Kybernetika 48 no. 4, 750-767, 2012

Limits of Bayesian decision related quantities of binomial asset price models

Wolfgang Stummer and Wei Lao

Abstract:

We study Bayesian decision making based on observations $\left(X_{n,t} : t\in\{0,\frac{T}{n},2\frac{T}{n},\ldots,n\frac{T}{n}\}\right)$ ($T>0, n\in \mathbb{N}$) of the discrete-time price dynamics of a financial asset, when the hypothesis a special $n$-period binomial model and the alternative is a different $n$-period binomial model. As the observation gaps tend to zero (i. e. $n \rightarrow \infty$), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the "non-commutativity'' between Bayesian statistical and optimal investment decisions.

Keywords:

power divergences, Bayesian decisions, Cox-Ross-Rubinstein binomial asset price models

Classification:

62C10, 94A17, 91B25

References:

  1. A. K. Bera and Y. Bilias: The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis. J. Econometrics 107 (2002), 51-86.   CrossRef
  2. A. Berlinet and I. Vajda: Selection rules based on divergences. Statistics 45 (2011), 479-495.   CrossRef
  3. M. Broniatowski and I. Vajda: Several applications of divergence criteria in continuous families. To appear in Kybernetika (2012). See also Research Report No. 2257, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2009; moreover, see arXiv:0911.0937v1 [math.ST].   CrossRef
  4. J. C. Cox, S. A. Ross and M. Rubinstein: Option pricing: a simplified approach. J. Finan. Econ. 7 (1979), 229-263.   CrossRef
  5. N. Cressie and T. R. C. Read: Multinomial goodness-of-fit tests. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 46 (1984), 440-464.   CrossRef
  6. I. Csiszár and F. Matúš: Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields 141 (2008), 213-246.   CrossRef
  7. I. Csiszár and P. C. Shields: Information theory and statistics: a tutorial. Found. Trends Commun. Inform. Theory 1 (2004), 4, 417-528.   CrossRef
  8. I. V. Girsanov: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab. Appl. 5 (1960), 285-301.   CrossRef
  9. A. Golan: Information and entropy econometrics - editor's view. J. Econometrics 107 (2002), 1-15.   CrossRef
  10. A. Gretton and L. Györfi: Consistent nonparametric tests of independence. J. Mach. Learn. Res. 11 (2010), 1391-1423.   CrossRef
  11. P. Harremoes and I. Vajda: On the Bahadur-effcient testing of uniformity by means of the entropy. IEEE Trans. Inform. Theory 54 (2008), 321-331.   CrossRef
  12. P. Harremoes and I. Vajda: On Bahadur efficiency of power divergence statistics. Preprint arXiv:1002.1493v1 [math.ST] (2010).   CrossRef
  13. T. Hobza, L. Pardo and D. Morales: Rényi statistics for testing equality of autocorrelation coefficients. Statist. Methodol. 6 (2009), 424-436.   CrossRef
  14. F. Liese and K.-J. Miescke: Statistical Decision Theory. Springer-Verlag, New York 2008.   CrossRef
  15. F. Liese, D. Morales and I. Vajda: Asymptotically sufficient partitions and quantizations. IEEE Trans. Inform. Theory 52 (2006), 5599-5606.   CrossRef
  16. F. Liese and I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987.   CrossRef
  17. F. Liese and I. Vajda: On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 4394-4412.   CrossRef
  18. E. Maasoumi: A compendium to information theory in economics and econometrics. Econometrics Rev. 12 (1993), 2, 137-181.   CrossRef
  19. D. Morales and I. Vajda: Generalized information criteria for optimal Bayes decisions. Research Report No. 2274, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2010.   CrossRef
  20. D. B. Nelson and K. Ramaswamy: Simple binomial processes as diffusion approximations in financial models. Rev. Financ. Stud. 3 (1990), 393-430.   CrossRef
  21. L. Pardo: Statistical Inference Based on Divergence Measures. Chapman \& Hall, Boca Raton 2005.   CrossRef
  22. M. C. Pardo: Testing equality restrictions in generalized linear models for multinomial data. Metrika 73 (2011), 231-253.   CrossRef
  23. T. R. C. Read and N. A. C. Cressie: Goodness-of-Fit Statistics for Discrete Multivariate Data. Springer-Verlag, New York 1988.   CrossRef
  24. H. Strasser: Mathematical Theory of Statistics. De Gruyter, Berlin 1985.   CrossRef
  25. W. Stummer: Exponentials, Diffusions, Finance, Entropy and Information. Shaker, Aachen 2004.   CrossRef
  26. W. Stummer and I. Vajda: Optimal statistical decisions about some alternative financial models. J. Econometrics 137 (2007), 441-471.   CrossRef
  27. W. Stummer and I. Vajda: On divergences of finite measures and their applicability in statistics and information theory. Statistics 44 (2010), 169-187.   CrossRef
  28. I. Vajda and E.C. van der Meulen: Goodness-of-Fit criteria based on observations quantized by hypothetical and empirical percentiles. In: Handbook of Fitting Statistical Distributions with R (Z.A. Katrian, E.J. Dudewicz eds.), Chapman \& Hall / CRC, 2010, pp. 917-994.   CrossRef
  29. I. Vajda and J. Zvárová: On generalized entropies, Bayesian decisions and statistical diversity. Kybernetika 43 (2007), 675-696.   CrossRef