We study the use of a GPU for the numerical approximation of the curvature dependent flows of graphs - the mean-curvature flow and the Willmore flow. Both problems are often applied in image processing where fast solvers are required. We approximate these problems using the complementary finite volume method combined with the method of lines. We obtain a system of ordinary differential equations which we solve by the Runge-Kutta-Merson solver. It is a robust solver with an automatic choice of the integration time step. We implement this solver on CPU but also on GPU using the CUDA toolkit. We demonstrate that the mean-curvature flow can be successfully approximated in single precision arithmetic with the speed-up almost 17 on the Nvidia GeForce GTX 280 card compared to Intel Core 2 Quad CPU. On the same card, we obtain the speed-up 7 in double precision arithmetic which is necessary for the fourth order problem - the Willmore flow of graphs. Both speed-ups were achieved without affecting the accuracy of the approximation. The article is structured in such way that the reader interested only in the implementation of the Runge-Kutta-Merson solver on the GPU can skip the sections containing the mathematical formulation of the problems.
Willmore flow, method of lines, GPGPU, CUDA, parallel algorithms, high performance computing, differential geometry, mean-curvature flow, Runge-Kutta method, explicit scheme, complementary finite volume method
35K55, 68W10, 74S10, 53C44, 35K52, 53A05, 74G15