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LIMITS OF BAYESIAN DECISION RELATED QUANTITIES
OF BINOMIAL ASSET PRICE MODELS

Wolfgang Stummer and Wei Lao

In commemoration of our dear friend and wonderful colleague Igor Vajda.

We study Bayesian decision making based on observations
`
Xn,t : t ∈ {0, T

n
, 2T

n
, . . . , nT

n
}

´
(T > 0, n ∈ N) of the discrete-time price dynamics of a financial asset, when the hypothesis
a special n-period binomial model and the alternative is a different n-period binomial model.
As the observation gaps tend to zero (i. e. n → ∞), we obtain the limits of the corresponding
Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore,
we also give an example for the “non-commutativity” between Bayesian statistical and optimal
investment decisions.
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1. INTRODUCTION

Let Xn,t > 0 be the value of a financial asset (resp. an economic quantity of interest) at
time t ∈ τn := {0, T

n , 2T
n , . . . , nT

n , (n + 1)T
n , (n + 2)T

n , . . . , Nn
T
n }\{∞} for some T > 0,

n ∈ N, as well as the integer part Nn := bT̂ n
T c of T̂ n

T with a (goal-dependent) final time
horizon T̂ ∈]T,∞]. Clearly, Nn

T
n ≤ T̂ and limn→∞Nn

T
n = T̂ . In the following, the

parameter T will play the role of the fixed observation time horizon and the parameter
n denotes the number of equally spaced observation times between 0 (e. g. now) and T ;
n will either be fixed or converge to infinity. We use the appropriate canonical sample
path space Ωn and the description Xn,0 := x > 0, Xn,t := x ·

∏tn/T
i=1 Yn,i (t ∈ τn\{0}),

where the capital-growth-factor describing random variables Yn,i can only take the two
values dn,i > 0 and un,i > dn,i (i ∈ N). For the sake of consistency with arbitrage theory,
we always choose un,i > 1+ρn,i > dn,i for some realistic interest rate ρn,i > 0 for the ith
time-period ](i − 1)T

n , iT
n ]. Notice that this general setup covers also situations where

the un,i respectively dn,i depend on all previous capital-growth-factors (un,j)j=1,...,i−1

respectively (dn,j)j=1,...,i−1.

Furthermore, suppose that for the corresponding quantification of the asset value dy-
namics at fixed n ∈ N we have the following two choices (H) and (A):

(H) the probability law Qn (on the sample path space) under which the random variables
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(Yn,i)i∈N are independent and distributed according to Qn[Yn,i = un,i] = qn,i = 1 −
Qn[Yn,i = dn,i] with qn,i ∈]0, 1[ for all i ∈ {1, . . . , Nn}.

(A) the probability law Pn (on the sample path space) under which the random variables
(Yn,i)i∈N are independent and distributed according to Pn[Yn,i = un,i] = pn,i = 1 −
Pn[Yn,i = dn,i] with pn,i ∈]0, 1[ for all i ∈ {1, . . . , Nn}.

In order to avoid trivialities, we assume that qn,i 6= pn,i holds for at least one i ∈
{1, . . . , n}.

In the hypothesis model H, the random process (Xn,t)t∈τn
is a non-homogeneous Cox–

Ross–Rubinstein-type (CRR [4]) model “evolving on a certain tree” with probabilities
qn,i resp. 1−qn,i in the ith time-period (independently of the other periods). In contrast,
in the alternative model A the random process (Xn,t)t∈τn is a different non-homogeneous
CRR model “evolving on the same tree” but with different probabilities pn,i resp. 1−pn,i

in the ith time-period.

Within such a framework, we study dichotomous Bayes decisions with possible actions
θH and θA as well as loss functions L

(
θH,H

)
L
(
θH,A

)
L
(
θA,H

)
L
(
θA,A

)
 =

 L̃H LA

LH L̃A

 ,
(1)

with losses LH > 0, LA > 0, L̃H ∈ [0, LH[, L̃A ∈ [0, LA[ (the latter two upper bounds
are not essential but rule out obvious cases).

More detailed, our Bayes decisions about the hypothesisH against the alternative A are
based on the random asset value observations Xn,T := (Xn,t : t ∈ {0, T

n , 2T
n , . . . , nT

n })
between the n−independent fixed times 0 and nT

n = T , and thus can be formally consid-
ered as functions δ(Xn,T ) of random paths Xn,T into the decision space D = {θH, θA}.
The Bayes decision function minimizes the risk (average loss)

prH LH Pr[ δ(Xn,T ) = θA | H ] + prA LA Pr[ δ(Xn,T ) = θH | A ]

+ prH L̃H Pr[ δ(Xn,T ) = θH | H ] + prA L̃A Pr[ δ(Xn,T ) = θA | A ] (2)

for given prior probabilities prH = Pr[H] > 0 for H and prA = Pr[A] = 1 − prH > 0
for A (which describe the model risk knowledge at time t = 0, prior to the random asset
value observations Xn,T ). According to the very nature of the underlying decision goals,
we have assumed T < T̂ so that the process Xn,· lives beyond the observation time
horizon T .

Within this setup, we compute the limits as n → ∞ of the following quantities:
decision-theoretic characteristics in form of Bayes factor moments and some related
general functionals (Section 2), the Bayes risk (Section 4), as well as the related power
divergences between the two laws Pn and Qn at choice (Section 3); the total variation
distance will be dealt with, too. These results differ from other statistical applications
of power divergences (Cressie–Read measures, generalized cross-entropy family) and
related quantities given e. g. the recent articles of Liese, Morales and Vajda [15], Vajda
and Zvárová [29], Csiszár and Matúš [6], Harremoes and Vajda [11, 12], Hobza, Pardo
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and Morales [13], Broniatowski and Vajda [3], Morales and Vajda [19], Stummer and
Vajda [27], Vajda and van der Meulen [28], Berlinet and Vajda [2], Gretton and Györfi
[10], Pardo [22], and the numerous references therein; see also the the surveys of e. g.
Maasoumi [18], Golan [9], Csiszár and Shields [7] and Liese and Vajda [17] as well as
the books of e. g. Liese and Vajda [16], Read and Cressie [23], Stummer [25], Pardo [21]
and Liese and Miescke [14].

Some of the abovementioned n−limits turn out to be consistent with the purely continuous-
time investigations of Stummer and Vajda [26] about Bayesian decisions where the hy-
pothesis H is a geometric Brownian motion with growth constant cH and volatility σ,
and the alternative A is another geometric Brownian motion with growth constant cA
and volatility σ. Moreover, we give several examples including one which shows the
“non-commutativity” between Bayesian statistical and optimal investment decisions.

2. BAYES FACTOR MOMENTS

In a straightforward way, one can obtain from the prior binomial probabilities prH for
H and prA = 1− prH for A the posterior probabilities

prH,post
n,T =

prH

(1− prH) Zn,T + prH
for H , (3)

prA,post
n,T =

(1− prH) Zn,T

(1− prH) Zn,T + prH
for A , (4)

with Zn,T = Zn,T (Xn,T )

=



pn,1......pn,n

qn,1......qn,n
, if Xn,T = xun,1 . . . un,n,

pn,1......pn,n−1 (1−pn,n)
qn,1......qn,n−1 (1−qn,n) , if Xn,T = xun,1 . . . un,n−1 dn,n,

pn,1...pn,n−2 (1−pn,n−1) pn,n

qn,1...qn,n−2 (1−qn,n−1) qn,n
, if Xn,T = xun,1 . . . un,n−2 dn,n−1 un,n,

pn,1...pn,n−2 (1−pn,n−1) (1−pn,n)
qn,1...qn,n−2 (1−qn,n−1) (1−qn,n) , if Xn,T = xun,1 . . . un,n−2 dn,n−1 dn,n,

...
...

...
...

...
...

(1−pn,1)...(1−pn,n)
(1−qn,1)...(1−qn,n) , if Xn,T = x dn,1 . . . dn,n.

(5)

Notice that the dependence of prH,post
n,T and prA,post

n,T on the observed asset value sample
path Xn,T is not indicated explicitly here. As usual, the posterior odds ratio of A to H
is obtained by

prA,post
n,T

prH,post
n,T

=
1− prH

prH
Zn,T .
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Furthermore, the odds for A against H that are given by the asset-value sample paths
Xn,T observed on the set of times τ̃n,T := {0, T

n , 2T
n , . . . nT

n } are reflected by the corre-
sponding Bayes factor Bn,T := posterior odds ratio of A to H

prior odds ratio of A to H = Zn,T . It is obvious that for
α ∈ R the αth moment (with respect to the hypothesis measure Qn) of the Bayes factor
is nothing else but the appropriate Hellinger integral Hα; more precisely,

Hα(Pn,T ‖Qn,T ) :=
∫ {

dPn

dµ

∣∣∣eτn,T

}α{dQn

dµ

∣∣∣eτn,T

}1−α

dµ = EQn,T

[
(Bn,T )α

]
, (6)

where Pn,T := Pn

∣∣∣eτn,T

respectively Qn,T := Qn

∣∣∣eτn,T

is the restriction of Pn respectively

Qn to the time-point set τ̃n,T , and dPn

dµ

∣∣∣eτn,T

respectively dQn

dµ

∣∣∣eτn,T

are the corresponding

densities with respect to the specially chosen reference law µ = Qn,T . A definition which
covers more general laws can be found in Liese and Vajda [16]. Similarly to (6), the
Bayes factor moments with respect to the alternative law Pn are related to Hellinger
integrals by Hα+1(Pn,T ‖Qn,T ) = EPn,T

[
(Bn,T )α

]
, α ∈ R. By combining (5) and (6)

one gets

Hα(Pn,T ‖Qn,T ) = (pn,1 . . . . . . pn,n)α · (qn,1 . . . . . . qn,n)1−α

+ (pn,1 . . . . . . pn,n−1 (1− pn,n))α · (qn,1 . . . . . . qn,n−1 (1− qn,n))1−α

+ (pn,1 . . . pn,n−2 (1− pn,n−1) pn,n)α · (qn,1 . . . qn,n−2 (1− qn,n−1) qn,n)1−α

+ (pn,1 . . . pn,n−2 (1− pn,n−1) (1− pn,n))α · (qn,1 . . . qn,n−2 (1− qn,n−1) (1− qn,n))1−α

...
...

+ ((1− pn,1) . . . (1− pn,n))α · ((1− qn,1) . . . (1− qn,n))1−α

=
n∏

i=1

{
pα

n,i · q1−α
n,i + (1− pn,i)α · (1− qn,i)1−α

}
. (7)

Clearly, this can be alternatively derived from the facts that the observations sequence
Xn,T = (Xn,t : t ∈ {0, T

n , 2T
n , . . . , nT

n }) can be represented as Xn,T = T ◦ Ξn,T for some
one-to-one measurable functional T (with measurable inverse) acting on the sequence
Ξn,T := (ξn,i : i ∈ {0, 1, 2, . . . , n}) of independent (under either hypothesis respectively
alternative law) Bernoulli random variables ξn,i, and thus (with a slight abuse of notation
for the joint distributions)

Hα(Pn,T ‖Qn,T ) = Hα

(
L(ξn,1, . . . , ξn,n|Pn,T ) ‖ L(ξn,1, . . . , ξn,n|Qn,T )

)
=

n∏
i=1

Hα

(
L(ξn,i|Pn,T ) ‖ L(ξn,i|Qn,T )

)
which leads immediately to (7). In order to achieve convergence as n → ∞ for the
Bayes factor moments (6) and thus for (7), we employ the following assumption which
we impose for the rest of this paper, unless stated otherwise.
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Assumption 2.1. There exists a constant p̂ ∈]0, 1[ as well as real-number double arrays
(an,i : n ∈ N, i ∈ {1, 2, . . . , n}), (bn,i : n ∈ N, i ∈ {1, 2, . . . , n}) such that

pn,i = p̂ + an,i ∈]0, 1[, qn,i = p̂ + bn,i ∈]0, 1[, for all n ∈ N, i ∈ {1, 2, . . . , n} ,

(8)

lim
n→∞

max
1≤i≤n

|an,i| = 0, lim
n→∞

max
1≤i≤n

|bn,i| = 0, (9)

sup
n∈N

n∑
i=1

a2
n,i < ∞, sup

n∈N

n∑
i=1

b2
n,i < ∞, (10)

A2
T := lim

n→∞

n∑
i=1

(an,i − bn,i)2 exists and is finite. (11)

As a side remark, notice that the validity of the three assumptions (8) to (10) does not
imply (11). This can be exemplarily seen by taking p̂ := 1

2 , an,i := 1
4
√

n

√
1 + (−1)n

and bn,i := 0. Furthermore, as indicated, the quantity A2
T depends in general on the

observation time horizon T , due to the nature of the chosen setup (e. g., the choice i = n
corresponds “directly” to T ).

Theorem 2.2. For each α ∈ R there hold the Hellinger integral convergences

lim
n→∞

Hα(Pn,T ‖Qn,T ) = exp
{

α(α− 1)
2

· A2
T

p̂ (1− p̂)

}
= Hα(P̂T ‖Q̂) < ∞ (12)

and

lim
n→∞

Hα(Qn,T ‖Pn,T ) = exp
{

α(α− 1)
2

· A2
T

p̂ (1− p̂)

}
= Hα(Q̂‖P̂T ) < ∞ (13)

where P̂T := N(AT , p̂·(1−p̂)), Q̂ := N(0, p̂·(1−p̂)) are two auxiliary Normal probability
laws. Equivalently, the latter two can be replaced e. g. by the auxiliary LogNormal
probability laws P̂T := logN(AT , p̂ ·(1− p̂)), Q̂ := logN(0, p̂ ·(1− p̂)), or by any other two
laws which arise from the abovementioned Normal probability laws via a synchronous
transformation by means of any sufficient statistics.

Notice that for fixed n the Hellinger integrals Hα(Pn,T ‖Qn,T ) and Hα(Qn,T ‖Pn,T ) do
generally not coincide (cf. (7)), however their limit as n → ∞ always coincides. Before
starting with the proof of Theorem 2.2, we first present some examples.

Example 2.3. Consider the following homogeneous special case SPH with final-time
horizon T̂ = ∞ (leading to Nn = ∞) and some constants σ > 0, cH ∈ R, cA ∈ R,
cH 6= cA, K ∈ N:

un,i := exp
(
σ

√
T

K + n

)
=: un, dn,i := exp

(
− σ

√
T

K + n

)
=: dn,

qn,i :=
1
2

+
1
2σ

(
cH −

σ2

2

)√ T

K + n
=: qn, pn,i :=

1
2

+
1
2σ

(
cA −

σ2

2

)√ T

K + n
=: pn

(i ∈ N), where K is chosen large enough such that qn ∈]0, 1[ and pn ∈]0, 1[ for all n ∈ N.
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Here, the trees are “recombining” after every second period and the Bayes factor Bn,T

is the same for all sample paths Xn,T which end at the same final value Xn,T (which can
be straightforwardly deduced from (5)). It is easy to see that Assumption 2.1 is satisfied,
and hence from Theorem 2.2 we obtain for any α ∈ R by means of AT = 1

2

∣∣ cA−cH
σ

∣∣ ·√T
the Hellinger-integral convergence

lim
n→∞

Hα(Pn,T ‖Qn,T ) = exp

{
α(α− 1)

2
·
(

cA − cH
σ

)2
· T

}
=: Cα. (14)

Notice the well-known fact that the corresponding discrete-time asset price process
(Xn,t)t∈τn in this homogeneous CRR model converges (in distribution on the sam-
ple path space) to a geometric Brownian motion (Xt)t∈R+ with volatility σ > 0 and
growth constant cH (in the hypothesis case H) respectively cA (in the alternative
case A); in other words, Xt satisfies the stochastic differential equation (SDE) dXt =
cHXtdt + σXtdWt in the hypothesis case H (under the limit law Q := limn→∞Qn)
respectively the SDE dXt = cAXtdt + σXtdWt in the alternative case A (under the
limit law P := limn→∞ Pn). As usual, Wt denotes a standard Brownian motion at time
t. By computing the corresponding αth moment of the logarithmic-normally distributed
Girsanov [8] density ZT between the two involved restricted laws P |[0,T ] and Q|[0,T ], one
can consistently derive Cα also as the Hellinger integral within such a continuous-time
framework (cf. Stummer and Vajda [26]).

Example 2.4. Let us examine the following inhomogeneous special case SPI with final-
time horizon T̂ = ∞ (leading to Nn = ∞) and some constants σ > 0, cH ∈ R, cA ∈ R,
cH 6= cA, K ∈ N:

un,i := 1 + σ · T

K + n
·
√

i , dn,i := 1− σ · T

K + n
·
√

i ,

qn,i :=
1
2

+
cH
2σ

· T

K + n
·
√

i , pn,i :=
1
2

+
cA
2σ

· T

K + n
·
√

i ,

where K is chosen large enough such that dn,i > 0, qn,i ∈]0, 1[, pn,i ∈]0, 1[ for all n ∈ N
and i ∈ N. Here, the trees are generally “not recombining” after every second period. It
is easy to see that Assumption 2.1 is satisfied, and hence from Theorem 2.2 we obtain
for any α ∈ R by means of AT = 1√

8

∣∣ cA−cH
σ

∣∣ · T the convergence

lim
n→∞

Hα(Pn,T ‖Qn,T ) = exp

{
α(α− 1)

2
·
(

cA − cH
σ

)2
· T 2

2

}
=: Cα.

Notice that in contrast with (14) of the previous Example 2.3, the Hellinger-integral limit
now depends on the observation-time horizon T in an exponentially-quadratic (rather
than exponentially-linear) way. Furthermore, one can straightforwardly show (e. g. by
verifying the Assumptions 1 to 4 in Nelson and Ramaswamy [20]) that the corresponding
discrete-time asset price process (Xn,t)t∈τn in the current inhomogeneous CRR model
converges (in distribution on the sample path space) to a strong solution (Xt)t∈R+ of
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the SDE dXt = cH · t ·Xt dt + σ ·
√

t ·Xt dWt in the hypothesis case H (under the limit
law Q := limn→∞Qn) respectively the SDE dXt = cA · t ·Xt dt + σ ·

√
t ·Xt dWt in the

alternative case A (under the limit law P := limn→∞ Pn). Analogously to Example 2.3,
by computing the corresponding αth moment of the logarithmic normally distributed
Girsanov density ZT between the two involved restricted laws P |[0,T ] and Q|[0,T ], one
can consistently derive Cα also as the Hellinger integral within such a continuous-time
framework.

Let us next present the

P r o o f of Theorem 2.2 . The two cases α = 0 and α = 1 are obvious. Let α ∈ R\{0, 1}
and some auxiliary constants 0 < κ < κ < 1 be arbitrary but fixed. By performing a
Taylor expansion for the function g(p) := pα · q1−α +(1− p)α · (1− q)1−α on the domain
0 < κ ≤ q < p ≤ κ < 1 (for fixed q), we obtain∣∣∣pα · q1−α + (1− p)α · (1− q)1−α −

(
1 +

α · (α− 1)
2

· (p− q)2

q · (1− q)

)∣∣∣
≤ D(α, κ, κ) · |p− q|3 (15)

for some “constant” D(α, κ, κ) < ∞ depending only on α, κ, κ. By interchanging the
roles of p and q, one achieves the same bound (15) (with possibly different finite constant
D(α, κ, κ)) for 0 < κ ≤ p < q ≤ κ < 1. Hence, for all 0 < κ ≤ p, q ≤ κ < 1 there holds
(15) as well as ∣∣∣ exp

{
α(α− 1)

2
· (p− q)2

q · (1− q)

}
−
(
1 +

α · (α− 1)
2

· (p− q)2

q · (1− q)

)∣∣∣
≤ D̃(α, κ, κ) · (p− q)4

q2 · (1− q)2
(16)

for some constant D̃(α, κ, κ) < ∞, which follows easily by Taylor expansion for the
exponential function. Because of the assumptions (8) and (9), in the inequalities (15)
and (16) one can plug in pn,i = p̂+an,i for p and qn,i = p̂+bn,i for q, for all large enough
n, i such that (say) 0 < κ := bp

2 < pn,i, qn,i < κ := 1+bp
2 < 1. By using this together with

(10), (11) we obtain

lim
n→∞

∣∣∣ n∏
i=1

exp
{

α(α− 1)
2

· (an,i − bn,i)2

(p̂ + bn,i) · (1− p̂− bn,i)

}

−
n∏

i=1

(p̂ + an,i)α · (p̂ + bn,i)1−α + (1− p̂− an,i)α · (1− p̂− bn,i)1−α
∣∣∣

≤ lim
n→∞

n∏
i=1

D̃(α, κ, κ) · (an,i − bn,i)4

(p̂ + bn,i)2 · (1− p̂− bn,i)2

+ lim
n→∞

n∏
i=1

D(α, κ, κ) · |an,i − bn,i|3

= 0
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and thus

lim
n→∞

n∏
i=1

pα
n,i · q1−α

n,i + (1− pn,i)α · (1− qn,i)1−α = exp
{

α(α− 1)
2

· A2
T

p̂ (1− p̂)

}
which by (7) gives the desired result (12). The second convergence (13) follows imme-
diately from (12) by the well-known skew symmetry of Hellinger integrals. �

In the following, let us discuss how the above Hellinger-integral convergence results
can be applied to establish limit assertions for other related quantities. To begin with,
by the continuity theorem of Hellinger-/Mellin-transforms (see e. g. Strasser [24]), Liese
and Miescke [14]) one can deduce from Theorem 2.2 the distributional convergences

L
(

dPn,T

dQn,T

∣∣∣Qn,T

)
n→∞=⇒ L

(
dP̂T

dQ̂

∣∣∣ Q̂) (17)

L
(

dQn,T

dPn,T

∣∣∣Pn,T

)
n→∞=⇒ L

(
dQ̂

dP̂T

∣∣∣ P̂T

)
(18)

and thus for every bounded continuous real-valued function f

EQn,T

[
f
( dPn,T

dQn,T

)]
=
∫

f
( dPn,T

dQn,T

)
dQn,T

n→∞−→
∫

f
(dP̂T

dQ̂

)
dQ̂ = E bQ

[
f
(dP̂T

dQ̂

)]
,

(19)

EPn,T

[
f
(dQn,T

dPn,T

)]
=
∫

f
(dQn,T

dPn,T

)
dPn,T

n→∞−→
∫

f
( dQ̂

dP̂T

)
dP̂T = E bPT

[
f
( dQ̂

dP̂T

)]
.

(20)

If f is unbounded and continuous, then (19) remains valid if in addition to (17) the two
conditions ∫ ∣∣∣f(dP̂T

dQ̂

)∣∣∣ dQ̂ < ∞ and (21)

lim sup
M→∞

lim sup
n→∞

∫ ∣∣∣f( dPn,T

dQn,T

)∣∣∣ · 1[M,∞[

( dPn,T

dQn,T

)
dQn,T = 0 (22)

hold, see e. g. Liese and Miescke [14]. Here, 1A(·) denotes the indicator function on the
set A. In face of (17), a sufficient condition for the uniform integrability (22) is

sup
n∈N

∫ ∣∣∣f( dPn,T

dQn,T

)∣∣∣1+ε

dQn,T < ∞ for some ε > 0. (23)
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By (12), the condition (23) is satisfied for all power functions. The derivation of
sufficient conditions for the validity of (20) for unbounded continuous functions f works
analogously. Altogether, we thus obtain

Proposition 2.5. Let f be a continuous real-valued function with the two properties
(i) f(x) = 0 for all x < 0, and (ii) for all x ≥ 0 there exist some nonnegative constants
κ1, κ2, κ3, κ4, κ5 such that |f(x)| ≤ κ1 +κ2 ·xκ3 +κ4 ·x−κ5 . Then the two convergences
(19) as well as (20) hold.

3. POWER DIVERGENCES

Apart from the important Bayes factor, it is also useful to study the “distance” between
the two non-homogeneous CRR models at choice. Along this line, let us investigate the
power divergences – also known as Cressie-Read measures resp. generalized cross-entropy
family – between the two corresponding probability laws Pn,T and Qn,T (on the sample
path space), defined by

Iα(Pn,T ‖Qn,T ) :=
∫

fα

(
dPn,T

dQn,T

)
dQn,T ,

with the following nonnegative functions fα : [0,∞[→ [0,∞[:

fα(ρ) :=


− log ρ + ρ− 1, if α = 0,

αρ+1−α−ρα

α(1−α) , if α ∈ R\{0, 1},

ρ log ρ + 1− ρ, if α = 1. (24)

For basic facts on power divergences of general laws, the reader is e. g. referred to Liese
and Vajda [16]. As usual, prominent special cases are the relative entropy (Kullback–
Leibler information measure) I1(Pn,T ‖Qn,T ), the squared Hellinger distance 1

2 I 1
2
(Pn,T ‖Qn,T )

and the χ2-divergence 2 I2(Pn,T ‖Qn,T ).

In order to derive concrete expressions for Iα(Pn,T ‖Qn,T ), one can adapt from the
general theory the formula

Iα(Pn,T ‖Qn,T ) =
1−Hα(Pn,T ‖Qn,T )

α(1− α)
, α ∈ R \ {0, 1} , (25)

and accordingly make use of (7). Under our general Assumption 2.1, one gets
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Proposition 3.1.

(a) I0(Pn,T ‖Qn,T ) =
n∑

i=1

qn,i log
(

qn,i

pn,i

)
+ (1− qn,i) log

(
1− qn,i

1− pn,i

)
n→∞−→ A2

T

2 p̂ (1− p̂)
= I0(P̂T ‖Q̂) .

(b) for all α ∈ R \ {0, 1}:

Iα(Pn,T ‖Qn,T ) =
1

α(1− α)

[
1−

n∏
i=1

{
pα

n,i · q1−α
n,i + (1− pn,i)α · (1− qn,i)1−α

}]
n→∞−→ 1

α(1− α)

[
1− exp

{α(α− 1)
2

· A2
T

p̂ (1− p̂)

}]
= Iα(P̂T ‖Q̂) .

(c) I1(Pn,T ‖Qn,T ) =
n∑

i=1

pn,i log
(

pn,i

qn,i

)
+ (1− pn,i) log

(
1− pn,i

1− qn,i

)
n→∞−→ A2

T

2 p̂ (1− p̂)
= I1(P̂T ‖Q̂) .

Notice that from (a), (b), (c) one can immediately deduce the non-obvious limit-inter-
changeabilities

lim
α→1

lim
n→∞

Iα(Pn,T ‖Qn,T ) = lim
n→∞

lim
α→1

Iα(Pn,T ‖Qn,T )

= lim
α→0

lim
n→∞

Iα(Pn,T ‖Qn,T ) = lim
n→∞

lim
α→0

Iα(Pn,T ‖Qn,T ) .

Furthermore, one can also straightforwardly derive versions of (a), (b), (c) for the
n−limits of Iα(Qn,T ‖Pn,T ), α ∈ R, which leads to a “symmetry statement” of anal-
ogous form to the remark after Theorem 2.2.

P r o o f of Proposition 3.1 . The assertion (b) follows immediately from (12) and (25),
whereas (a) and (c) are straightforward applications of Proposition 2.5 to the functions
f0(·) and f1(·) given in (24). Alternatively, (say) the assertion (a) can be derived from
(c) by a skew symmetry argument. �

In particular, the assertions of Proposition 3.1 can be applied to the contexts of the
Examples 2.3 and 2.4 to obtain power-divergence convergence results for the SPH and
SPI models.

4. BAYESIAN DECISION PROCEDURES AND BAYES RISK

In formula (2) of Section 1, we introduced the risk (average loss) of a decision function
δ(Xn,T ) taking values in D = {θH, θA}. If we reject the hypothesis-adjoint action θH
whenever the observed asset value sample path Xn,T = (Xn,t : t ∈ τ̃n,T ) lies within a
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critical region G = δ−1(θA), we can rewrite this risk in the form

Rn,T (G) = prH LH Qn,T [G] + prA LA Pn,T [Ω−G]

+ prH L̃H Qn,T [Ω−G] + prA L̃A Pn,T [G] ,

where Ω denotes the canonical space of all possible asset-value sample paths between
the times 0 and T . By means of the parameters

λH := prH LH > 0 , λA := prA LA > 0 ,

λ̃H := prH L̃H ∈ [0, λH[ , λ̃A := prA L̃A ∈ [0, λA[ ,

which carry combined prior and loss information, we obtain the formula

Rn,T (G) = λH Qn,T [G ] + λA

(
1 − Pn,T [G ]

)
+ λ̃H

(
1−Qn,T [G ]

)
+ λ̃A Pn,T [G ] . (26)

By definition, the Bayes risk Rmin
n,T minimizes the risk, i. e.

Rmin
n,T := minRn,T (G) ,

where the minimum is taken over all measurable sets G ⊂ Ω of asset-value sample paths
between the times 0 and T . By (26),

Rn,T (G) =
∫ [

λ̃H + λA Bn,T +
[
(λH + λ̃A Bn,T )− (λ̃H + λA Bn,T )

]
1G

]
dQn,T

≥
∫ [

λ̃H + λA Bn,T +
[
(λH + λ̃A Bn,T )− (λ̃H + λA Bn,T )

]
1Gmin

n

]
dQn,T

=
∫

min
[
(λ̃H + λA Bn,T ), (λH + λ̃A Bn,T )

]
dQn,T = Rn,T (Gmin

n ) = Rmin
n,T

(27)

where

Gmin
n =

{
λH + λ̃A Bn,T ≤ λ̃H + λA Bn,T

}
=
{
Bn,T ≥ λH − λ̃H

λA − λ̃A

}
.

Thus, the Bayes risk is achieved by the decision rule δ(Xn,T ) which rejects the hypothesis-
adjoint action θH (decides for the alternative-adjoint action θA) if the observed path
Xn,T is contained in the sample path set Gmin

n and rejects θA (decides for θH) if Xn,T

is contained in the complement of this set. This will be called the first optimal decision
procedure henceforth. As usual, there is also a second optimal decision procedure between
the two models H and A, which works as follows: one rejects θH (decides for θA) if

prH,post
n,T L(θA,H) + prA,post

n,T L(θA,A)

≤ prH,post
n,T L(θH,H) + prA,post

n,T L(θH,A) (28)
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(i. e. if the posterior expected loss of the decision θA is less or equal than the posterior
expected loss of the decision θH), and one rejects θA (decides for θH) if

prH,post
n,T L(θA,H) + prA,post

n,T L(θA,A)

> prH,post
n,T L(θH,H) + prA,post

n,T L(θH,A) . (29)

Notice again that the dependence of prH,post
n,T and prA,post

n,T on the observed asset value
sample path Xn,T is not indicated explicitly here. As usual, it can be seen in a straight-
forward manner that the second optimal decision procedure is equivalent to the first
optimal decision procedure, and consequently the corresponding Bayes risk is also given
by (27).

Except for some particular special cases (e. g. SPH), it will generally depend on the
whole observed asset value sample path Xn,T which decision will actually be taken.
Furthermore, in order to obtain an explicit expression for the corresponding Bayes risk
in the general setup, one can plug (5) into (27).

Before we start with the according limit investigations, let us first illuminate an
interesting “non-commutativity” between statistical and investment decisions, where
for transparency we deal with a one-period context:

Example 4.1. Consider the special case SPH with the choices T = 1
4 year, n = 1,

σ = 0.1, cH = 0.013, cA = 0.001. This leads to (approximately) u1,i = u1 = 1.05,
d1,i = d1 = 0.95, q1,i = q1 = 0.52, p1,i = p1 = 0.49 (i ∈ N). Furthermore, let us choose
equal prior probabilities prH = prA = 0.5. According to (5), (3) and (4), in case of
observing an asset value sample path X1,T = (X1,t : t ∈ {0, 1

4}) = (x, x ·u1) (i. e. an “up”

in the first period) one gets (approximately) Z1,T = Z1,T (X1,T ) = 0.9423, prH,post
1,T =

prH,post
1,T (X1,T ) = 0.5149 and prA,post

1,T = prA,post
1,T (X1,T ) = 0.4851. Analogously, in case

of observing a sample path X1,T = (X1,t : t ∈ {0, 1
4}) = (x, x · d1) (i. e. a “down”

in the first period) one gets (approximately) Z1,T = Z1,T (X1,T ) = 1.0625, prH,post
1,T =

prH,post
1,T (X1,T ) = 0.4848 and prA,post

1,T = prA,post
1,T (X1,T ) = 0.5152. If in the “classical”

Bayesian testing setup LH = LA = 1 = 1 − L̃H = 1 − L̃A one observes an “up” in the
first period, then according to (29) one decides for the action θH to accept the hypothesis
model H (since 0.5149 · 1 + 0.4851 · 0 > 0.5149 · 0 + 0.4851 · 1). If one observes a “down”
in the first period, then (28) leads to the action θA to accept the alternative model A
(since 0.4848 · 1 + 0.5152 · 0 ≤ 0.4848 · 0 + 0.5152 · 1). The corresponding Bayes risk
is Rmin

1,T = min {0.5 · 1 , 0.5 · 1 · 0.9423} · 0.52 + min {0.5 · 1 , 0.5 · 1 · 1.0625} · (1− 0.52) =
0.4850.

Example 4.2. In the setup of Example 4.1, let us consider a different loss structure
which is derived from the following investment setup (adapted from Stummer and Vajda
[26]): Suppose that we have observed the asset value sample path for one period and that
now, at time t = 1

4 (in years), we invest 10000 USD for the next period of 1
4 year. If we

invest all the money into this asset, then we buy 10000/X1, 1
4

assets. Our corresponding
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expected wealth at time t = 1
2 will be

EQ1,T

[
10000
X1, 1

4

·X1, 1
2

]
= 10000 {q1 · u1 + (1− q1) · d1}

= 10000 · {0.52 · 1.05 + (1− 0.52) · 0.95} = 10020 USD

under the hypothesis model H, and

EP1,T

[
10000
X1, 1

4

·X1, 1
2

]
= 10000 {p1 · u1 + (1− p1) · d1}

= 10000 · {0.49 · 1.05 + (1− 0.49) · 0.95} = 9990 USD

under the alternative model A. In contrast, if at time t = 1
4 we invest all the money into

a savings deposit for 1
4 year with guaranteed (continuously compounded) annual growth

rate of 0.19%, then our wealth at time t = 1
2 will be 10000·e0.0019·( 1

2−
1
4 ) = 10004.75 USD.

If the decision space D = {θH, θA} consists of the decisions θH to invest (at time t = 1
4 )

all the money into the asset and θA to invest all the money into the savings deposit, then
θH leads to (assumingly) zero loss L̃H = L(θH,H) = 0 under H and to the expected
loss LA = L(θH,A) = 10004.75 − 9990 = 14.75 USD under A. Similarly, θA leads to
(assumingly) zero loss L̃A = L(θA,A) = 0 under A but its expected loss under H is
LH = L(θA,H) = 10020− 10004.75 = 15.25 USD. Thus, if one observes an “up” in the
first period, then according to (29) one decides for the action θH to invest (at time t = 1

4 )
all the money into the asset (since 0.5149·15.25+0.4851·0 > 0.5149·0+0.4851·14.75). If
one observes a “down” in the first period, then (28) leads to the action θA to invest all the
money into the savings deposit (since 0.4848·15.25+0.5152·0 ≤ 0.4848·0+0.5152·14.75).
The corresponding Bayes risk is Rmin

1,T = min {0.5 · 15.25 , 0.5 · 14.75 · 0.9423} · 0.52 +
min {0.5 · 15.25 , 0.5 · 14.75 · 1.0625} · (1− 0.52) = 7.27 USD.

Notice that the decisions in Example 4.2 are “consistent” with the decisions taken in
Example 4.1: if one would first perform a “classical” Bayes test (i. e. accept H in case
of observing an “up” in the first period resp. accept A in case of observing a “down”)
and afterwards would decide about the investment, then one would end up with the
same decisions as above (i. e. invest all the money into the asset in case of an “up”
resp. invest all the money into the savings deposit in case of a “down”). However, if
the guaranteed annual growth rate in Example 4.2 would be 0.22% (or larger) instead
of 0.19%, then the decisions in Example 4.2 would be “inconsistent” with the decisions
taken in Example 4.1: if one would now first perform a classical Bayes test (i. e. accept
H in case of observing an “up” in the first period resp. accept A in case of observing
a “down”) and afterwards would decide about the investment, then one would still
end up by investing all the money into the asset in case of an “up” resp. investing
all the money into the savings deposit in case of a “down”. In contrast, if one uses
the (adapted) decision method of Example 4.2, one would end up with the decision
to always invest all the money into the savings deposit. Indeed, the wealth at time
t = 1

2 from the savings deposit will now be 10000 · e0.0022·( 1
2−

1
4 ) = 10005.5 USD. Hence,

LH = 10020−10005.5 = 14.5 and LA = 10005.5−9990 = 15.5, and the proposed decision
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assertions follow from 0.5149 · 14.5 + 0.4851 · 0 ≤ 0.5149 · 0 + 0.4851 · 15.5 respectively
from 0.4848 · 14.5 + 0.5152 · 0 ≤ 0.4848 · 0 + 0.5152 · 15.5.

The “opposite inconsistency” appears in the case where the growth rate in Example
4.2 would be 0.18% (or smaller) instead of 0.19%. With the (correspondingly adapted)
decision method of Example 4.2, one would now always decide to invest all the money in
the asset. Indeed, the wealth from the savings deposit will now be 10000 ·e0.0018·( 1

2−
1
4 ) =

10004.5 USD, and consequently one gets LH = 10020− 10004.5 = 15.5, LA = 10004.5−
9990 = 14.5 and therefore 0.5149 ·15.5+0.4851 ·0 > 0.5149 ·0+0.4851 ·14.5 respectively
0.4848 · 15.5 + 0.5152 · 0 > 0.4848 · 0 + 0.5152 · 14.5.

The abovementioned investigations indicate that, in general, the – in practice often used
– method to first perform a “classical” Bayesian statistical test and afterwards carry out
an optimal investment decision, may lead to a different result than performing a “model-
uncertainty-integrated” optimal investment decision (one might loosely call this effect
a “non-commutativity” between Bayesian statistical and optimal investment decisions);
also notice the “decision sensitivity” (even) within a very small range of interest rates.

In Section 2 resp. 3 we have given limits as n tends to infinity of Hellinger integrals (Bayes
factor moments) Hα(Pn,T ‖Qn,T ) resp. power divergences Iα(Pn,T ‖Qn,T ). Let us now
present the corresponding limits of the Bayes risk, under our general Assumption 2.1:

Theorem 4.3. There holds

Rmin
n,T = λ̃H + λA + (λH − λ̃H) ·Qn,T

[
Bn,T ≥ λH − λ̃H

λA − λ̃A

]
+ (λ̃A − λA) · Pn,T

[
Bn,T ≥ λH − λ̃H

λA − λ̃A

]
(30)

n→∞−→ λ̃H + λA + (λH − λ̃H) · (1− Φ(â1)) + (λ̃A − λA) · (1− Φ(â2))

= λH + λ̃A + (λ̃H − λH) · Φ(â1) + (λA − λ̃A) · Φ(â2) , (31)

where we have used the quantities

â1 :=

√
p̂ (1− p̂) · log

(
λH−eλH
λA−eλA

)
AT

+
AT

2
√

p̂ (1− p̂)
,

â2 :=

√
p̂ (1− p̂) · log

(
λH−eλH
λA−eλA

)
AT

− AT

2
√

p̂ (1− p̂)
,

as well as the standard normal distribution function Φ.

For instance, one can apply Theorem 4.3 to the special setup SPI of Example 2.4
where p̂ = 1/2 and AT = |∆| · T/

√
8 with ∆ := cH−cA

σ .
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P r o o f of Theorem 4.3 . The representation (30) follows immediately from (27). Fur-
thermore, from the distributional convergence (17) we obtain with Υ := λH−eλH

λA−eλA > 0 and

the auxiliary (identity) random variable U with law Q̂ = N(0, p̂ · (1− p̂))

lim
n→∞

Qn,T

[
Bn,T ≥ Υ

]
= Q̂

[ dP̂T

dQ̂
≥ Υ

]
= Q̂

[
exp

{2U ·AT −A2
T

2p̂ (1− p̂)

}
≥ Υ

]
= Q̂

[ U√
p̂ (1− p̂)

≥ â1

]
= 1− Φ(â1) .

Similarly, from the distributional convergence (18) one can deduce by means of the
auxiliary (identity) random variable U with law P̂T = N(AT , p̂ · (1− p̂))

lim
n→∞

Pn,T

[
Bn,T ≥ Υ

]
= P̂T

[ dQ̂

dP̂T

≤ 1
Υ

]
= Q̂

[
exp

{−2U ·AT + A2
T

2p̂ (1− p̂)

}
≤ 1

Υ

]
= P̂T

[ U −AT√
p̂ (1− p̂)

≥ â2

]
= 1− Φ(â2)

which leads to the desired convergence assertion. �

An immediate consequence of Theorem 4.3 is the following result about the limit of
the total variation distance V between the two corresponding probability laws Pn,T and
Qn,T , defined by

V (Pn,T ‖Qn,T ) := 2 · sup
G

{
Pn,T [G]−Qn,T [G]

}
∈ [0, 2] .

Here, the supremum is taken over all measurable sets G ⊂ Ω of asset-value sample paths
between the times 0 and T .

Corollary 4.4. There holds

1
2

V (Pn,T ‖Qn,T ) n→∞−→ 2 · Φ

(
AT

2
√

p̂ (1− p̂)

)
− 1 .

To see this, one can first use the general representation formula (see e. g. Stummer and
Vajda [26], adapted to the current context) Rmin

n,T = 1− 1
2 V (Pn,T ‖Qn,T ) for the special

situation λH = λA = 1, λ̃H = λ̃A = 0. Then the assertion of Corollary 4.4 follows
immediately from (31), by additionally employing an appropriate symmetry property of
the standard normal distribution function Φ.

For the special time-homogeneous recombining-tree structure of Example 2.3 with
the one-period-probabilities qn := 1

2 + 1
2σ (cH − σ2

2 )
√

T
K+n =: qn,i, pn := 1

2 + 1
2σ (cA −

σ2

2 )
√

T
K+n =: pn,i (with sufficiently large K ∈ N), the n−th step Bayes risk Rmin

n,T in (30)
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(and hence, the total variation distance V (Pn,T ‖Qn,T )) can be represented in a compact
explicit way. Since in this setup there holds p̂ = 1/2 as well as AT = |∆| ·

√
T/2 with

∆ := cH−cA
σ , one can deduce

Corollary 4.5. Suppose that SPH and L̃H = L̃A = 0 holds. Then one gets for all
n ∈ N

Rmin
n,T =



λH
∑n

j=mn

(
n
j

)
(qn)j (1− qn)n−j

+ λA

(
1−

∑n
j=mn

(
n
j

)
(pn)j (1− pn)n−j

)
, if cA > cH

λH
∑gmn

j=0

(
n
j

)
(qn)j (1− qn)n−j

+ λA

(
1−

∑gmn

j=0

(
n
j

)
(pn)j (1− pn)n−j

)
, if cA < cH

n→∞−→ λH · (1− Φ(â1)) + λA · Φ(â2)

with (the existing quantities)

mn := min
{

j ∈ {0, . . . , n} :
(pn)j (1− pn)n−j

(qn)j (1− qn)n−j
≥ λH

λA

}
,

m̃n := max
{

j ∈ {0, . . . , n} :
(pn)j (1− pn)n−j

(qn)j (1− qn)n−j
≥ λH

λA

}
,

â1 :=
log(λH/λA)
|∆|

√
T

+
|∆|

√
T

2
, â2 :=

log(λH/λA)
|∆|

√
T

− |∆|
√

T

2
.

Remark 4.6. Let us continue with the discussion launched in the second half of Exam-
ple 2.3. If one starts within a continuous-time (rather than the here-used discrete-time)
framework with the hypothesis modelH being a geometric Brownian motion with growth
constant cH and volatility σ, and the alternative model A to be another geometric Brow-
nian motion with growth constant cA and volatility σ, then the corresponding Bayes risk
turns out to be exactly λH ·(1−Φ(â1)) + λA ·Φ(â2) (cf. Stummer and Vajda [26]). Hence,
we have indirectly shown the nontrivial fact that the asset-value-process limit procedure
and the above Bayes-risk limit procedure are consistent (in the associate sense).
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[29] I. Vajda and J. Zvárová: On generalized entropies, Bayesian decisions and statistical
diversity. Kybernetika 43 (2007), 675–696.

Wolfgang Stummer, Department of Mathematics, University of Erlangen-Nürnberg, Cauer-

strasse 11, 91058 Erlangen. Germany. (Corresponding author)

e-mail: stummer@mi.uni-erlangen.de

Wei Lao, Institute for Stochastics, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 89,

76133 Karlsruhe. Germany.

e-mail: wei.lao@kit.edu


	INTRODUCTION
	Bayes factor moments
	Power divergences
	Bayesian decision procedures and Bayes risk

