Kybernetika 48 no. 2, 254-267, 2012

The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces

Nguyen Van Huan and Nguyen Van Quang

Abstract:

We establish the Doob inequality for martingale difference arrays and provide a sufficient condition so that the strong law of large numbers would hold for an arbitrary array of random elements without imposing any geometric condition on the Banach space. Some corollaries are derived from the main results, they are more general than some well-known ones.

Keywords:

strong law of large numbers, the Doob inequality, martingale difference array, Banach space

Classification:

60E15, 60F15, 60G42, 60B12

References:

  1. P. Assouad: Espaces $p$-lisses et $q$-convexes, inégalités de Burkholder. Séminaire Maurey-Schwartz 1975.   CrossRef
  2. R. Cairoli and J. B. Walsh: Stochastic integrals in the plane. Acta Math. 134 (1975), 111-183.   CrossRef
  3. A. Gut: Probability: A Graduate Course. Springer, New York 2005.   CrossRef
  4. J. O. Howell and R. L. Taylor: Marcinkiewicz-Zygmund Weak Laws of Large Numbers for Unconditional Random Elements in Banach Spaces, Probability in Banach Spaces. Springer, Berlin - New York 1981.   CrossRef
  5. N. V. Huan, N. V. Quang and A. Volodin: Strong laws for blockwise martingale difference arrays in Banach spaces. Lobachevskii J. Math. 31 (2010), 326-335.   CrossRef
  6. H. C. Kim: The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables. Internat. J. Contemporary Math. Sci. 1 (2006), 297-303.   CrossRef
  7. Z. A. Lagodowski: Strong laws of large numbers for $\mathbb B$-valued random fields. Discrete Dynamics in Nature and Society (2009).   CrossRef
  8. F. Móricz: Strong limit theorems for quasi-orthogonal random fields. J. Multivariate Anal. 30 (1989), 255-278.   CrossRef
  9. F. Móricz, U. Stadtmüller and M. Thalmaier: Strong laws for blockwise $\mathcal M$-dependent random fields. J. Theoret. Probab. 21 (2008), 660-671.   CrossRef
  10. F. Móricz, K. L. Su and R. L. Taylor: Strong laws of large numbers for arrays of orthogonal random elements in Banach spaces. Acta Math. Hungar. 65 (1994), 1-16.   CrossRef
  11. C. Noszály and T. Tómács: A general approach to strong laws of large numbers for fields of random variables. Ann. Univ. Sci. Budapest. Sect. Math. 43 (2001), 61-78.   CrossRef
  12. N. V. Quang and N.\.V. Huan: On the strong law of large numbers and $\mathcal L_p$-convergence for double arrays of random elements in $p$-uniformly smooth Banach spaces. Stat. Probab. Lett. 79 (2009), 1891-1899.   CrossRef
  13. N. V. Quang and N. V. Huan: A characterization of $p$-uniformly smooth Banach spaces and weak laws of large numbers for $d$-dimensional adapted arrays. Sankhy\={a} 72 (2010), 344-358.   CrossRef
  14. N. V. Quang and N. V. Huan: A Hájek-Rényi type maximal inequality and strong laws of large numbers for multidimensional arrays. J. Inequalities Appl. 2010.   CrossRef
  15. A. Rosalsky and L. V. Thanh: On almost sure and mean convergence of normed double sums of Banach space valued random elements. Stochastic Analysis and Applications 25 (2007), 895-911.   CrossRef
  16. A. Rosalsky and L. V. Thanh: On the strong law of large numbers for sequences of blockwise independent and blockwise $p$-orthoganal random element in rademacher type $p$ banach spaces. Probab. Math. Statist. 27 (2007), 205-222.   CrossRef
  17. Q. M. Shao: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13 (2000), 343-356.   CrossRef
  18. R. T. Smythe: Strong laws of large numbers for $r$-dimensional arrays of random variables. Ann. Probab. 1 (1973), 164-170.   CrossRef
  19. L. V. Thanh: On the strong law of large numbers for $d$-dimensional arrays of random variables. Electron. Comm. Probab. 12 (2007), 434-441.   CrossRef
  20. W. A. Woyczyński: On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence. Probab. Math. Statist. 1 (1981), 117-131.   CrossRef
  21. W. A. Woyczyński: Asymptotic Behavior of Martingales in Banach Spaces, Martingale Theory in Harmonic Analysis and Banach Spaces. Springer, Berlin - New York 1982.   CrossRef