Kybernetika 48 no. 3, 465-477, 2012

Evaluating many valued modus ponens

Dana Hliněná and Vladislav Biba


This paper deals with many valued case of modus ponens. Cases with implicative and with clausal rules are studied. Many valued modus ponens via discrete connectives is studied with implicative rules as well as with clausal rules. Some properties of discrete modus ponens operator are given.


fuzzy logic, modus ponens, aggregation deficit, discrete connectives


68T15, 03E72


  1. B. De Baets: Coimplicators, the forgotten connectives. Tatra Mt. Math. Publ. 12 (1997), 229-240.   CrossRef
  2. J. C. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994.   CrossRef
  3. S. Gottwald: Fuzzy Sets and Fuzzy Logic. Vieweg, Braunschweig 1993.   CrossRef
  4. P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht 1999.   CrossRef
  5. T. Horváth and P. Vojtáš: Induction of Fuzzy and Annotated Logic Programs. In: ILP 2006 (S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad, eds.), LNAI 4455, Springer-Verlag, Berlin - Heidelberg 2007, pp. 260-274.   CrossRef
  6. J. Kacprzyk, G. Pasi, P. Vojtáš and et al.: Fuzzy querying: Issues and perspectives. Kybernetika 36 (2000), 6, 605-616.   CrossRef
  7. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer, Dordrecht 2000.   CrossRef
  8. S. Krajči, R. Lencses and P. Vojtáš: A comparison of fuzzy and annotated logic programming. Fuzzy Sets and Systems 144 (2004), 173-192.   CrossRef
  9. R. Mesiar: Generated conjunctors and related operators in MV-logic as a basis for AI applications. In: ECAI'98 Workshop W17, Brighton, pp. 1-5.   CrossRef
  10. D. Mundici and N. Olivetti: Resolution and model building in the infinite valued calculus of Łukasiewicz. Theoret. Comp. Sci. 200 (1998), 335-366.   CrossRef
  11. D. Smutná and P. Vojtáš: New connectives for (full)fuzzy resolution. In: Advances in Soft Computing, Physica-Verlag, Heidelberg 2000, pp. 146-151.   CrossRef
  12. D. Smutná-Hliněná and P. Vojtáš: Graded many valued resolution with aggregation. Fuzzy Sets and Systems 143 (2004), 157-168.   CrossRef
  13. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North Holland, New York 1983.   CrossRef
  14. M. Šabo: On many valued implications. Tatra Mt. Math. Publ. 14 (1998), 161-167.   CrossRef
  15. P. Vojtáš: Fuzzy reasoning with tunable t-operators. J. Adv. Comp. Intell. 2 (1998), 121-127.   CrossRef