Kybernetika 50 no. 1, 126-141, 2014

On transient queue-size distribution in the batch-arrivals system with a single vacation policy

Wojciech M. KempaDOI: 10.14736/kyb-2014-1-0126


A queueing system with batch Poisson arrivals and single vacations with the exhaustive service discipline is investigated. As the main result the representation for the Laplace transform of the transient queue-size distribution in the system which is empty before the opening is obtained. The approach consists of few stages. Firstly, some results for a "usual'' system without vacations corresponding to the original one are derived. Next, applying the formula of total probability, the analysis of the original system on a single vacation cycle is brought to the study of the "usual'' system. Finally, the renewal theory is used to derive the general result. Moreover, a numerical approach to analytical results is discussed and some illustrative numerical examples are given.


queue-size distribution, batch Poisson arrivals, renewal theory, single vacation, transient state


90B22, 60K25


  1. J. Abate, G. L. Choudhury and W. Whitt: An introduction to numerical transform inversion and its application to probability models. In: Computational Probability (W. Grassmann, ed.), Kluwer, Boston 2000, pp. 257-323.   CrossRef
  2. W. Bischof: Analysis of $M/G/1$-queues with setup times and vacations under six different service disciplines. Queueing Syst. 39 (2001), 4, 265-301.   CrossRef
  3. A. A. Borovkov: Stochastic Processes in Queueing Theory. Springer-Verlag 1976.   CrossRef
  4. M. S. Bratiichuk and W. M. Kempa: Application of the superposition of renewal processes to the study of batch arrival queues. Queueing Syst. 44 (2003), 51-67.   CrossRef
  5. M. S. Bratiichuk and W. M. Kempa: Explicit formulae for the queue length distribution of batch arrival systems. Stoch. Models 20 (2004), 4, 457-472.   CrossRef
  6. G. Choudhury: A batch arrival queue with a vacation time under single vacation policy. Comput. Oper. Res. 29 (2002), 14, 1941-1955.   CrossRef
  7. S. Hur and S. Ahn: Batch arrival queues with vacations and server setup. Appl. Math. Model. 29 (2005), 12, 1164-1181.   CrossRef
  8. W. M. Kempa: $GI/G/1/\infty$ batch arrival queueing system with a single exponential vacation. Math. Methods Oper. Res. 69 (2009), 1, 81-97.   CrossRef
  9. W. M. Kempa: Some new results for departure process in the $M^{X}/G/1$ queueing system with a single vacation and exhaustive service. Stoch. Anal. Appl. 28 (2010), 1, 26-43.   CrossRef
  10. W. M. Kempa: On departure process in the batch arrival queue with single vacation and setup time. Ann. UMCS, AI 10 (2010), 1, 93-102.   CrossRef
  11. W. M. Kempa: Characteristics of vacation cycle in the batch arrival queueing system with single vacations and exhaustive service. Internat. J. Appl. Math. 23 (2010), 4, 747-758.   CrossRef
  12. W. M. Kempa: On main characteristics of the $M/M/1/N$ queue with single and batch arrivals and the queue size controlled by AQM algorithms. Kybernetika 47 (2011), 6, 930-943.   CrossRef
  13. W. M. Kempa: The virtual waiting time in a finite-buffer queue with a single vacation policy. Lecture Notes Comp. Sci. 7314 (2012), 47-60.   CrossRef
  14. N. U. Prabhu: Stochastic Storage Processes. Springer 1998.   CrossRef
  15. H. Takagi: Queueing Analysis. A Foundation of Performance Evaluation. Volume 1: Vacation and Priority Systems. Part 1. North-Holland, Amsterdam 1991.   CrossRef
  16. Y. Tang and X. Tang: The queue-length distribution for $M^{x}/G/1$ queue with single server vacation. Acta Math. Sci. (Eng. Ed.) 20 (2000), 3, 397-408.   CrossRef
  17. N. Tian and Z. G. Zhang: Vacation Queueing Models. Theory and Applications. Springer, New York 2006.   CrossRef