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A SHORT NOTE ON MULTIVARIATE DEPENDENCE
MODELING

Vladislav B́ına and Radim Jiroušek

As said by Mareš and Mesiar, necessity of aggregation of complex real inputs appears almost
in any field dealing with observed (measured) real quantities (see the citation below). For
aggregation of probability distributions Sklar designed his copulas as early as in 1959. But
surprisingly, since that time only a very few literature have appeared dealing with possibility
to aggregate several different pairwise dependencies into one multivariate copula.

In the present paper this problem is tackled using the well known Iterative Proportional
Fitting Procedure. The proposed solution is not an exact mathematical solution of a marginal
problem but just its approximation applicable in many practical situations like Monte Carlo
sampling. This is why the authors deal not only with the consistent case, when the iterative
procedure converges, but also with the inconsistent non-converging case. In the latter situation,
the IPF procedure tends to cycle (when combining three pairwise dependencies the procedure
creates three convergent subsequences), and thus the authors propose some heuristics yielding
a “solution” of the problem even for inconsistent pairwise dependence relations.
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1. INTRODUCTION

In his research papers, Milan Mareš focused on several important topics. His long-life
interests were connected with the game theory and applications in economics. And it
was this field of application what led him and his colleague and friend Radko Mesiar to
study copulas and write a paper [9] where they described several tools for aggregation
of complex quantities.

Abe Sklar introduced copulas in 1959 [11]. It took more than forty years to financial
mathematicians to employ them in economic models. It was David X. Li, who first
employed Gaussian copulas in financial models [8]. Since that time not many papers
have been published in which more than two quantities interconnected with different
types of dependence relations are considered. Let us illustrate the type of problems we
have in mind by a simple discrete example.

Consider three binary random variables X,Y, Z with the distribution from Table 1.
Computing its two-dimensional marginal distributions (see Table 2) one can immediately
see that variables Y and Z are independent, and that there is a strong positive correlation
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X = 0 X = 1

Z = 0 Z = 1 Z = 0 Z = 1

Y = 0 0.2 0.2 0.05 0.05

Y = 1 0.0 0.1 0.25 0.15

Tab. 1. Three-dimensional binary distribution.

Z = 0 Z = 1 X = 0 X = 1 X = 0 X = 1

Y = 0 0.25 0.25 Y = 0 0.4 0.1 Z = 0 0.2 0.3

Y = 1 0.25 0.25 Y = 1 0.1 0.4 Z = 1 0.3 0.2

Tab. 2. Two-dimensional marginal distributions.

between variables X and Y , while the correlation between variables X and Z is negative
and much weaker. It means that in this example each pair of the considered variables
is interconnected with another type of dependence (here we consider the independence
to be a special type of dependence). We fully agree with the claim of Mareš and Mesiar
[9] that the necessity of aggregation of complex real inputs appears almost in any field
dealing with observed (measured) real quantities. To this claim we only want to add
that when modeling a dependence of a group of variables we cannot rely upon the fact
that each pair of the variables (or, generally a subgroup of the variables) is linked up by
the same type of dependence as the other pairs of variables.

The same type of the problem was studied by Kjersti Aas et al. in [1] and Doris
and Ernesto Schirmacher in [12]. They propose to construct complex copulas by de-
composing them into a product of (two-dimensional) pair-copulas. From the point of
view of Milan Mareš’ papers it may be interesting that they illustrate their approach
on examples from financial analysis and risk management. However, their approach,
though general and mathematically correct, requires to specify copulas connecting con-
ditional density functions. This step is, in our opinion, intuitively incomprehensible. We
can hardly imagine a manager or financial analyst following the process they proposed
and estimating copulas connecting conditional density functions. So the goal of this
paper is to present an alternative approach for composing more-dimensional probability
distribution from a system of two-dimensional copulas employing the famous Iterative
proportional fitting procedure [4].

2. DESCRIBING UNCERTAINTY

As said above, to describe a dependence of random variables, A. Sklar introduced a gen-
eral class of functions called copulas [11]. These functions can describe any type of
dependence among random variables. Restricting ourself to two random variables,
any two-dimensional distribution function can be expressed as a copula-combination
of its one-dimensional marginal distributions. More precisely, let F (X,Y ) be a two-
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Fig. 1. Gumbel copulas.

dimensional cumulative distribution function and F (X), F (Y ) be its respective marginal
one-dimensional cumulative distribution functions. Then, due to the famous Sklar’s the-
orem there exists a copula C : [0, 1]× [0, 1] → [0, 1] such that

F (X,Y ) = C(F (X), F (Y )).

Similarly to most of other authors (see e. g. Hennessy and Lapan [5]), in this paper
we will restrict our considerations to Archimedean copulas, i. e. the copulas that can be
expressed with the help of a so called generating function ψ : [0,+∞) → [0, 1] in the
following simple way

C(u, v) = ψ
(
ψ−1(u) + ψ−1(v)

)
. (1)

This restriction yields two advantages. First, as it is obvious from the formula (1), these
functions are associative, and so one can, in case of need, describe the dependence of
more than two random variables. The second advantage is connected with the fact that
quite often, when solving a problem of practice, one does not have a detailed information
about the dependence to be modeled. In most of situations one has only a subjective
estimate of the type and strength of the dependence, and it is its strength that can be
easily expressed by a parameter θ of the selected family of copulas. In this paper we will
use Frank copulas, though it seems that in the problems of practice one can also consider
e. g., Gumbel (Figure 1) or Clayton (Figure 2) copulas. As we can see from Figure 2, the
latter ones are not symmetric with respect to the minor diagonal which may be desirable
in some special situations. The Figures 1, 2 and 3 present three-dimensional surfaces of
chosen Archimedean copulas using randomly generated points from the corresponding
distribution.

The generating function for the Frank copulas is

ψθ(u) = −1
θ

ln
(
1− (1− e−θ)e−u

)
,

and its inverse is

ψ−1
θ (u) = − ln

(
e−θu − 1
e−θ − 1

)
.
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Fig. 2. Clayton copulas.

The parameter θ, which takes its value from1 (−∞,+∞), expresses here both the
strength and also the type of the dependence. In the experiments we use the following
five possibilities (see Figure 3):

• Strong direct proportion: θ = 12;

• Weak direct proportion: θ = 4;

• Independence: θ = 0;

• Weak indirect proportion: θ = −4;

• Strong indirect proportion: θ = −12.

3. COMPLEX DEPENDENCE

When speaking about the Archimedean copulas in the preceding section we mentioned
their advantage connected with the fact that they can easily be used to introduce the
dependence of more than two variables:

C(u, v, w) = ψ
(
ψ−1(u) + ψ−1(v) + ψ−1(w)

)
.

However, from the practical point of view this form of dependence is rather unrealistic
since such a copula introduces the same type of dependence between all the three pairs
of the considered variables. As said in Introduction, in practical situations it happens
quite often that considering a group of variables one has to introduce different types of
dependence between different pairs of variables. So, the task we are going to tackle is how
to model situations when one considers several (usually three, four, or five at maximum)
variables with given pairwise dependencies described by different copulas. Here it does
not matter whether the given dependencies are defined for all pairs of variables or just
for some of them.

1The reader perhaps noticed that for θ = 0 the functions ψ0 and ψ−1
0 are not defined. However, we

define Cψ0 to be the independence copula, i. e., Cψ0 = limθ→0 Cψθ
.
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Fig. 3. Frank copulas.

The simplest situation occurs when the pairs of variables with the predefined depen-
dence relations can be ordered in the way, that each pair contains at least one variable
that does not occur in the preceding pairs (in this case one can set up from the copulas
either a decomposable model [6] or a compositional model [7]). In a general case, as said
in Introduction, we propose to solve this problem with the help of the famous Iterative
Proportional Fitting Procedure [4], which can be described in the following simple way.

For the sake of simplicity we will consider here only three variables X, Y , and Z, and
assume their pairwise dependencies be expressed by two-dimensional density functions
f1(X,Y ), f2(X,Z) and f3(Y, Z). The generalization for more variables and greater
number of predefined pairwise dependence relations is straightforward.

As the name suggests, the IPF procedure is iterative. So we will construct an infinite
sequence of three-dimensional density functions g0(X,Y, Z), g1(X,Y, Z), g2(X,Y, Z),
g3(X,Y, Z), . . . and the desired result g?(X,Y, Z) will be determined by its limit

g?(X,Y, Z) = lim
n→∞

gn(X,Y, Z),

which will be a density function having all the three given functions f1, f2, f3 for its
marginals.

Let the starting density function g0 be defined as an independent product of the
uniform one-dimensional density functions. Then the computational process is defined
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by the following simple formulae:2.

g1(X,Y, Z) = f1(X,Y ) · g0(Z|X,Y ),
g2(X,Y, Z) = f2(X,Z) · g1(Y |X,Z),
g3(X,Y, Z) = f3(Y, Z) · g2(X|Y, Z),
g4(X,Y, Z) = f1(X,Y ) · g3(Z|X,Y ),
g5(X,Y, Z) = f2(X,Z) · g4(Y |X,Z), (2)
g6(X,Y, Z) = f3(Y, Z) · g5(X|Y, Z),
g7(X,Y, Z) = f1(X,Y ) · g6(Z|X,Y ),
g8(X,Y, Z) = f2(X,Z) · g7(Y |X,Z),

...

Unfortunately, the application of this iterative process is connected with a couple of
theoretical problems.

First, Csiszár proved in [3] a convergence of this process, however his proof is valid for
discrete random variables, only. The convergence in a special case of continuous variables
was analyzed by Rüschendorf [10], but general necessary and sufficient conditions for
the convergence of this process in case of continuous variables are not known. Moreover,
a trivial necessary condition for this convergence is an existence of a three-dimensional
density function f(X,Y, Z), for which f1, f2 and f3 are its marginal densities. Unfor-
tunately, in most of situations there is no simple way how to recognize whether such
a joint density function exists. This is why we look for the desired joint density function
in the following indirect way.

In this paper we do not study an exact mathematical solution of the underlying
marginal problem. We look for a model expressing a subjective knowledge of a manager
or a financial engineer. We said above that when selecting a model describing the
dependence of two variables we can choose Frank or Gumbel copulas. Because of use of
expert estimates3, quite naturally, we can hardly distinguish whether we should consider
Frank copula with parameter θ = 4.4 or θ = 3.5. Therefore we do not make a great
harm when discretizing the problem in the way that we consider finite valued variables
instead of continuous ones. In Figures 4 and 6 one can see that when considering
variables with 20 values the quality of discrete model approaches the continuous one (in
fact experiments show that in many situations one can do with considering 10-valued
variables). We studied the influence of the number of categories on the convergence of
IPF procedure. Surprisingly, we did not detect any impact and therefore we did not
focus on the choice of grid coarseness parameter. But in a general case, it can be chosen
according to the accuracy of this representation in comparison to the original model.

Application of the Iterative proportional procedure to discrete random variables is
well explored and one can employ results of Csiszár [3] and Asci and Piccioni [2] saying
that

2gi(Z|X,Y ) denotes the conditional density function for which gi(X,Y, Z) = gi(Z|X,Y ) · gi(X,Y )
3In case of estimating the parameter values from data we can employ e. g. maximum likelihood or

minimum distance estimators (see Weiß [14]).
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Fig. 4. Discretized Frank copulas for variable pairs X and Y , X and

Z, Y and Z: A case of weaker dependencies (θ = 0, θ = 4, θ = −4).

• since we use g0 uniform, the procedure converges if and only if there exists a dis-
tribution having the given marginals;

• if the procedure converges than it yields a maximum entropy distribution with the
given marginals;

• if there does not exist a distribution with the given marginals then the procedure
tends to cycle (in this case we suggest to consider as a result of the process a center
of the cycle – see Section 4).

So the computational process constructing a probability distribution representing the
required dependence relations among the parameters consists of the following four steps.

1. Choose the pairs of variables for which you want to specify a type of dependence
(recall that here we understand independence as a precisely defined type of a de-
pendence). For each such pair of variables specify a value of parameter θ expressing
the desired type of dependence by the respective Frank copula.

2. Discretize the two-dimensional distributions represented by the copulas.

3. Starting with the uniform distribution apply IPFP to all the discrete two-dimen-
sional probability distributions.

4. If the process does not converge specify a center of the cycle and check whether
its marginals do not differ from the copulas given in Step 1 in an undesirable way.
If this is the case then apply some of the heuristics proposed in Section 4.

Example. Let us consider a situation similar to the example from Introduction. Con-
sider three random variables X, Y and Z and assume that because of some reason or
another we believe that variables X and Y are independent, variables X and Z are
weakly positively correlated, and finally Y and Z are weakly negatively correlated. So,
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Fig. 5. Two ways of presentation of IPFP: A convergent case.

we have enough reasons to model the situation with the help of Frank copulas as indi-
cated in Figure 4: we choose the parameter θ = 0 for the variables X and Y , θ = 4 for
X and Z, and for Y and Z θ = −4.

After application of three cycles (nine iterative steps) of IPFP we can see that the
process converges rapidly to the stable solution (for the projections of the distributions
computed during this process see Figure 5).

4. HEURISTICS FOR THE CASE WHEN THE PROCESS FAILS

Let us now explain more exactly, what we understand when saying that the sequence
of density functions (2) converges to a cycle. By this we express the fact that though
there does not exist limn→∞ gn, all the three subsequences

g1, g4, g7, . . . , g3n+1, . . .

g2, g5, g8, . . . , g3n+2, . . .

g3, g6, g9, . . . , g3n+3, . . .

have their limits [13]. Denote them (for i = 1, 2, 3)

g?
i = lim

n→∞
g3n+i.



428 V. BÍNA AND R. JIROUŠEK

Since the two-dimensional density function fi is marginal to all the three-dimensional
density functions from the subsequence gi, g3+i, g6+i, . . . , g3n+i, . . ., it is obvious that fi

is marginal also to g?
i . Moreover, it can be deduced from the Csiszár’s results ([3]) that

g?
2 is an I-projection of g?

1 into the set of all density functions having f2 for its marginal
in the sense that

g?
2 = arg min

h∈∆(f2)
{Div(h; g?

1)},

where ∆(f2) denotes the set of all the three-dimensional density functions h(X,Y, Z)
for which h(X,Z) = f2(X,Z), and Div denotes the famous Kullback-Leibler divergence
(crossentropy) of functions h and g?

1 :

Div(h; g?
1) =

∑
(x,y,z)

h(x, y, z) · log
h(x, y, z)
g?
1(x, y, z)

.

Similarly, g?
3 is an I-projection of g?

2 into ∆(f3) and g?
1 is an I-projection of g?

3 into
∆(f1). All this theoretical knowledge helps us to select a proper way how to proceed
when IPFP converges to a cycle.

As we said in the previous section, this situation occurs when the chosen density
functions (or more precisely their discretized versions) are not consistent in the sense
that there does not exist a three-dimensional density function h(X,Y, Z) having all the
three functions f1, f2, f3 for its marginals. In other words it means that we have to release
the system of dependence relations we have encoded into the functions f1, f2, f3. There
is a great variety of ways how to do it. We can revoke some of the dependencies, either to
decrease the number of predefined density functions, or to decrease their strength, and
start the computations with newly predefined marginal functions. Another possibility
is to choose an appropriate representative from the set of all convex combinations of the
density functions g?

1 , g?
2 , g?

3 .
There is an abundant variety of approaches enabling this choice. For example, one

can use the method based on minimization of an I -aggregate as defined by Vomlel
(see [13]). But at this moment we just want to advise against application of another
possibility, namely the use of the maximum entropy principle. As it will be evident from
the following example, its application in this situation virtually corresponds to preferring
weak dependencies and to the exclusion of the strong ones. As the contribution is not
focused on this task, we do not want to discuss the details, and in the case of irresolution
we propose yet another very simple possibility. Namely a choice of an arithmetic mean
of the density functions g?

1 , g?
2 , g?

3 .
Naturally, after selecting a resulting representative density function (for nonnegative

k, l such that k + l ≤ 1)

h?
k,l(X,Y, Z) = k · g?

1(X,Y, Z) + l · g?
2(X,Y, Z) + (1− k − l) · g?

3(X,Y, Z) (3)

we recommend to check whether its marginals h?
k,l(X,Y ), h?

k,l(X,Z) and h?
k,l(Y, Z) suf-

ficiently well represent the required pairwise dependencies.

Example. As in the previous example we consider three variables X,Y, Z; this time
with strong direct proportion for the pair X,Z and weak indirect proportion in the case
of Y, Z – see Figure 6.
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Fig. 6. Frank copulas for pairs of variables X and Y , X and Z, Y

and Z: A case of stronger dependencies (θ = 0, θ = 12 and θ = −4).

Again the three cycles of IPFP were performed and we can see that the process
converges to a cycle (periodically repeating projections are depicted in Figure 7).

(X,Y)

(X,Z)

(Y,Z)

g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 gavg*

(X,Y)

(X,Z)

(Y,Z)

g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 gavg*

Fig. 7. Two ways of IPFP presentation: Convergence to a cycle

augmented by the center of the cycle (an average).
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combinations in dependence on two parameters k and l.

As said above, in this case the result of IPFP can be represented by the three limits
(for i = 1, 2, 3): g?

i = limn→∞ gi+3n, and one can consider all their convex combinations
as a result of the computational process.

Since we assume no additional information, a maximum entropy principle could seem
to be a natural choice. But let us have a look at the entropy of the limits g?

1 , g?
2 , g?

3 ,
and their convex combinations (Figure 8). Note that any convex combination is here
expressed using only two parameters k and l (as in formula (3)).

We can see that the convex combination with maximal entropy is h?
1,0(X,Y, Z) = g?

1 .
This is because the first copula has the highest entropy and this independence copula
is marginal to all the densities from the subsequence g1+3n, and therefore also to g?

1 .
Hence, we see that the convex combination with maximum entropy tends to prefer weaker
dependencies. Therefore we suggest to choose simply the average of the distributions g?

1 ,
g?
2 , g?

3 , i. e., h?
1
3 , 1

3
(X,Y, Z). The values of entropy for the distributions from this example

are the following:

H(g?
1) = 11.860, H(g?

2) = 11.727,
H(g?

3) = 11.578, H(h?
1
3 , 1

3
) = 11.748.

5. CONCLUSIONS

We have presented an alternative approach to model a more-dimensional copula in case
when several two-dimensional copulas (i. e., marginal copulas to the looked for more-
dimensional one) are specified. For this, we have proposed to employ the famous Iterative
Proportional Fitting Procedure. At this moment we want to conclude the paper with
the two important remarks:

• When explaining the approach we assumed that only two-dimensional copulas are
given. This was just for the simplicity sake. It is obvious that the approach
can be generalized for the case when also some copulas of higher dimension are
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given. Naturally, because of necessity to store representation of functions gi in
a computer memory one cannot expect to employ the approach for, let us say, ten
random variables.

• The presented approach is not an exact mathematical solution of a marginal prob-
lem (for this, the reader is referred e. g. to [6]. The presented approach is designed
to get a simple and lucid tool applicable in case that one has subjective rough
estimates of the dependence relations between couples (or, triples, ...) of random
variables and looks for the way how to employ this knowledge in a method like
Monte Carlo.
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