Kybernetika 48 no. 6, 1194-1210, 2012

Leader-following consensus of multiple linear systems under switching topologies: an averaging method

Wei Ni, Xiaoli Wang and Chun Xiong


The leader-following consensus of multiple linear time invariant (LTI) systems under switching topology is considered. The leader-following consensus problem consists of designing for each agent a distributed protocol to make all agents track a leader vehicle, which has the same LTI dynamics as the agents. The interaction topology describing the information exchange of these agents is time-varying. An averaging method is proposed. Unlike the existing results in the literatures which assume the LTI agents to be neutrally stable, we relax this condition, only making assumption that the LTI agents are stablizable and detectable. Observer-based leader-following consensus is also considered.


multi-agent systems, consensus, averaging method


93C15, 93C35


  1. D. Aeyels and J. Peuteman: On xponential stability of nonlinear time-varying differential equations. Automatica 35 (1999), 1091-1100.   CrossRef
  2. R. Bellman, J. Bentsman and S. M. Meerkov: Stability of fast periodic systems. IEEE Trans. Automat. Control 30 (1985), 289-291.   CrossRef
  3. N. N. Bogoliubov and Y. A. Mitropolsky: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York 1961.   CrossRef
  4. D. Cheng, J. H. Wang and X. Hu: An extension of LaSalle's invariance principle and its application to multi-agent consensus. IEEE Trans. Automat. Control 53 (2008), 1765-1770.   CrossRef
  5. Y. Hong, L. Gao, D. Cheng and J. Hu: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948.   CrossRef
  6. Y. Hong, J. Hu and L. Gao: Tracking control for multiagent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182.   CrossRef
  7. R. Horn and C. Johnson: Matrix Analysis. Cambridge University Press, New York 1985.   CrossRef
  8. A. Jadbabaie, J. Lin and A. S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48 (2003), 943-948.   CrossRef
  9. S. Khoo, L. Xie, Z. Man and S. Zhao: Observer-based robust finite-time cooperative consensus control for multi-agent networks. In: Proc. 4th IEEE Conference on Industrial Electronics and Applications, Xi'an 2009, pp. 1883-1888.   CrossRef
  10. R. L. Kosut, B. D. O. Anderson and I. M. Y. Mareels: Stability theory for adaptive systems: method of averaging and persistency of excitation. IEEE Trans. Automat. Control 32 (1987), 26-34.   CrossRef
  11. M. A. Krasnosel'skii and S. G. Krein: On The Averaging Principle in Nonlinear Mechanics. Uspekhi Matem Nauk, 1955.   CrossRef
  12. N. Krylov and N. Bogoliubov: Introduction to Non-Linear Mechnnics. Princeton University Press, Princeton 1949.   CrossRef
  13. Y. Liu, Y. Jia, J. Du and S. Yuan: Dynamic output feedback control for consensus of multi-agent systems: an $H_\infty$ approach. In: Proc. American Control Conference, St. Louis 2009, pp. 4470-4475.   CrossRef
  14. T. Namerikawa and C. Yoshioka: Consensus control of observer-based multi-agent system with communication delay. In: Proc. SICE Annual Conference, Tokyo 2008, pp. 2414-2419.   CrossRef
  15. W. Ni and D. Cheng: Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems Control Lett. 59 (2010), 209-217.   CrossRef
  16. R. Olfati-Saber and R. M. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533.   CrossRef
  17. R. Olfati-Saber, J. A. Fax and R. M. Murray: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95 (2007), 215-233.   CrossRef
  18. W. Ren and R. W. Beard: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Control 50 (2005), 655-661.   CrossRef
  19. W. Ren, R. W. Beard and E. Atkins: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27 (2007), 71-82.   CrossRef
  20. J. A. Sanders, F. Verhulst and J. Murdock: Averaging Methods in Nonlinear Dynamical Systems. Second edition. Springer, New York 2007.   CrossRef
  21. J. H. Seo, H. Shima and J. Back: Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach. Automatica 45 (2009), 2659-2664.   CrossRef
  22. L. Scardovi and R. Sepulchre: Synchronization in networks of identical linear systems. Automatica 45 (2009), 2557-2562.   CrossRef
  23. D. J. Stilwell, E. M. Bellt and D. G. Roberson: Sufficient conditions for fast switching sysnchronization in time-varying network topologies. SIAM J. Appl. Dynam. Syst. 5 (2006), 140-157.   CrossRef
  24. A. R. Teel and D. Nesic: Averaging for a class of hybrid systems. Dynamics Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 829-851.   CrossRef
  25. J. Wang, D. Cheng and X. Hu: Consensus of multi-agent linear dynamical systems. Asian J. Control 10 (2008), 144-155.   CrossRef
  26. X. Wang and Y. Hong: Parametrization and geometric analysis of coordination controllers for multi-agent systems. Kybernetika 45 (2009), 785-800.   CrossRef
  27. X. Wang, Y. Hong, J. Huang and Z. Jiang: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895.   CrossRef
  28. X. Wang and F. Han: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772.   CrossRef
  29. C. Yoshioka and T. Namerikawa: Observer-based consensus control strategy for multi-agent system with communication time delay. In: Proc. 17th IEEE International Conference on Control Applications, San Antonio 2008, pp. 1037-1042.   CrossRef
  30. H. Zhang, F. L. Lewis and A. Das: Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans. Automat. Control 56 (2011), 1948-1952.   CrossRef