Kybernetika 49 no. 3, 420-432, 2013

A short note on multivariate dependence modeling

Vladislav Bína and Radim Jiroušek


As said by Mareš and Mesiar, necessity of aggregation of complex real inputs appears almost in any field dealing with observed (measured) real quantities (see the citation below). For aggregation of probability distributions Sklar designed his copulas as early as in 1959. But surprisingly, since that time only a very few literature have appeared dealing with possibility to aggregate several different pairwise dependencies into one multivariate copula. In the present paper this problem is tackled using the well known Iterative Proportional Fitting Procedure. The proposed solution is not an exact mathematical solution of a marginal problem but just its approximation applicable in many practical situations like Monte Carlo sampling. This is why the authors deal not only with the consistent case, when the iterative procedure converges, but also with the inconsistent non-converging case. In the latter situation, the IPF procedure tends to cycle (when combining three pairwise dependencies the procedure creates three convergent subsequences), and thus the authors propose some heuristics yielding a "solution'' of the problem even for inconsistent pairwise dependence relations.


entropy, Frank copula, IPFP


97K50, 94A17


  1. K. Aas, C. Czado, A. Frigessi and H. Bakken: Pair-copula construction of multiple dependence. Insurance Math. Econom. 44, 2 (2009), 182-198.   CrossRef
  2. C. Asci and M. Piccioni: A note on the IPF algorithm when the marginal problem is unsolvable. Kybernetika 39 (2003), 6, 731-737.   CrossRef
  3. I. Csiszár: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146-158.   CrossRef
  4. W. E. Deming and F. F. Stephan: On a least square adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11 (1940), 427-444.   CrossRef
  5. D. A. Hennessy and H. E. Lapan: The use of Archimedean copulas to model portfolio allocations. Math. Finance 12 (2002), 2, 143-154.   CrossRef
  6. R. Jiroušek: Solution of the marginal problem and decomposable distributions. Kybernetika 27, 5 (1991), 403-412.   CrossRef
  7. V. Kratochvíl: Characteristic properties of equivalent structures in compositional models.    CrossRef
  8. D. X. Li: On default correlation: A copula function approach. J. Fixed Income 9 (2000), 4, 43-54.   CrossRef
  9. M. Mareš and R. Mesiar: Aggregation of complex quantities. In: Proceedings of AGOP'2005. International Summer School on Aggregation Operators and Their Applications (R. Mesiar, G. Pasi, and M. Faré, eds.), Universitá della Svizzeria Italiana, Lugano 2005, pp. 85-88.   CrossRef
  10. L. Rüschendorf: Convergence of the iterative proportional fitting procedure. Ann. Statist. 23 (1995), 4, 1160-1174.   CrossRef
  11. A. Sklar: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231 .   CrossRef
  12. D. Schirmacher and E. Schirmacher: Multivariate Dependence Modeling Using Pair-copulas. Technical Report, Society of Acturaries, Enterprise Risk Management Symposium, Chicago 2008.   CrossRef
  13. J. Vomlel: Integrating inconsistent data in a probabilistic model. J. Appl. Non-Classical Logics 14 (2004), 3, 367-386.   CrossRef
  14. G. N. F. Wei\ss: Copula parameter estimation: numerical considerations and implications for risk management. J. Risk 13 (2010), 1, 17-53.   CrossRef