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EVALUATING MANY VALUED MODUS PONENS

Dana Hliněná and Vladislav Biba

This paper deals with many valued case of modus ponens. Cases with implicative and
with clausal rules are studied. Many valued modus ponens via discrete connectives is studied
with implicative rules as well as with clausal rules. Some properties of discrete modus ponens
operator are given.
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1. INTRODUCTION

The aim of this paper is to design a sound and complete deduction in knowledge sys-
tems where uncertainty, vagueness and preference is modeled by many valued logic with
arbitrary connectives (possibly obtained by an inductive procedure, see e. g. [5]).

In many systems, domain (background) knowledge is modeled using IF-THEN rules
(Prolog/Datalog rule based systems). From the very beginning we face a problem. In
two valued logic,

B −→ H ≡ ¬B ∨H

is a tautology. This need not be true in many valued logic. As far as our main concern
is to make modeling as much realistic to real world data as possible, we do not make
any restriction here. Instead we study both possibilities separately and compare them.

(B, b), (B → H, r)
H, f→(b, r)

,
(B, b), (¬B ∨H, r)

H, g∨¬(b, r)
.

We give a formula for the evaluation of f→, for evaluation of modus ponens with
implicative rules, and of g∨¬ for evaluation of modus ponens with clausal rules.

We build on works [8, 12]; in [12] there is an estimate of full resolution and in [8]
there is an estimate of modus ponens for implicative rules.

We deal with multivalued (MV for short) logical connectives. Note that connectives
in MV-logic with truth values range [0, 1] are monotone extensions of the classical con-
nectives. We recall notation and basic definitions used in the paper. We start with the
basic logic connectives.

Definition 1.1. (see e. g. in Fodor and Roubens [2]) A function N : [0, 1] → [0, 1] is
called a fuzzy negator if for each a, b ∈ [0, 1] it satisfies the following conditions
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• (i) a < b ⇒ N(b) ≤ N(a),

• (ii) N(0) = 1, N(1) = 0.

Remark 1.2. A dual negator Nd : [0, 1] → [0, 1] based on a negator N, is given by
Nd(x) = 1 − N(1 − x). A fuzzy negator N is called strict if N is strictly decreasing
and continuous for arbitrary x, y ∈ [0, 1]. In classical logic we have that (A′)′ = A. In
multivalued logic this equality is not satisfied for each negator. The negators with this
equality are called involutive negators. The strict negator is strong if and only if it is
involutive.

Some examples of strict and/or strong negators are included in the following example.

Example 1.3. The next functions are negators on [0, 1].
• Ns(a) = 1− a strong negator, standard negator;

• N(a) = 1− a2 strict, but not strong negator;

• N(a) =
√

1− a2 strong negator;

• NG1(1) = 0, NG1(a) = 1 if a < 1 non-continuous negator, the greatest fuzzy
negator, dual Gödel negator;

• NG2(0) = 1, NG2(a) = 0 if a > 0 non-continuous negator, the least fuzzy ne-
gator, Gödel negator.

Remark 1.4. In this contribution we deal with the standard negator Ns which is a
commonly used negator in applications.

Definition 1.5. ([7]) A non-decreasing mapping C : [0, 1]2 → [0, 1] is called a conjunc-
tor if

1. C(x, y) = 0 whenever x = 0 or y = 0, and

2. C(1, 1) = 1.

Remark 1.6. Note that the dual operator to a conjunctor C, defined by D(x, y) =
1 − C(1 − x, 1 − y), is called a disjunctor. Equivalently, a disjunctor can be defined as
a non-decreasing mapping D : [0, 1]2 → [0, 1] such that D(x, y) = 1 whenever x = 1 or
y = 1, and D(0, 0) = 0.

Commonly used conjunctors (disjunctors) in MV-logic are the triangular norms (co-
norms).

Definition 1.7. A triangular norm (t-norm for short) is a binary operation on the unit
interval [0, 1], i. e., a function T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1] the
following four axioms are satisfied:

(T1) Commutativity T (x, y) = T (y, x),

(T2) Associativity T (x, T (y, z)) = T (T (x, y), z),
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(T3) Monotonicity T (x, y) ≤ T (x, z) whenever y ≤ z,

(T4) Boundary Condition T (x, 1) = x.

Example 1.8. The next operators TM , TP , TL are the basic continuous t-norms:

(i) Minimum t-norm TM (x, y) = min(x, y).

(ii) Product t-norm TP (x, y) = x.y.

(iii)  Lukasiewicz t-norm TL(x, y) = max(0, x + y − 1).

The dual operator to the t-norm T is the triangular conorm (t-conorm) S : [0, 1]2 →
[0, 1], which is given by

S(x, y) = 1− T (1− x, 1− y).

Remark 1.9. Note that the corresponding t-conorms to the basic continuous t-norms
TM , TP , TL are denoted by SM , SP and SL.

In this contribution we often use t-seminorms C and t-semiconorms D as the truth
functions for conjunctions and disjunctions.

Definition 1.10. (Schweizer and Sklar [13])

(i) A t-seminorm C is a conjunctor that satisfied the boundary condition

C(1, x) = C(x, 1) = x for all x ∈ [0, 1].

(ii) A t-semiconorm D is a disjunctor that satisfied the boundary condition

D(0, x) = D(x, 0) = x for all x ∈ [0, 1].

In the literature, one can find several different definitions of fuzzy implicators. In this
paper we will use the following one, which is equivalent to the definition introduced by
Fodor and Roubens in [2].

Definition 1.11. A function I : [0, 1]2 → [0, 1] is called a fuzzy implicator if it satisfies
the following conditions:

(I1) I is non-increasing in its first variable,

(I2) I is non-decreasing in its second variable,

(I3) I(1, 0) = 0, I(0, 0) = I(1, 1) = 1.
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2. THE AGGREGATION DEFICITS AND FULL RESOLUTION TRUTH
FUNCTION

In Pavelka’s language of evaluated expressions, we would like to achieve the following:
from (C∨D A, x) and (B∨D¬A, y) to infer (C∨D B, f∨D

(x, y)) where f∨D
(x, y) should

be the best promise, we can give the truth function of disjunction ∨D and x and y.
First, we introduce a new operator, called an aggregation deficit RD, which is based

on a disjunctor D. We recall its definition and important properties; their proofs can
be found in [12]. The motivation is following. Assume the truth value TV (A) = a. We
would like to know conditions on truth values TV (B) = b and TV (C) = c such that
they aggregate together with a or 1 − a to have D(c, a) ≥ x and D(b, 1 − a) ≥ y. In
order to obtain this aggregation deficit, RD is defined by the next inequalities:

x ≤ D(c, a) and y ≤ D(b, 1− a).

c ≥ RD(a, x) and b ≥ RD(1− a, y).

This leads naturally to the following definition.

Definition 2.1. (Smutná-Hliněná and Vojtáš [12]) Let D be a disjunctor. The aggre-
gation deficit is defined by

RD(x, y) = inf{z ∈ [0, 1]; D(z, x) ≥ y}.

Example 2.2. (Smutná-Hliněná and Vojtáš [12]) For the basic t-conorms SM , SP and
SL we obtain the following aggregation deficits:

RSM
(x, y) =

{
0 if x ≥ y,
y otherwise, RSP

(x, y) =
{

0 if x ≥ y,
y−x
1−x otherwise,

RSL
(x, y) =

{
0 if x ≥ y,
y − x otherwise.

Remark 2.3. Note that one easily verifies the hybrid monotonicity of the aggregation
deficit RD. Let D1 and D2 be the disjunctors such that ∀x, y ∈ [0, 1]; D1(x, y) ≤ D2(x, y).

Then RD1(x, y) ≥ RD2(x, y) for every x, y. This follows from the fact that the aggre-
gation deficit RD is non-increasing in its first argument.

Let D : [0, 1]2 → [0, 1] be a t-semiconorm. Then RD(x, y) ≤ y for (x, y) ∈ [0, 1]2.
If x ≥ y, then RD(x, y) = 0. It means, that for any aggregation deficit RD it holds
that RD ≤ RSM

. More, if the partial mappings of disjunctor D are infimum-morphism
(infa∈M D(x, a) = D(x, infa∈M a), where M is subset of interval [0, 1]) then x ≥ y if
and only if RD(x, y) = 0. It follows from boundary condition and monotonicity of t-
semiconorm D. Consider an aggregation deficit RD, then the partial mapping RD(., 1)
is negator on [0, 1]. The aggregation deficit RS of t-conorm S coincides with residual
coimplicator JS , which was introduced by Bernard De Baets in [1] for different purpose.
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For the formulation of a result on sound and complete full resolution, Smutná -
Hliněná and Vojtáš in [12] investigated the resolution truth function fRD

: [0, 1]2 → [0, 1],
which is defined by

fRD
(x, y) = inf

a∈[0,1]
{D(RD(a, x), RD(1− a, y))}.

Example 2.4. (Smutná-Hliněná and Vojtáš [12]) For the aggregation deficits RSM
, RSP

and RSL
, which are corresponded with the basic t-conorms, we obtain the following func-

tions:

fRSM
(x, y) =

{
0 if x + y ≤ 1,
min(x, y) otherwise, fRSP

(x, y) =
{

0 if x + y ≤ 1,
x+y−1

max(x,y) otherwise,

fRSL
(x, y) =

{
0 if x + y ≤ 1,
x + y − 1 otherwise.

Theorem 2.5. (Smutná-Hliněná and Vojtáš [12]) Assume the truth evaluation of
proposition variables is a model of (C ∨D A, x) and (B ∨D ¬A, y). Then

TV (C ∨D B) ≥ fRD
(x, y).

3. MODUS PONENS FOR CLAUSE BASED RULES

For implicative rules, the following estimation of modus ponens is in [3] and [4]

(B, b), (B → H, r)
H, f→(b, r)

.

We know that the implication (B → H) is true to degree r (at least). Therefore H
must be true to some degree h such that I(b, h) ≥ r. We need to find the least value h
with this property in order to guarantee that TV (H) ≥ h. Let I be the truth function
of implication →, then truth function f→ is residual conjunctor of implicator I (note
mnemonic body-head-rule notation of variables)

f→(b, r) = CI(b, r) = inf{h ∈ [0, 1]; I(b, h) ≥ r}.

To be consistent with body-head-rule notation of [8], we will use it also here for clausal
rules.

Example 3.1. The following are the logical operators of material implicator which are
corresponding to basic t-conorms: maximum SM , probabilistic sum SP , and  Lukasiewicz
t-conorm SL and standard negator Ns.

ISM
(b, h) = max(1− b, h), ISP

(b, h) = 1− b + b · h,

ISL
(b, h) = min(1− b + h, 1).

Note, that IS(b, h) = S(N(b), h), where N is a negator and S is a t-conorm. For an
arbitrary disjunctor D and the standard negator Ns we get ID(b, h) = D(1− b, h).

First idea to mimic implicative rules, is to take residua to material implicators. The
residual conjunctors of previous implicators are:
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CISM
(b, r) =

{
0 if b + r ≤ 1,
r otherwise, CISP

(b, r) =
{

0 if b + r ≤ 1,
b+r−1

b otherwise,

CISL
(b, r) = max(0, b + r − 1).

Note that all residua to material implicator in previous example are zero in the
triangle b + r ≤ 1.

Another possibility is to calculate the lower bound on the truth value of H using
aggregation deficit.

Example 3.2. To have a sound clause based modus ponens, we make following obser-
vation. Let D : [0, 1]2 → [0, 1] be a commutative disjunctor. If for all b, r ∈ [0, 1]

(B, b) and (¬B ∨D H, r) should imply (H, gD(b, r)),

then using Theorem 2.2

r ≤ D(1− b, h) =⇒ r ≤ D(h, 1− b) =⇒ h ≥ RD(1− b, r).

Hence the best possible estimate for h is

gD(b, r) = inf
b′≥b

RD(1− b′, r).

Since the aggregation deficit RD is non-increasing in the first argument, hence
infb′≥b RD(1− b′, r) = RD(1− b, r), it means that

gD(b, r) = RD(1− b, r).

Remark 3.3. Note that the truth value of H depends on the truth functions of dis-
junction and negation. Therefore, on a very formal level, one would write g∨D¬N

. To
make the notation shorter we omit the symbols of disjunction and negation, since it
they do not bear any additional information. Because we deal only with the standard
negator Ns in this article, symbol N is omitted as well. We thus use gD.

For commutative disjunctors we get:

Theorem 3.4.

1. Let D1 ≤ D2, then gD1 ≥ gD2 .

2. Let D be a t-semiconorm, then gD ≤ gSM
.

3. Function gD is non-decreasing in both arguments.

4. Let D : [0, 1]2 → [0, 1] be a commutative t−semiconorm. For function gD we get
gD(1, 1) = 1, gD(0, x) = gD(x, 0) = 0. It means, the function gD is the conjunctor.
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P r o o f . The parts 1. – 2. directly follow from Remark 2.3. The part 3. is implied from
Remark 2.3 and from equality gD(b, r) = RD(1 − b, r). In the last part we deal with a
commutative t−semiconorm D. For t−semiconorm we have D(x, 0) = x, therefore we
get:

gD(1, 1) = RD(0, 1) = inf{z ∈ [0, 1]; D(z, 0) ≥ 1} = 1.

Since D(x, 1) = 1 we have:

gD(0, x) = RD(1, x) = inf{z ∈ [0, 1]; D(z, 1) ≥ x} = 0.

Since D(x, y) ≥ 0 we get:

gD(x, 0) = RD(1− x, 0) = inf{z ∈ [0, 1]; D(z, 1− x) ≥ 0} = 0.

Since function gD is non-decreasing in both arguments (part 3.), gD is a conjunctor.
�

Remark 3.5. If a commutative t−semiconorm D possesses the properties

D(x, y) = 1 for all x, y ∈ [0, 1], such that x + y = 1

D(x, y) < 1 for all x, y ∈ [0, 1], such that x + y < 1

then gD is a t−seminorm. These properties guarantee that the boundary condition
gD(x, 1) = x is satisfied for all x ∈ [0, 1]. The second boundary condition, gD(1, x) = x, is
satisfied for arbitrary commutative t−semiconorm D. Note that, for example, t−conorm
SL possesses these properties.

Estimation for clause rules and implicative rules are in some cases identical:

Theorem 3.6. Let gD : [0, 1]2 → [0, 1] be truth function based on RD, where D is a
commutative disjunctor and CI : [0, 1]2 → [0, 1] be a truth function based on I, where
I(b, h) = D(h, 1− b). Then

CI(b, r) = gD(b, r)

for all b, r ∈ [0, 1].

P r o o f . Let D be a disjunctor and I(b, h) = D(h, 1−b). Equality RD(1−b, r) = CI(b, r)
follows directly from definitions of RD and CI . According to Example 3.2, gD(b, r) =
RD(1− b, r), and therefore also gD(b, r) = CI(b, r). �

4. DISCRETE MANY VALUED MODUS PONENS

Assume users will evaluate preference on attributes X and Y with fuzzy or linguistic
values x and y. In this part we will estimate modus ponens via discrete connectives.
It is known ([15] and http://en.wikipedia.org/wiki/Likert scale), that people are
not able to sort according to quality to more than 7± 2 categories. In accordance with
this fact we use coefficients k, l as follows:

k ∈ {5, 6, 7, 8, 9} and l ∈ {5, 6, 7, 8, 9}.

And for m (the number of roundings) we take m = k ∗ l, which provides us with good
ordering of results. The meaning of these coefficients will be come obvious in the next
definition of a discrete conjunctor:
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Definition 4.1. Let C : [0, 1]2 → [0, 1] be a conjunctor, k ∈ {5, 6, 7, 8, 9}, l ∈ {5, 6, 7, 8, 9}
and m = k ∗ l. Mapping Cm

k,l : [0, 1]2 → [0, 1] which is defined as follows

Cm
k,l(x, y) =

⌈
m · C

(
dk·xe

k , dl·yel

)⌉
m

is called a discrete conjunctor.

Obviously this mapping is a conjunctor. However it is not a t-seminorm. Commutative
or associative conjunctor C may lead to Cm

k,l without these properties. Note, that if a
conjunctor C is commutative, then the discrete conjunctor Cm

k,k is commutative, too.
Dual mapping to the discrete conjunctor is given by a similar equality.

Theorem 4.2. Let C : [0, 1]2 → [0, 1] and D : [0, 1]2 → [0, 1] be the dual conjunctor
and disjunctor which are continuous, k ∈ {5, 6, 7, 8, 9}, l ∈ {5, 6, 7, 8, 9} and m = k ∗ l.
Then the dual discrete disjunctor to Cm

k,l is the mapping Dm
k,l : [0, 1]2 → [0, 1] such that

Dm
k,l(x, y) =

⌊
m ·D

(
bk·xc

k , bl·ycl

)⌋
m

. (1)

P r o o f . The dual disjunctors to conjunctors C and Cm
k,l are given by D(x, y) = 1 −

C(1− x, 1− y) and Dm
k,l(x, y) = 1− Cm

k,l(1− x, 1− y), respectively. For any k ∈ N and
t ∈ [0, 1] it holds that dk − k · te = k − bk · tc and k − dk · te = bk − k · tc. Using these
two facts, the rest of the proof is straightforward:

Dm
k,l(x, y) = 1−

⌈
m · C

(
dk−k·xe

k , dl−l·ye
l

)⌉
m

=

⌊
m−m · C

(
1− bk·xc

k , 1− bl·yc
l

)⌋
m

=

⌊
m ·D

(
bk·xc

k , bl·ycl

)⌋
m

.

�

For an illustration we introduce the following example:

Example 4.3. Let C be a product t-norm TP . We, for example, calculate the value
C25

5,5( 1
3 , 2

3 ):

C25
5,5(

1
3
,

2
3

) =

⌈
25 · C

(
d5· 13e

5 ,
d5· 23e

5

)⌉
25

=

⌈
25 · C

(
2
5 , 4

5

)⌉
25

=

⌈
25 · 8

25

⌉
25

=
8
25

.

Conjunctor C25
5,5(x, y) and its dual disjunctor D25

5,5 are given in Tables 1 and 2.

We can see that the conjunctor C25
5,5 in the example is left-continuous. Since the functions

dxe and bxc are left- and right-continuous, respectively, we are able to generalise this
fact:
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y \ x 0 ]0, 1
5 ] ] 15 , 2

5 ] ] 25 , 3
5 ] ] 35 , 4

5 ] ] 45 , 1]

0 0 0 0 0 0 0
]0, 1

5 ] 0 1
25

2
25

3
25

4
25

1
5

] 15 , 2
5 ] 0 2

25
4
25

6
25

8
25

2
5

] 25 , 3
5 ] 0 3

25
6
25

9
25

12
25

3
5

] 35 , 4
5 ] 0 4

25
8
25

12
25

16
25

4
5

] 45 , 1] 0 1
5

2
5

3
5

4
5 1

Tab. 1. Conjunctor (TP )255,5

.

y \ x [0, 1
5 [ [ 15 , 2

5 [ [ 25 , 3
5 [ [ 35 , 4

5 [ [ 45 , 1[ 1

[0, 1
5 [ 0 1

5
2
5

3
5

4
5 1

[ 15 , 2
5 [ 1

5
9
25

13
25

17
25

21
25 1

[ 25 , 3
5 [ 2

5
13
25

16
25

19
25

22
25 1

[ 35 , 4
5 [ 3

5
17
25

19
25

21
25

23
25 1

[ 45 , 1[ 4
5

21
25

22
25

23
25

24
25 1

1 1 1 1 1 1 1

Tab. 2. Disjunctor (SP )255,5.

Theorem 4.4. Let C : [0, 1]2 → [0, 1] be a continuous conjunctor. Then the discrete
conjunctor Cm

k,l is left-continuous and the discrete disjunctor Dm
k,l is right-continuous.

Remark 4.5. Let C : [0, 1]2 → [0, 1] be a conjunctor and D : [0, 1]2 → [0, 1] be a
disjunctor. Then the following inequalities hold:

• C ≤ Cm
k,l,

• D ≥ Dm
k,l.

The first fact follows from inequality x ≤ dk·xe
k and monotonicity of a conjunctor.

The second one follows from inequality x ≥ bk·xc
k and monotonicity of a disjunctor.

Formula similar to equation (1) holds also for the aggregation deficit RD and its
discrete counterpart. The discrete aggregation deficit is denoted by R∗

D. By definition,
the aggregation deficit R∗

D is given by the formula

R∗
D(x, y) = inf{z ∈ [0, 1];

⌊
m ·D

(
bk · zc

k
,
bl · xc

l

)⌋
≥ m · y}.
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Theorem 4.6. Let D : [0, 1]2 → [0, 1] be a continuous disjunctor and Dm
k,l be a discrete

disjunctor. Let RD : [0, 1]2 → [0, 1] and R∗
D : [0, 1]2 → [0, 1] be the aggregation deficits

given by D and Dm
k,l respectively. Then the following equality holds:

R∗
D(x, y) =

⌈
k ·RD

(
bl·xc

l , dm·ye
m

)⌉
k

.

P r o o f . From definition we have that

RD

(
bl · xc

l
,
dm · ye

m

)
= inf

{
z ∈ [0, 1]; D

(
z,
bl · xc

l

)
≥ dm · ye

m

}
,

R∗
D(x, y) = inf

{
z ∈ [0, 1]; D

(
bk · zc

k
,
bl · xc

l

)
≥ dm · ye

m

}
.

(The second formula is equivalent to the definition of R∗
D.) Take n ∈ N, such that

D
(

n
k , bl·xcl

)
≥ dm·ye

m and n is the smallest number with this property. Such n always
exists and 0 ≤ n ≤ k. Now we need to distinguish between two cases: n = 0 and n > 0.

• If n > 0 then D
(

n
k , bl·xcl

)
≥ dm·ye

m > D
(

n−1
k , bl·xcl

)
, and therefore we have that

R∗
D(x, y) = n

k . It is obvious that RD(x, y) ≤ R∗
D(x, y) = n

k .

Since D is continuous, n−1
k < inf{z ∈ [0, 1]; D

(
z, bl·xcl

)
≥ dm·ye

m }. (In the other

case we get that D
(

n−1
k , bl·xcl

)
≥ dm·ye

m . That is not possible since n
k is the smallest

k-fraction with mentioned property.)

Summarizing previous two facts we have n−1
k < RD

(
bl·xc

l , dm·ye
m

)
≤ n

k . Therefore,

dk·RD( bl·xc
l ,

dm·ye
m )e

k = n
k = R∗

D(x, y).

• Let n = 0. This implies D
(

0, bl·xcl

)
≥ dm·ye

m , which means that R∗
D(x, y) = 0.

It also holds that D(0, x) ≥ y, because D(0, x) ≥ D
(

0, bl·xcl

)
≥ dm·ye

m ≥ y. It
means that RD(x, y) = 0, and therefore in case n = 0 we again get the equality

R∗
D(x, y) = dk·RD( bl·xc

l ,
dm·ye

m )e
k .

�

Corollary 4.7. Let gD : [0, 1]2 → [0, 1] and g∗D : [0, 1]2 → [0, 1] be the estimaties
of modus ponens with commutative disjunctors D and Dm

k,k respectively. Then the
following equality holds:

g∗D(b, r) =

⌈
k · gD

(
dk·be

k , dm·re
m

)⌉
k

.
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Since f→(b, r) = CID
(b, r), it may seem that one can obtain discrete operator f∗→

simply from conjunctor CID
using Definition 4.1 However, this is not a correct procedure

– residual conjunctor to I∗D is different. The following fact is proved in a similar manner
as Theorem 4.6

Theorem 4.8. Let D : [0, 1]2 → [0, 1] be a continuous disjunctor. Let I∗D : [0, 1]2 →
[0, 1] be a material implicator given by discrete disjunctor Dm

k,l. Then the discrete residual
conjunctor to I∗D is given by

CI∗D
(b, r) =

⌈
k · CID

(
dl·be

l , dm·re
m

)⌉
k

.

The last example shows estimation of modus ponens with the disjunctor (SP )255,5

derived from probabilistic sum.

Example 4.9. Let CI∗D
be a residual conjunctor obtained from the disjunctor (SP )255,5.

CI∗D
is given by Table 3.

Observe that CI∗D
(b, 1) = 0 if b = 0 and CI∗D

(b, 1) = 1 otherwise. This fact holds for
any conjunctor CI∗D

obtained using disjunctor D without non-trivial zero divisors. It is
generalized in the following theorem:

Theorem 4.10. Let Dm
k,l be a discrete disjunctor without non-trivial zero divisors, then

CI∗D
(0, 1) = 0 and CI∗D

(b, 1) = 1 for all b > 0.

P r o o f . Let Dm
k,l be a disjunctor without non-trivial zero divisors, i. e.

x < 1, y < 1 ⇔ D(x, y) < 1.

Since I∗D(x, y) = Dm
k,l(y, 1 − x), we have I∗D(x, y) = 1 ⇔ x = 0 ∨ y = 1. From definition

of CI we have
CI∗D

(b, 1) = inf{h ∈ [0, 1]; I∗D(b, h) = 1}.

The set at the right side is either [0, 1] (if b = 0), or {1}. Infima of these sets are 0 and
1 respectively, therefore the proof is complete. �

This paper has presented some investigations connected with two generalizations of
classical modus ponens rule to fuzzy logic and discrete case of this generalization. The
contribution of first part is in presentation of two formulas for evaluation of modus
ponens with implicative rules and with clausal rules. We plan to compare these two
approaches in future. In the second part we have studied many valued modus ponens
via discrete connectives and its properties.
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r \ b 0 ]0, 1
5 ] ] 15 , 2

5 ] ] 25 , 3
5 ] ] 35 , 4

5 ] ] 45 , 1]

0 0 0 0 0 0 0
]0, 1

25 ] 0 0 0 0 0 1
5

] 1
25 , 2

25 ] 0 0 0 0 0 1
5

] 2
25 , 3

25 ] 0 0 0 0 0 1
5

] 3
25 , 4

25 ] 0 0 0 0 0 1
5

] 4
25 , 5

25 ] 0 0 0 0 0 1
5

] 5
25 , 6

25 ] 0 0 0 0 1
5

2
5

] 6
25 , 7

25 ] 0 0 0 0 1
5

2
5

] 7
25 , 8

25 ] 0 0 0 0 1
5

2
5

] 8
25 , 9

25 ] 0 0 0 0 1
5

2
5

] 9
25 , 10

25 ] 0 0 0 0 2
5

2
5

] 1025 , 11
25 ] 0 0 0 1

5
2
5

3
5

] 1125 , 12
25 ] 0 0 0 1

5
2
5

3
5

] 1225 , 13
25 ] 0 0 0 1

5
2
5

3
5

] 1325 , 14
25 ] 0 0 0 2

5
3
5

3
5

] 1425 , 15
25 ] 0 0 0 2

5
3
5

3
5

] 1525 , 16
25 ] 0 0 1

5
2
5

3
5

4
5

] 1625 , 17
25 ] 0 0 1

5
3
5

3
5

4
5

] 1725 , 18
25 ] 0 0 2

5
3
5

4
5

4
5

] 1825 , 19
25 ] 0 0 2

5
3
5

4
5

4
5

] 1925 , 20
25 ] 0 0 3

5
4
5

4
5

4
5

] 2025 , 21
25 ] 0 1

5
3
5

4
5

4
5 1

] 2125 , 22
25 ] 0 2

5
4
5

4
5 1 1

] 2225 , 23
25 ] 0 3

5
4
5 1 1 1

] 2325 , 24
25 ] 0 4

5 1 1 1 1

] 2425 , 1] 0 1 1 1 1 1

Tab. 3. Estimation of modus ponens with material implicator I∗D

R E F E R E N C E S

[1] B. De Baets: Coimplicators, the forgotten connectives. Tatra Mt. Math. Publ. 12 (1997),
229–240.



Evaluating many valued modus ponens 477

[2] J. C. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision
Support. Kluwer Academic Publishers, Dordrecht 1994.

[3] S. Gottwald: Fuzzy Sets and Fuzzy Logic. Vieweg, Braunschweig 1993.
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[11] D. Smutná and P. Vojtáš: New connectives for (full)fuzzy resolution. In: Advances in Soft
Computing, Physica-Verlag, Heidelberg 2000, pp. 146–151.
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