are a lot slimmer than the average Aalen
estimators’ confidence bands, i. e. the graphs support the results on smaller variation of
proposed estimators from the true value. When looking only at the part with positive
values, the Aalen confidence bands and Bayesian credibility bands take almost similar
surface. With growing number of observations Aalen estimators apparently exhibit bet-
ter fit. The graphs based on the results obtained from PRIOR 2 show the same trend
and are not displayed here.

As pointed out by one of the referees, the high values (between 92 % and 99%)
of the simultaneous coverage of the pointwise 95% credibility bands of the Bayesian
estimators are rather curious in comparison to the coverage of the Aalen estimators.
Indeed, if the pointwise coverage of the pointwise 95 % credibility bands were evaluated
instead, the coverage would be even higher (close to 1 in most cases). There is no
exact explanation for this phenomenon, perhaps just the smoothness of the Bayesian
estimators in comparison to the variability of the Aalen least squares estimators could
enhance the coverage. Furthermore, we could have had a look at the behaviour of the
estimators after the τ? = 0.17 to assess the closeness of the fit to the real regression
functions in later times. The reason why it was not done is that the focus was on the
part of the time interval where both Aalen least squares and Bayesian method provide
a good estimation based on enough data. A differently designed simulation model with
more data available in later times would be useful in this kind of study.

The estimation was conducted in program R version 3.0.2 on 64-bit Ubuntu 13.04
and on a computer with Intel Core i5-3470 CPU 3.20 GHz × 4 and 3.8 GiB RAM. The
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average time of the computations was the same for both priors and it was about 3, 9
and 20 minutes for the total number of observations n = 25, 50, 80, respectively. It
was observed, that the number of observations and choice of hyperparameters have the
biggest impact on the computational time. The most crucial is the approximation of the
mixture weights βr.

5. DISCUSSION

The paper is devoted to deriving alternative estimators to least squares estimation in
Aalen model with focus on monotonicity of sought cumulative regression functions Ajs.
There has been little work done in this direction as most interest in survival analysis is
directed to the popular Cox model. The previous joint work of Hjort and the author
revealed that the Bayesian inference using NII processes, as it was done in the case of
homogeneous hazard function and in the Cox model by Kim, De Blasi, Hjort and others,
[6, 13, 14] and [7], has proven to be inconsistent. Similar unsatisfactory result was
obtained by using the maximum likelihood nonparametric estimation under assumption
of discontinuity of the regression functions.

The estimation proposed in this paper was taken down a slightly different path as we
worked with likelihood based on continuous regression functions. We proposed a sensible
prior distribution with a martingale structure based on Arjas and Gasbarra’s work [4].
We derived the posterior distribution for the parameters of the model and proposed a
sampling machine for generation of the estimators via Gibbs sampling. The performance
of the method was tested in the simulation study. The focus was in particular on the
consistency of the estimators, which was lacking in previous work by the author. The
method provides one with the estimators of the regression functions αj directly, however,
as the intention was to compare the features of the proposed Bayesian estimators with
Aalen least squares estimation, the cumulative regression functions were assessed in the
simulation study. It should be also noted, that the estimators of the cumulative versions
are more stable that the noncumulative ones, hence, they might be preferred. On average
the estimators of αj are very good estimators, however, they are more sensitive to the
choice of the prior parameters.

The results of the simulations suggest certain tendency of the Bayesian estimators to-
wards the real values, but with a lot slower pace than the standard Aalen least squares
estimators. The apparent advantage of the Bayesian estimators lies in the values of
functional MSE and MAE and in the coverage performance of the pointwise credibility
bands. The obtained numbers suggest that the proposed Bayesian estimators can be of
better use with small sized datasets where the least squares estimation can be unstable
and suffer from great variation. Furthermore, Aalen estimator can run into the negative
values while we would like to abide by the monotonicity condition. Another advantage is
that we can obtain the estimators of the αjs directly instead of the cumulative versions
and these estimators are close to continuous functions. Apart from the possible bias,
the main disadvantage of this method is certainly concentrated in the computational de-
mands as well as the need for careful choice of the hyperparameters. Hence, for datasets
with greater number of observations, it is recommended to reach for the classic Aalen or
Huffer and McKeague estimation where the consistency is assured and computational
demands are less overwhelming.
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We will conclude this work by suggesting a few possibilities for a future work in this
direction. It is clear that a greater simulation study is needed to obtain a closure about
the consistency of the proposed estimators. Furthermore, there are several straightfor-
ward extensions of the proposed method into more complicated scenarios. First, it could
be applied on data with recurrent events with only minor changes in the posterior distri-
bution. Secondly, if we considered a prior distribution for λ

(j)
k which would be contained

on the whole real line, it would lead us to Bayesian analysis of the classic Aalen model.
The other possibility is to create a hierarchical model by imposing a prior distribution
on the parameters a0, b0, a, c and d instead of the fixed values. Both recurrent events
and hierarchical model are employed in previous work of the author, see [16]. An option
in the frequentist framework would be developing a monotone alternative to Aalen’s and
Huffer–McKeague estimators by using restricted least squares estimation with constraint
that the increment ∆Aj ≥ 0. And yet another idea is to assume that αj are piecewise
constant functions with fixed numbers of equidistant jumps and estimate the values of
these functions via maximum likelihood method.

(Received October 14, 2013)
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[14] Y. Kim and J. Lee: A Bernstein-von Mises theorem in the nonparametric right-censoring
model. Ann. Statist. 32 (2004), 1492–1512.

[15] D. Sinha and K. D. Dipak: Semiparametric Bayesian analysis of survival data. J. Amer.
Statist. Assoc. 92 (1997), 1195–1212.
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