Kybernetika 50 no. 4, 596-615, 2014

Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria

Hassan Saberi Nik, Ping He and Sayyed Taha TalebianDOI: 10.14736/kyb-2014-4-0596

Abstract:

In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose Lyapunov stability to control the Pehlivan-Uyaroglu system with unknown parameters by way of a feedback control approach and a single controller. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategies.

Keywords:

optimal control, adaptive control, autonomous chaotic system, single state feedback control, Pontryagin Minimum Principle

Classification:

34D20, 58E25, 93C10, 37N35

References:

  1. K. Yagasaki: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6 (1994), 125-142.   CrossRef
  2. S. K. Han, C. Kerrer and Y. Kuramoto: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75 (1995), 3190-3193.   CrossRef
  3. K. M. Cuomo and A. V. Oppenheim: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71 (1993), 65-68.   CrossRef
  4. H. Saberi Nik and R. A. Van Gorder: Competitive modes for the Baier-Sahle hyperchaotic flow in arbitrary dimensions. Nonlinear Dyn. 74 (2013), 3, 581-590.   CrossRef
  5. E. Ott, C. Grebogi and J. A. Yorke: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196-1199.   CrossRef
  6. V. Azhmyakov, M. V. Basin and A. E. Gil-Garcia: Optimal control processes associated with a class of discontinuous control systems: applications to sliding mode dynamics. Kybernetika 50 (2014), 1, 5-18.   CrossRef
  7. Y. Jiang and J. Dai: Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. Kybernetika 47 (2011), 4, 612-629.   CrossRef
  8. H. Wang, Z Z. Han, Q. Y. Xie and W. Zhang: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dyn. 55 (2009), 323-328.   CrossRef
  9. V. Lynnyk and S. Čelikovský: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1, 1-18.   CrossRef
  10. K. Sun, X. Liu, C. Zhu and J. C. Sprott: Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn. 69 (2012), 1383-1391.   CrossRef
  11. Z. Wei and Z. Wang: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 2, 359-374.   CrossRef
  12. S. Effati, H. Saberi Nik and A. Jajarmi: Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn. 73 (2013), 499-508.   CrossRef
  13. S. Effati, J. Saberi-Nadjafi and H. Saberi Nik: Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems. Appl. Math. Modell. 38 (2014), 759-774.   CrossRef
  14. H. Saberi Nik and M. Golchaman: Chaos control of a bounded 4D chaotic system. Neural Comput. Appl. (2013).   CrossRef
  15. S. Yu, J. Lu, X. Yu and G. Chen: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. 59-I (2012), 5, 1015-1028.   CrossRef
  16. J. Lu, S. Yu, H. Leung and G. Chen: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Syst. 53 (2006), 1, 149-165.   CrossRef
  17. Z. H. Wang, Y. X. Sun, G. Y. Qi and B. J. Wyk: The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor. Nonlinear Dyn. 62 (2010), 139-150.   CrossRef
  18. U. Cam: A new high performance realization of mixed-mode chaotic circuit using current-feedback operational amplifiers. Comput. Electr. Engrg. 30 (2004), 4, 281-290.   CrossRef
  19. S. Yu, J. Lü, W. Tang and G. Chen: A general multiscroll Lorenz system family and its realization via digital signal processors. Chaos 16 (2006), 033126.   CrossRef
  20. I. Pehlivan and Y. Uyaroglu: Rikitake attractor and its synchronization application for secure communication systems. J. Appl. Sci. 7 (2007), 7, 232-236.   CrossRef
  21. I. Pehlivan and Y. Uyaroglu: A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization. Comput. Electr. Engrg. 38 (2012), 6, 1777-1784.   CrossRef
  22. D. E. Kirk: Optimal Control Theory: An Introduction. Prentice-Hall, 1970.   CrossRef
  23. W. Zhong, J. Stefanovski, G. Dimirovski and J. Zhao: Decentralized control and synchronization of time-varying complex dynamical network. Kybernetika 45 (2009), 151-167.   CrossRef
  24. Y. Chen, J. Lu and Z. Lin: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 6, 1768-1775.   CrossRef
  25. J. Lu and G. Chen: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 6, 841-846.   CrossRef
  26. J. Zhou, J. Lu and J. Lu: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44 (2008), 4, 996-1003.   CrossRef
  27. P. He, S. H. Ma and T. Fan: Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos 22 (2012), 4, 043151.   CrossRef
  28. P. He, C. G. Jing, T. Fan and C. Z. Chen: Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties. Complexity 19 (2014), 10-26.   CrossRef
  29. P. He, C. G. Jing, C. Z. Chen, T. Fan and H. Saberi Nik: Synchronization of general complex networks via adaptive control schemes. J. Phys. 82 (2014), 3, 499-514.   CrossRef