
K Y BE R NE T IK A — VO L UM E 4 7 (2 0 1 1) , NU MB E R 2 , P AGE S 2 5 1 – 2 7 2

THE CUDA IMPLEMENTATION OF THE METHOD OF

LINES FOR THE CURVATURE DEPENDENT FLOWS

Tomáš Oberhuber, Atsushi Suzuki and Vı́tězslav Žabka

We study the use of a GPU for the numerical approximation of the curvature depen-
dent flows of graphs – the mean-curvature flow and the Willmore flow. Both problems are
often applied in image processing where fast solvers are required. We approximate these
problems using the complementary finite volume method combined with the method of
lines. We obtain a system of ordinary differential equations which we solve by the Runge–
Kutta–Merson solver. It is a robust solver with an automatic choice of the integration
time step. We implement this solver on CPU but also on GPU using the CUDA toolkit.
We demonstrate that the mean-curvature flow can be successfully approximated in single
precision arithmetic with the speed-up almost 17 on the Nvidia GeForce GTX 280 card
compared to Intel Core 2 Quad CPU. On the same card, we obtain the speed-up 7 in double
precision arithmetic which is necessary for the fourth order problem – the Willmore flow of
graphs. Both speed-ups were achieved without affecting the accuracy of the approximation.
The article is structured in such way that the reader interested only in the implementa-
tion of the Runge–Kutta–Merson solver on the GPU can skip the sections containing the
mathematical formulation of the problems.

Keywords: GPGPU, CUDA, parallel algorithms, high performance computing, differential
geometry, mean-curvature flow, Willmore flow, Runge–Kutta method, method
of lines, explicit scheme, complementary finite volume method

Classification: 68W10, 35K55, 35K52, 53A05, 53C44, 74S10, 74G15

1. INTRODUCTION

GPUs (Graphics processing units) are devices designed to accelerate visualization
of 3D objects in computer graphics. Originally they were designed especially for
the computer games. For this purpose, the GPU designers concentrated on the
processing of detailed textures rather than on complex geometry with millions of
polygons. Therefore the GPUs are equipped with memory chips optimized to read
large sequential blocks of data which is significantly faster than random access. In
order to implement special graphics effects like texture filtering, new programmable
units were added to the GPU. Their capabilities were improving with each new
generation. Their processing capability grew from only dozens of instructions into
sophisticated one which allows to run the same code as usual CPU. They kept their
advantage which is parallelism. It is usual to run thousands of threads concurrently

252 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

on one GPU. This is two orders higher in comparison with nowadays multicore
CPU. While the peak performance of todays GPUs is estimated approximately to
1 TFlops, a four cores CPU peak performance is around 50 GFlops. As a result,
we have a computing device better suited for numerical algorithms than the usual
CPU. The main advantages of GPUs are

• higher memory bandwidth than common CPUs (≈ 10×),

• higher level of parallelism than common CPUs (≈ 100×).

It is no surprise that the researchers who need to compute complex simulations
started to be interested in GPUs. The first attempts to implement general algorithms
– not related to computer graphics – were based on the programming in OpenGL
[38]. Soon, more advanced tools were released by the main vendors of GPUs –
Nvidia and ATI/AMD. Mainly CUDA (Compute Unified Device Architecture) by
Nvidia has attracted a lot of interest and became very popular in the community
interested in GPGPU (General-Purpose Computation on GPU). Currently, a lot
of algorithms are implemented in CUDA. There are several articles about sparse-
matrix vector multiplication [1, 2] and about iterative linear solvers [9, 10]. The GPU
implementation of the Gauss–Seidel solver can be found in [29] and the tridiagonal
solver in [44]. A GPU acceleration of FEM is presented in a series of articles [18, 19,
20]. The implementation of the Runge–Kutta method has been discussed in [40].
In this article, we demonstrate the implementation of the Merson modification of
the Runge–Kutta method [42]. The Merson algorithm allows for the adaptive choice
of the integration time step. This leads to a robust solver for the method of lines
for the parabolic partial differential equations. We use this solver for the numerical
approximation of the mean-curvature flow and the Willmore flow of graphs by the
complementary finite volume method and the method of lines. They are non-linear
second and fourth order geometric partial differential equations.

Contributions. We present a detailed description of the implementation of the
Runge–Kutta–Merson solver in CUDA and we discuss several optimization tech-
niques for large kernels. We compare the accuracy and the efficiency of the solver
running on both CPU and GPU. We also test the numerical convergence in the
single and the double precision arithmetic.

Organization. The article is organized as follows. In Section 2 we briefly explain
two curvature dependent flows which we solve. Section 3 describes the numerical
approximation. From this section, the reader should see the amount of computations
necessary in each iteration of the Runge–Kutta solver. Both sections can be skipped
by readers interested only in the CUDA implementation of the Runge–Kutta–Merson
solver which can be found in Section 4. Here, we first show the CPU code and then
we transform it step by step to CUDA. We explain only the necessary minimum of
the CUDA knowledge. The results we obtained are discussed in Section 5.

The CUDA implementation of the method of lines for the curvature dependent flows 253

2. MATHEMATICAL FORMULATION

In this section, we show the numerical approximation of the mean-curvature flow
and the Willmore flow of graphs. Both problems originate from differential geometry
and they have applications in phase transitions [22], image processing [8, 33, 34],
surface restoration [13] and physics of elasticity [25, 41]. The mean-curvature flow
minimizes the surface area functional

A (Γ) =

∫

Γ

1dS, (1)

where Γ is a hypersurface inRn. Let Γ0 be the initial hypersurface. We may generate
a class of hypersurfaces Γ(t) depending on the parameter t (it has the meaning of
artificial time) such that Γ(0) = Γ0 and either Γ(t0) for t0 > 0 or limt→∞ Γ(t)
minimizes (1). Since we are interested in the change of shape of Γ(t), we will study
the motion of the points x(t) ∈ Γ(t). Only the projection to the normal direction
at each point changes the shape of Γ(t) and therefore we may omit the tangential
velocity. One can show that (1) is minimized if the normal velocity V reads as

V = H on Γ (t), (2)

where H is the mean curvature of Γ(t). The Willmore flow minimizes the Willmore
functional

W (Γ) =

∫

Γ

H2dS, (3)

for which the normal velocity reads [28]

V = −∆ΓH −
1

2
H3 + 2KH on Γ (t). (4)

Here, ∆Γ is the Laplace–Beltrami operator and K is the Gauss curvature. Let Ω be
a domain in R2 and let Γ (t) be given as a graph of a function ϕ : Ω × (0,∞) → R
such that

Γ (t) ≡ {[x, ϕ (x, t)] | x ∈ Ω} . (5)

Often, we solve more general problem with an additional forcing term F : Γ (t) → R.
If we denote ν the outer unit normal of the boundary ∂Ω, Q =

√

1 + |∇ϕ|2 andP = I − ∇ϕ
Q

⊗ ∇ϕ
Q

then (2) and (4) with the additional forcing term F read as
follows:

Problem 2.1. The graph formulation of the mean-curvature flow with the forcing
term F , the Dirichlet boundary conditions and the initial condition ϕini is the second
order parabolic problem given by

∂tϕ = −Q∇ ·

(

∇ϕ

Q

)

+ F (t) on Ω × (0, T] , (6)

ϕ |t=0 = ϕini on Ω, (7)

ϕ = g on ∂Ω. (8)

254 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

The graph formulation of the mean-curvature flow with the forcing term F , the
Neumann boundary conditions and the initial condition ϕini is the second order
parabolic problem given by (6)–(7) and

∂νϕ = 0 on ∂Ω. (9)

Problem 2.2. The graph formulation of the Willmore flow with the forcing term
F , the Dirichlet boundary conditions and the initial condition ϕini is a fourth order
parabolic problem given by

∂tϕ = −Q∇ ·

(

1

Q
P∇w −

1

2

w2

Q3
∇ϕ

)

+ F (t) on Ω × (0, T] , (10)

w = Q∇ ·

(

∇ϕ

Q

)

on Ω × [0, T] , (11)

ϕ |t=0 = ϕini on Ω, (12)

ϕ = g, w = 0 on ∂Ω. (13)

The graph formulation of the Willmore flow with the forcing term F , the Neumann
boundary conditions and the initial condition ϕini is the fourth order parabolic prob-
lem given by (10)–(12) and

∂νϕ = 0, ∂νw = 0 on ∂Ω. (14)

For some theoretical results concerning (2) and (4), we refer to [11, 12, 14, 15,
16, 17, 26, 27, 30, 31, 32, 35, 39].

3. NUMERICAL APPROXIMATION

To approximate (2.1) and (2.2) numerically we firstly discretize the equations in
space by the complementary finite volumes method. This method has been success-
fully used in [7, 23, 34, 36, 43]. In the second step we will proceed to the discretization
in time by the method of lines. We assume that Ω ≡ (0, L1)× (0, L2). Let h1, h2 be
space steps such that h1 = L1

N1

and h2 = L2

N2

for some N1, N2 ∈ N+. We define the
numerical grid, its closure and its boundary as

ωh = {(ih1, jh2) | i = 1 . . .N1 − 1, j = 1 . . .N2 − 1} , (15)

ωh = {(ih1, jh2) | i = 0 . . .N1, j = 0 . . .N2} ,

∂ωh = ωh \ ωh.

We define the projection operator Ph : C
(

Ωh

)

→ ω as

Ph (ϕ)ij := ϕh
ij := ϕ (ih1, jh2) . (16)

The details of the space discretization (2.1) and (2.2) can be found in [36, 37]. W
ith the discretization formulas from the appendix (7) we may write the numerical
schemes.

The CUDA implementation of the method of lines for the curvature dependent flows 255

Scheme 3.1. The complementary finite volume semi-discrete numerical scheme for
the mean-curvature flow of graphs with the zero forcing term F (t) and the Dirichlet
boundary conditions takes the following form

d

dt
ϕh

ij = Qh
ij

(

ϕh
i+1j − ϕh

ij

h2
1Q

h
ij,i+1j

+
ϕh

ij+1 − ϕh
ij

h2
2Q

h
ij,ij+1

−
ϕh

ij − ϕh
i−1j

h2
1Q

h
ij,i−1j

−
ϕh

ij − ϕh
ij−1

h2
2Q

h
ij,ij−1

)

on ωh,

(17)

ϕh
ij |t=0 = Ph (ϕini)ij on ωh, (18)

ϕh
ij = gij on ∂ωh,

where Qh
ij is given by (49) and Qh

ij,i+1j , Qh
ij,ij+1, Qh

ij,i−1j and Qh
ij,ij−1 are given by

(36)–(39). The complementary finite volume semi-discrete numerical scheme for the
mean-curvature flow of graphs with the Neumann boundary conditions is given by
(17)–(18) together with

ϕh
0j = ϕh

1j and ϕh
N1j = ϕh

N1−1j for j = 0, . . . , N2, (19)

ϕh
i0 = ϕh

i1 and ϕh
iN2

= ϕh
iN2−1 for i = 0, . . . , N1. (20)

Scheme 3.2. The complementary finite volume semi-discrete numerical scheme
for the Willmore flow of graphs with the zero forcing term F (t) and the Dirichlet
boundary conditions takes the following form

d

dt
ϕh

ij = Qh
ij

[

1

h1

(

E
h
11,ij,i+1j∂

h
x1

wh
ij,i+1j + E

h
12,ij,i+1j∂

h
x2

wh
ij,i+1j

)

+
1

h2

(

E
h
21,ij,ij+1∂

h
x1

wh
ij,ij+1 + E

h
22,ij,ij+1∂

h
x2

wh
ij,ij+1

)

−
1

h1

(

E
h
11,ij,i−1j∂

h
x1

wh
ij,i−1j + E

h
12,ij,i−1j∂

h
x2

wh
ij,i−1j

)

−
1

h2

(

E
h
21,ij,ij−1∂

h
x1

wh
ij,ij−1 + E

h
22,ij,ij−1∂

h
x2

wh
ij,ij−1

)

−
1

h1

(

1

2

(

wh
ij,i+1j

)2

(

Qh
ij,i+1j

)3 ∂h
x1

ϕh
ij,i+1j −

1

2

(

wh
ij,i−1j

)2

(

Qh
ij,i−1j

)3 ∂h
x1

ϕij,i−1j

)

−
1

h2

(

1

2

(

wh
ij,ij+1

)2

(

Qh
ij,ij+1

)3 ∂h
x2

ϕij,ij+1 −
1

2

(

wh
ij,ij−1

)2

(

Qh
ij,ij−1

)3 ∂h
x2

ϕij,ij−1

)]

(21)

wh
ij = Qh

ij

(

ϕh
i+1j − ϕh

ij

h2
1Q

h
ij,i+1j

+
ϕh

ij+1 − ϕh
ij

h2
2Q

h
ij,ij+1

−
ϕh

ij − ϕh
i−1j

h2
1Q

h
ij,i−1j

−
ϕh

ij − ϕh
ij−1

h2
2Q

h
ij,ij−1

)

on ωh,

(22)

ϕh
ij |t=0 = Ph (ϕini)ij on ωh, (23)

ϕh
ij = gij and wh

ij = 0 on ∂ωh,

where Qh
ij is given by (49) and Qh

ij,i+1j , Qh
ij,ij+1, Qh

ij,i−1j and Qh
ij,ij−1 are given

256 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

by (36)–(39), Eh
mn,ij,̄ij̄

for m, n = 1, 2 is given by (53), wh
ij,̄ij̄

by (51)–(52) and as

(44)–(47). ∂h
x1

ϕh
ij,̄ij̄

and ∂h
x2

ϕh
ij,̄ij̄

are approximated by (40)–(43).

The complementary finite volume semi-discrete numerical scheme for the Will-
more flow of graphs with the Neumann boundary conditions is given by (21)–(23),
(19)–(20) together with

wh
1,j = wh

0,j and wh
N1,j = wh

N1−1,j for j = 0, . . . , N2, (24)

wh
i,1 = wh

i,0 and wh
i,N2

= wh
i,N2−1 for i = 0, . . . , N1. (25)

Remark 3.3. After the discretization in space we have a system of ordinary differ-
ential equations of the form

duh
ij

dt
= f

(

t, uh
)

ij
, (26)

where f
(

t, uh
)

ij
is given by the right-hand sides of (17) and (21). We solve the

system by the Runge–Kutta method. It is the explicit time discretization known as
the method of lines.

4. THE CUDA IMPLEMENTATION
OF THE RUNGE–KUTTA–MERSON SOLVER

4.1. The Runge–Kutta–Merson solver for the Method of Lines

The advantage of explicit schemes is their high accuracy and easier implementation
in comparison with semi-implicit or fully-implicit schemes involving solvers of linear
or non-linear systems. The disadvantage is that they require significantly smaller
time steps. It means that the solver must perform more iterations. In each iteration,
the right-hand side f is evaluated. As a result, the explicit solvers can be computa-
tionally more intensive. This makes them good candidates for the implementation
on the GPU.

The fourth order Runge–Kutta solvers were successfully used in many articles
[3, 4, 5, 6]. The Merson solver [42] belongs to this class of solvers. Moreover, it
offers the automatic choice of time step which makes the solver more robust. We
will solve the system of ordinary differential equations (26). The Runge–Kutta–
Merson solver consists of the following steps:

Algorithm 4.1. The explicit Runge–Kutta–Merson solver (Vitásek [42]) consists
of the following steps:

The CUDA implementation of the method of lines for the curvature dependent flows 257

1. Compute the grid functions k1
ij , k2

ij , k3
ij , k4

ij , k5
ij as:

k1
ij := τf

(

t, uh
)

ij

k2
ij := τf

(

t +
1

3
τ, uh +

1

3
k1

)

ij

k3
ij := τf

(

t +
1

3
τ, uh +

1

6
k1 +

1

6
k2

)

ij

k4
ij := τf

(

t +
1

2
τ, uh +

1

8
k1 +

3

8
k3

)

ij

k5
ij := τf

(

t + τ, uh +
1

2
k1 −

3

2
k3 + 2k4

)

ij

,

for i = 0, . . .N1 and j = 0, . . . , N2.

2. Evaluate the approximation error for the current time step τ as

e := max
i=0,...,N1

j=0,...,N2

1

3

∣

∣

∣

∣

1

5
k1

ij −
9

10
k3

ij +
4

5
k4

ij −
1

10
k5

ij

∣

∣

∣

∣

. (27)

3. If this error is smaller than given tolerance ǫ, update uh as:

uh
ij := uh

ij +
1

6

(

k1
ij + 4k4

ij + k5
ij

)

, (28)

for i = 0, . . .N1, j = 0, . . . , N2 and set

t := t + τ.

4. Independently on the previous condition update τ as:

τ := min

{

τ ·
4

5

(ǫ

e

)
1

5

, T − t

}

. (29)

5. Repeat the whole process with the new τ i. e. go to step 1.

4.2. Implementation of the Runge–Kutta–Merson solver on CPU

The implementation of the algorithm (4.1) in the C language on the CPU reads as
follows:

1 void RungeKuttaMersonCPU (double ∗ u i n i , double f i n a l t im e)
2 {
3 // compute the degrees o f freedom
4 const int N = N1 ∗ N2 ;
5
6 // a l l o c a t e the numerical g r i d s
7 double ∗u , ∗k1 , ∗k2 , ∗k3 , ∗k4 , ∗k5 , ∗k ;

258 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

8 u = (double∗) mal loc (s izeof (double) ∗ N) ;
9 k1 = (double∗) mal loc (s izeof (double) ∗ N) ;

10 . . .
11
12 // copy the i n i t i a l condi t i on to u
13 memcpy(u i n i , u , s izeof (double) ∗ N) ;
14
15 double t = 0 ;
16 double tau = tau 0 ;
17
18
19
20
21
22 while (t<f i n a l t im e)
23 {
24 // compute the g r i d f unc t i on s k1 , k2 , k3 , k4 , k5
25 EvaluateRHS (t , u , k1) ;
26 for (int i = 0 ; i<N; i++)
27 k [i] = u [i] + tau /3 .0 ∗ k1 [i] ;
28 EvaluateRHS (t + tau /3 . 0 , k , k2) ;
29 . . .
30
31 // compute the error with g i ven tau
32 double e = 0 . 0 ;
33 for (int i = 0 ; i<N; i++)
34 e = Max(e , tau /3 .0 ∗
35 (0 . 2∗ k1 [i] − 0 .9∗ k3 [i] + 0 .8∗ k4 [i] − 0 .1∗ k5 [i])) ;
36
37 // i f e i s smal l enough proceed to the next t ime l e v e l
38 i f (e<e p s i l o n)
39 {
40 for (i = 0 ; i<N; i++)
41 u [i] = u [i]+ tau /6 .0∗ (k1 [i] + 4 .0∗ k4 [i] + k5 [i]) ;
42 t=t+tau ;
43 }
44
45 // recompute the new time s t ep
46 tau=Min(4 . 0/5 . 0∗ tau ∗pow(ep s i l o n /e , 0 . 2) , T−t) ;
47 }
48
49 // copy the r e s u l t to the g r i d with the i n i t i a l data
50 memcpy(u , u i n i , s izeof (double) ∗ N) ;
51
52 // f r e e the a l l o c a t e d memory
53 memfree (u) ;
54 memfree (k1) ;
55 . . .
56 }

4.3. Implementation of the Runge–Kutta–Merson method in CUDA

Here is what we need for the implementation of our algorithm on the GPU in CUDA:

1. allocate the numerical grids on the CUDA device

The CUDA implementation of the method of lines for the curvature dependent flows 259

2. copy the initial data from the host system (CPU memory) to the CUDA device

3. evaluate the weighted sum of the grid functions uh + 1
3k1, uh + 1

6k1 + 1
6k2,

uh + 1
8k1 + 3

8k3 and uh + 1
2k1 − 3

2k3 + 2k4 in the first step and uh
ij := uh

ij +
1
6

(

k1
ij + 4k4

ij + k5
ij

)

in the third step of the Algorithm 4.1,

4. evaluate the right-hand side f
(

t, uh
)

ij
in the first step of the Algorithm 4.1

5. evaluate the maximum e := maxi=0,...,N1

j=0,...,N2

1
3

∣

∣

1
5k1

ij −
9
10k3

ij + 4
5k4

ij −
1
10k5

ij

∣

∣ .

The algorithm reads as follows:

1 void RungeKuttaMersonCUDA (double ∗ u i n i , double f i n a l t im e)
2 {
3 // compute the degrees o f freedom
4 const int N = N1 ∗ N2 ;

The allocation of memory on the GPU device in CUDA is done using the function
cudaMemalloc [45]:

6 // a l l o c a t e the numerical g r i d s on CUDA dev ice
7 double ∗u , ∗k1 , ∗k2 , ∗k3 , ∗k4 , ∗k5 , ∗k ;
8 cudaMemalloc ((void∗∗) &u , s izeof (double) ∗ N) ;
9 cudaMemalloc ((void∗∗) &k1 , s izeof (double) ∗ N) ;

10 . . .

To copy the initial data from the CPU memory to the global memory of the GPU
we use the function cudaMemcpy [45]:

12 // copy the i n i t i a l condi t i on to u
13 cudaMemcpy (u , u i n i , s izeof (double) ∗ N, cudaMemcpyHostToDevice) ;

We set the necessary parameters:

15 double t = 0 ;
16 double tau = tau 0 ;

To evaluate the right-hand side of (26) and the weighted sums of the numerical
functions k1, . . . , k5, we start one CUDA thread for each node (i, j) of the given mesh
function. Totally we run N = (N1 +1)(N2 +1) threads concurrently. In CUDA, the
threads are grouped into blocks and the blocks are grouped into grids. All threads
running in the same block share the fast shared memory through which they can
pass data to each other. The threads belonging to one block can be synchronized
by an explicit command. Since there can be at most 512 threads in one block, we
usually need more than one block of threads. The number of blocks, which is the
smallest integer not less than N / desBlockSize, is given on the line 19.

18 const int desBlockS i ze = 128 ;
19 const int g r i d S i z e = N / desBlockS i ze + (N % desBlockS i ze != 0) ;
20 dim3 gridDim (g r i d S i z e) , blockDim (desB lockS i ze) ;

We may start now the main loop

260 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

21 while (t<f i n a l t im e)
22 {
23 // compute the g r i d f unc t i on s k1 , k2 , k3 , k4 , k5
24 EvaluateRHS<<< gridDim , blockDim >>>(t , u , k1) ;

On the line 24, we call a CUDA kernel, a function running on the GPU processed
by N threads concurrently. Its implementation for the right-hand side of (17) and
(21) will be discussed later. We demonstrate the concept on the next kernel

26 // Compute k [i] = u [i] + tau /3.0 ∗ k1 [i] f o r i =0..N−1
27 EvaluateK2Argument<<< gridDim , blockDim >>>(N, tau , u , k1 , k) ;
28 EvaluateRHS (t + tau /3 . 0 , k , k2) ;

The code for EvaluateK2Argument reads as follows:

101 g l o b a l void EvaluateK2Argument(const int N, const double tau ,
102 const double∗ u , const double∗ k1 ,
103 double∗ k)
104 {
105 int i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
106 i f (i < N)
107 k [i] = u [i] + tau ∗ (1 . 0 / 3 . 0 ∗ k1 [i]) ;
108 }

The word global indicates that the function EvaluateK2Argument is a CUDA
kernel. The parameters const int N, const double tau must be passed as a
value not as a reference. It is because they reside in the host memory (CPU) and
they must be copied to the device memory (GPU). The pointers const double*

u, const double* k1, double* k point to the mesh functions u, k1 and k already
allocated on the GPU. On the line 105, we compute the ID i of the current thread.
Since there are generally more then N threads running (if N = 129 and the block
size is 128 we must run 2 blocks and we have 256 threads) we check whether i < N
on the line 106. On the line 107, we perform the main computation. The next kernel
will not start until the current one has finished. This is an important synchronization
in our algorithm. The main loop of the solver continues as follows:

31 // compute the error with g i ven tau
32
33
34 double e = ComputeE(tau , k1 , k3 , k4 , k5) ;

The function ComputeE computes the local error eij and it performs the parallel
reduction [24]. We run 128 threads per block to reduce at most 2048 elements. It
means that there are N/2048 blocks in the grid. Each thread sequentially reduces 16
elements and then the parallel reduction with logarithmic complexity is performed.
The result is stored in the global memory in an array having the same number of
elements as the number of blocks in the grid (each block stores one number – the
result of the reduction). In the next step, we run the same kernel again with N/2048
elements. After the last step we have only one number stored on the GPU in the
variable device e from which it is then copied to the host variable e. The rest of
the code is straightforward.

The CUDA implementation of the method of lines for the curvature dependent flows 261

37 // i f e i s smal l enough proceed to the next t ime l e v e l
38 i f (e<e p s i l o n)
39 ComputeNewU<<< gridDim , blockDim >>>(tau , u , k1 , k4 , k5) ;
40
41 t=t+tau ;
42
43
44
45 // recompute the new time s t ep
46 tau=Min(4 . 0/5 . 0∗ tau ∗pow(ep s i l o n /e , 0 . 2) , T−t) ;
47 }
48
49 // copy the r e s u l t to the g r i d with the i n i t i a l data
50 cudaMemcpy (u , u i n i , s izeof (double) ∗ N, cudaMemcpyDeviceToHost) ;
51
52 // f r e e the a l l o c a t e d memory
53 cudaFree (u) ;
54 cudaFree (k1) ;
55 . . .
56 }

We would like to comment on the evaluation of the right-hand side (17) or (21). The
node (i, j) is mapped to global memory through bijection I(i, j) = iN2 + j, where
i = 0, . . . , N1 and j = 0, . . . , N2. The same bijection maps nodes and threads. We
employ N threads splitted into one dimensional blocks. The node coordinates (i, j)
are extracted using the following code

201 const int i j = blockIdx . x ∗ blockDim . x + threadIdx . x ;
202 const int i = i j / N2 ;
203 const int j = i j % N2 ;

To get (17) in one interior node, we start a new kernel and we fetch ϕij and its 8
neighbors to the shared memory. This grid function is binded to a texture and so
the reading is cached. Then, we compute (36)–(47) and (49). It takes 36 additions,
21 multiplications (we precompute the values 1/h1 and 1/h2), 8 absolute values and
4 square roots, i. e. 69 FLOPs (FLoating-point OPerations). Finally, we evaluate
(48) which requires 4 multiplications (h2

1 and h2
2 are also precomputed), 4 divisions

and 7 additions. At the end, we store the value QijHij , i. e. 1 multiplication. In
total, we have 85 FLOPs per 10 (coalesced) global memory accesses – 9 readings
and 1 writing. The arithmetic intensity, which is defined as the ratio of operations
to memory access, is 8.5.

To evaluate (21), we first compute wij using the kernel for (17). Then, we start
a new kernel and read ϕij , its 8 neighbors and wij with its 8 neighbors (Wij is also
binded to a texture for cached reading). We recompute Qij,i+1,j , Qij,ij+1,Qij,i−1,j

and Qij,ij−1. It is faster than storing them in the global memory in the first kernel
and rereading now. It takes 28 additions, 20 multiplications, 4 square roots and 8
absolute values. Then, we compute (40)–(47) and (51)–(53). It takes 54 additions,
76 multiplications, 16 divisions and 8 absolute values and 4 roots of square. Totally,
it is 82 additions, 96 multiplications, 16 divisions, 16 absolute values and 8 square
roots. This yields 218 FLOPs per 18 global memory readings and 1 writing. The
arithmetic intensity is 11.5.

262 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

Table 1. This table show the multiprocessor occupancy and
the global memory throughput. In the first line, there are kernels

computing the grid functions k1, . . . , k5 and the kernel for updating u.
In the second line, there is a reduction of the integration error e.

The last two lines show kernels evaluating the right
hand side f of (26) and the forcing terms FWC and FW .

Kernel Occupancy Global memory throughput
k1 . . . k5, u 1 100-105 GB/s
e 1 100 GB/s
f mean-curvature flow 0.33 85 GB/s
f Willmore flow 0.33 55 GB/s
FWC , FW 0.2 14 GB/s

Another important indicator is a multiprocessors occupancy. It is percentage of
time spent by the computing. The occupancy depends on the number of registers
used by one thread, shared memory allocated for one block and the number of threads
in one block. The results obtained on the numerical grid with 512 × 512 nodes are
summarized in the Table 1. This table also shows the global memory throughput.
All kernels used for the Runge–Kutta-Merson solver achieve occupancy 100% and
the global memory throughput over 100 GB/s. However, most of the time, 97%, is
spent in kernels evaluating (6), (11) and (10). These kernels attain only 33% resp.
20% occupancy and 14 to 85 GB/s memory throughput. The limiting factor is the
number of registers 1. Moreover, for large kernels some variables may not fit into
limited shared memory on the multiprocessor (it is 16 kB on Nvidia GeForce GTX
280). The CUDA PTX compiler may decide to store some variables in the local

memory of the thread which resides in the global memory of the device. Accessing
these variables is very slow. Passing a parameter --ptxas-options= −v to nvcc

compiler evokes printing information about the memory allocation. One should try
to reduce bytes denoted by lmem. It can be achieved by reducing the number of the
kernel variables by avoiding unnecessary variables or variables which are used only
once and which just fetch data from the global memory. Note that the kernel code
is also stored in the shared memory. Reducing the code size can therefore help. By
this techniques we optimized our algorithm to run 25% faster.

The disadvantage of the CUDA implementation of the Runge–Kutta–Merson
solver is that it does not work as a black box as the matrix solvers do. The user must
write his own CUDA kernel. The efficiency of the solver then strongly depends on
the efficiency of this kernel. We now summarize several rules for writing the kernel.

• The coalesced accesses to the global memory are essential in reducing the
latency of the global memory of GPU [45]. It is fulfilled easily using the natural
mapping between numerical grid nodes and CUDA threads as we discussed
above.

1The kernels were optimized using the CUDA Occupancy Calculator.

The CUDA implementation of the method of lines for the curvature dependent flows 263

• It is better to recompute some quantities than to store them in the global
memory.

• Elimination of unnecessary variables in large kernels may reduce the use of
the local memory and registers of the multiprocessor. This can improve the
occupancy.

5. COMPUTATIONAL RESULTS

To measure the speed-up of the Runge–Kutta–Merson solver implemented in CUDA
and to compare its accuracy on both the GPU and the CPU, we will evaluate the

experimental order of convergence (EOC). It shows how the approximation error
depends on the space step of the numerical grid ωh. To do this we take an analytical
solution of (2.1) and (2.2) and compare it with the numerical approximation. We
set force terms FMC (resp. FW) to match the solution

ζ (t,x) := cos (πt)
1

r2n
(xn − rn) (yn − rn) exp

(

−σ
(

x2 + y2
))

on Ω × [0, T]. (30)

The forcing terms FMC and FW are evaluated exactly (see [37]). For given T ,
we evaluate the errors of the numerical approximation in the norms of the spaces
L1 (Ω; [0, T]), L2 (Ω; [0, T]) and L∞ (Ω; [0, T]) resp. their approximations

∥

∥ϕh − Ph (ζ)
∥

∥

h,θ

L1(ωh;[0,T])
:=

M
∑

k=0

θ

N1,N2
∑

i=0,j=0

∣

∣

∣
ϕh

ij (kθ) − Ph (ζ)ij (kθ)
∣

∣

∣
h1h2, (31)

∥

∥ϕh − Ph (ζ)
∥

∥

h,θ

L2(ωh;[0,T])
:=

M
∑

k=0

θ

N1,N2
∑

i=0,j=0

(

ϕh
ij (kθ) − Ph (ζ)ij (kθ)

)2

h1h2

1

2

,

(32)
∥

∥ϕh − Ph (ζ)
∥

∥

h,θ

L∞(ωh;[0,T])
:= max

k=0,...,M
max

i=0,...,N1

j=0,...,N2

∣

∣

∣
ϕh

ij (kθ) − Ph (ζ)ij (kθ)
∣

∣

∣
, (33)

for θ = T/M . For two numerical solutions ϕh1 and ϕh2 obtained by the discretization
with the space steps h1 and h2, we compute the approximation errors Errh1

and
Errh2

in one of the norms (31)–(33). Then, the experimental order of convergence
is defined as

EOC (Errh1
, Errh2

) :=
log (Errh1

/Errh2
)

log (h1/h2)
. (34)

All computations were done on the Intel Core 2 Quad CPU with 4 cores, 4 MB
cache memory running at 2.66 GHz and Nvidia Geforce GTX 280 with CUDA 2.3
and GNU/gcc 4.3 installed on the 64-bit GNU/Linux Ubuntu 10.04. The CPU
computations were single threaded but also parallelized by OpenMP standard. The
CPU code was not explicitly optimized to use SSE instructions. We set the domain
Ω ≡ [−4, 4]2 and the stop time T = 0.1. The error as well as the experimental order
of convergence for both the CPU and the GPU are the same. The experimental

264 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

Table 2. The experimental order of convergence (EOC) for the
mean-curvature flow of graphs on the CPU and the GPU

in the single precision. N denotes meshes of the numerical grid.

Meshes
‖·‖h,τ

L1(ωh;[0,T]) ‖·‖h,τ

L2(ωh;[0,T]) ‖·‖h,τ

L∞(ωh;[0,T])

Error EOC Error EOC Error EOC

162 7.1e-03 9.0e-03 4.3e-02

322 1.5e-03 2 1.9e-03 2.1 8.5e-03 2.1

642 3.9e-04 2 4.9e-04 1.9 2.4e-03 1.8

1282 9.8e-05 2 1.2e-04 2 6.1e-04 2

2562 2.5e-05 2 3.1e-05 2 1.5e-04 2

5122 6.2e-06 2 7.8e-06 2 3.9e-05 2

10242 1.7e-06 1.9 2.1e-06 1.9 1.1e-05 1.8

order of convergence equals 2. The Table 2 shows results for the single precision
arithmetic while the Tables 3 and 4 in the double precision. We see that the nu-
merical approximation of the mean-curvature flow of graphs in the single and the
double precision exhibits approximately the same accuracy.

The Tables 5–7 show the sequential CPU time, the parallel CPU time and the
GPU time together with the number of gigaflops and the speed-up. The last columns
show the speed-up of the GPU relative to the sequential code resp. to the parallel
OpenMP code. The power of the GPU is evident especially on large meshes. GPU
profits from the single precision arithmetic for which it is equipped with more com-
puting units. The speed-up is almost 17. Applications in image processing can profit
from it. The speed-up in the double precision is up to 7. With the CPU, we have
achieved 3 GFLOPS (Giga FLoating-point Operations Per Second) performance.
Note, that our algorithm contains functions like pow, exp, sin or sqrt which we
take as one FLOP. On GPU we get almost 50 GFLOPS in the single precision and
17 GFLOPS in the double precision.

The Figures 1 and 2 show the evolution of the initial surface given as a graph of
the following function

ϕ |t=0= sin
(

3π
√

x2 + y2
)

on Ω, (35)

where Ω ≡ (−2, 2)
2
. We set the Neumann boundary conditions (9) resp. (14) and

the space step h = 0.03125, i. e., 1282 meshes. The CPU and the GPU times together
with the speed-up for the single and the double precision are in the Table 8. The
approximation of the Willmore flow in the single precision was omitted since it does
not give reasonable results.

The CUDA implementation of the method of lines for the curvature dependent flows 265

Table 3. The experimental order of convergence (EOC) for the
mean-curvature flow of graphs on the CPU and the GPU

in the double precision. N denotes meshes of the numerical grid.

Meshes
‖·‖

h,τ

L1(ωh;[0,T]) ‖·‖
h,τ

L2(ωh;[0,T]) ‖·‖
h,τ

L∞(ωh;[0,T])

Error EOC Error EOC Error EOC

162 7.1e-03 9.0e-03 4.3e-02

322 1.5e-03 2 1.9e-03 2.1 8.5e-03 2.1

642 3.9e-04 2 4.9e-04 1.9 2.4e-03 1.8

1282 9.8e-05 2 1.2e-04 2 6.1e-04 2

2562 2.5e-05 2 3.1e-05 2 1.5e-04 2

5122 6.2e-06 2 7.7e-06 2 3.8e-05 2

10242 1.6e-06 1.9 1.9e-06 2 9.6e-06 2

Table 4. The experimental order of convergence (EOC) for the
Willmore flow of graphs on the CPU and the GPU

in the double precision. N denotes meshes of the numerical grid.

N
‖·‖

h,τ

L1(ωh;[0,T]) ‖·‖
h,τ

L2(ωh;[0,T]) ‖·‖
h,τ

L∞(ωh;[0,T])

Error EOC Error EOC Error EOC

162 1.4e-01 2.5e-01 1.3

322 8.1e-02 0.8 1.5e-01 0.7 7.0e-01 0.8

642 5.8e-03 3.8 1.2e-02 3.6 7.1e-02 3.3

1282 1.8e-03 1.7 3.8e-03 1.7 2.3e-02 1.6

2562 4.5e-04 2 9.9e-04 2 6.1e-03 1.9

Table 5. The efficiency of the CUDA implementation demonstrated on the
mean-curvature flow of graphs on the CPU and the GPU in the single

precision. N denotes meshes of the numerical grid. The CPU and the GPU times
are presented in seconds. The last column shows speed-up of the GPU

implementation compared to sequential resp. parallel CPU code.

1 core CPU 4 cores CPU Nvidia GTX 280
N Time GFlops Time GFlops Speed-up Time GFlops Speed-up
162 0.18 0.86 0.18 0.86 1 0.04 3.9 4.5/4.5
322 0.51 0.9 0.42 1.08 1.2 0.05 9.2 10.2/8.5
642 2 1.02 1.53 1.32 1.3 0.1 20.4 20/15.4
1282 12 0.9 5.01 2.16 2.4 0.32 33.7 37.5/15.6
2562 173 0.96 55.8 2.97 3.1 3.5 47.4 49.4/15.9
5122 2537 0.91 746 3.1 3.4 49 47.1 51.8/15.2
10242 40869 0.9 12771 2.9 3.2 754 48.8 54.2/16.9

266 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

Table 6. The efficiency of the CUDA implementation demonstrated on the
mean-curvature flow of graphs on the CPU and the GPU in the double

precision. N denotes meshes of the numerical grid. The CPU and the GPU times
are presented in seconds. The last column shows speed-up of the GPU

implementation compared to sequential resp. parallel CPU code.

1 core CPU 4 cores CPU Nvidia GTX 280
N Time GFlops Time GFlops Speed-up Time GFlops Speed-up
162 0.13 0.85 0.12 0.93 1.1 0.05 2.21 2.6/2.4
322 0.53 0.87 0.35 1.31 1.5 0.06 7.74 8.9/5.9
642 2.1 0.86 1.23 1.46 1.7 0.17 10.5 12.3/7.2
1282 13 0.83 5.41 1.99 2.4 0.66 16.3 19.7/8.2
2562 200 0.8 64.5 2.48 3.1 9.0 17.7 22.2/7.16
5122 3272 0.76 934 2.66 3.5 138 17.4 23/6.57
10242 54187 0.72 16420 2.37 3.3 2213 17.2 24/7.27

Table 7. The efficiency of the CUDA implementation demonstrated on the
Willmore flow of graphs on the CPU and the GPU in the double

precision. N denotes meshes of the numerical grid. The CPU and the GPU times
are presented in seconds. The last column shows speed-up of the GPU

implementation compared to sequential resp. parallel CPU code.

1 core CPU 4 cores CPU Nvidia GTX 280
N Time GFlops Time GFlops Speed-up Time GFlops Speed-up
162 0.28 0.9 0.12 2 2.2 0.19 1.26 1.4/0.7
322 7.4 0.87 2.38 2.7 3.1 1.44 4.6 5.3/1.7
642 492 0.8 136 2.9 3.6 38 9.6 13/3.6
1282 30494 0.83 8241 3.1 3.7 1494 10.8 20/5.4
2562 197424 0.81 51953 3.1 3.8 93031 17 21/5.5

Table 8. Comparison of the CPU and the GPU time for the evolution of the
surface on the Figures 1 and 2 in the single and the double precision with

1282 meshes. The CPU and the GPU times are presented in seconds.
The last column shows speed-up of the GPU implementation

compared to sequential resp. parallel CPU code.

Precision CPU time 4 cores CPU time Speed-up GPU time Speed-up
Mean-curvature flow

Single 14.3 4.08 3.5 1 14.3/4.1
Double 23.2 6.62 3.5 2 11.6/3.3

Willmore flow
Single – – – – –
Double 152717 44354 3.4 11818 12.9/3.8

The CUDA implementation of the method of lines for the curvature dependent flows 267

Fig. 1. Evolution of the surface given as a graph of (35) driven by the mean-curvature

flow of graphs at times t = 0, t = 0.025, t = 0.1 and t = 0.5. The single and the double

precision give the same results.

Fig. 2. Evolution of the surface given as a graph of (35) driven by the Willmore flow of

graphs at times t = 0, t = 0.01, t = 0.025 and t = 0.1 in the double precision.

6. CONCLUSION

We have presented the CUDA implementation of the Runge–Kutta–Merson solver
and use it for the numerical approximation of the curvature dependent flows by the
method of lines. We obtained speed-up 17 in the single precision arithmetic and 7 in
the double precision arithmetic. Advantages of this algorithm are automatic choice
of the integration time step and relatively simple implementation. It is computa-
tionally more intensive in comparison with linear solvers and thus it profits more
from the great performance of modern GPUs. Unfortunately, the number of the
multiprocessor registers is a limiting factor for larger kernels. It is the reason why
our kernels exploit only 33% of the GPU performance. We have also mentioned a few
optimization techniques which might be useful for writing larger CUDA kernels with
many variables. The source code for the CPU and the GPU implementation of the
Runge–Kutta–Merson solver is freely available as a part of the Template Numerical
Library (TNL) at http://geraldine.fjfi.cvut.cz/˜oberhuber/doku-wiki-tnl.

http://geraldine.fjfi.cvut.cz/~oberhuber/doku-wiki-tnl

268 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

7. APPENDIX

In this appendix we show the discretization formulas. We set

Qh
ij,i+1j =

√

1 +
(

∂h
x1

ϕh
ij,i+1j

)2
+
(

∂h
x2

ϕh
ij,i+1j

)2
, (36)

Qh
ij,ij+1 =

√

1 +
(

∂h
x1

ϕh
ij,ij+1

)2
+
(

∂h
x2

ϕh
ij,ij+1

)2
, (37)

Qh
ij,i−1j =

√

1 +
(

∂h
x1

ϕh
ij,i−1j

)2
+
(

∂h
x2

ϕh
ij,i−1j

)2
, (38)

Qh
ij,ij−1 =

√

1 +
(

∂h
x1

ϕh
ij,ij−1

)2
+
(

∂h
x2

ϕh
ij,ij−1

)2
, (39)

for

∂h
x1

ϕh
ij,i+1j =

ϕh
i+1j − ϕh

ij

h1
, ∂h

x1
ϕh

ij,i−1j =
ϕh

ij − ϕh
i−1j

h1
, (40)

∂h
x2

ϕh
ij,ij+1 =

ϕh
ij+1 − ϕh

ij

h2
, ∂h

x2
ϕh

ij,ij−1 =
ϕh

ij − ϕh
ij−1

h2
, (41)

and

∂h
x2

ϕh
ij,i+1j =

ϕh
ij,i+1j+1 − ϕh

ij,i+1j−1

h2
, ∂h

x2
ϕh

ij,i−1j =
ϕh

ij,i−1j+1 − ϕh
ij,i−1j−1

h2
,

(42)

∂h
x1

ϕh
ij,ij+1 =

ϕh
ij,i+1j+1 − ϕh

ij,i−1j+1

h1
, ∂h

x1
ϕij,ij−1 =

ϕij,i+1j−1 − ϕij,i−1j−1

h1
,

(43)

where we denote

ϕh
ij,i+1j+1 =

1

4

(

ϕh
ij + ϕh

i+1j + ϕh
ij+1 + ϕh

i+1j+1

)

, (44)

ϕh
ij,i+1j−1 =

1

4

(

ϕh
ij + ϕh

i+1j + ϕh
ij−1 + ϕh

i+1j−1

)

, (45)

ϕh
ij,i−1j+1 =

1

4

(

ϕh
ij + ϕh

i−1j + ϕh
ij+1 + ϕh

i−1j+1

)

, (46)

ϕh
ij,i−1j−1 =

1

4

(

ϕh
ij + ϕh

i−1j + ϕh
ij−1 + ϕh

i−1j−1

)

. (47)

We approximate the mean curvature H as

Hh
ij ≈

(

ϕh
i+1j − ϕh

ij

h2
1Q

h
ij,i+1j

+
ϕh

ij+1 − ϕh
ij

h2
2Q

h
ij,ij+1

−
ϕh

ij − ϕh
i−1j

h2
1Q

h
ij,i−1j

−
ϕh

ij − ϕh
ij−1

h2
2Q

h
ij,ij−1

)

. (48)

Setting

Qh
ij =

1

4

(

Qh
ij,i+1j + Qh

ij,ij+1 + Qh
ij,i−1j + Qh

ij,ij−1

)

, (49)

wh
ij = Qh

ijH
h
ij , (50)

The CUDA implementation of the method of lines for the curvature dependent flows 269

wh
ij,i+1j =

1

2

(

wh
ij + wh

i+1j

)

, wh
ij,ij+1 =

1

2

(

wh
ij + wh

ij+1

)

, (51)

wh
ij,i−1j =

1

2

(

wh
ij + wh

i−1j

)

, wh
ij,ij−1 =

1

2

(

wh
ij + wh

ij−1

)

, (52)

E
h
ij,i+1j =

1

Qij,i+1j

(

1 −
(

∂x1
ϕh

ij,i+1j

)2
−∂x1

ϕh
ij,i+1j∂x2

ϕh
ij,i+1j

−∂x1
ϕh

ij,i+1j∂x2
ϕh

ij,i+1j 1 −
(

∂x2
ϕh

ij,i+1j

)2

)

,

E
h
ij,ij+1 =

1

Qij,ij+1

(

1 −
(

∂x1
ϕh

ij,ij+1

)2
−∂x1

ϕh
ij,ij+1∂x2

ϕh
ij,ij+1

−∂x1
ϕh

ij,ij+1∂x2
ϕh

ij,ij+1 1 −
(

∂x2
ϕh

ij,ij+1

)2

)

,

E
h
ij,i−1j =

1

Qij,i−1j

(

1 −
(

∂x1
ϕh

ij,i−1j

)2
−∂x1

ϕh
ij,i−1j∂x2

ϕh
ij,i−1j

−∂x1
ϕh

ij,i−1j∂x2
ϕh

ij,i−1j 1 −
(

∂x2
ϕh

ij,i−1j

)2

)

,

E
h
ij,ij−1 =

1

Qij,ij−1

(

1 −
(

∂x1
ϕh

ij,ij−1

)2
−∂x1

ϕh
ij,ij−1∂x2

ϕh
ij,ij−1

−∂x1
ϕh

ij,ij−1∂x2
ϕh

ij,ij−1 1 −
(

∂x2
ϕh

ij,ij−1

)2

)

,

E
h
ij,̄ij̄ =

(Eh
11,ij,̄ij̄

Eh
12,ij,̄ij̄Eh

21,ij,̄ij̄
Eh

22,ij,̄ij̄

)

. (53)

Approximating ∂x1
wh

ij,̄ij̄
and ∂x2

wh
ij,̄ij̄

in the same way as ∂x1
ϕh

ij,̄ij̄
and ∂x2

ϕh
ij,̄ij̄

by

(40)–(43).

ACKNOWLEDGMENT

This work was partially supported by the Jindřich Nečas Center for Mathematical Mod-
elling, Research center of the Ministry of Education of the Czech Republic LC06052, Re-
search Direction Project of the Ministry of Education of the Czech Republic
No. MSM6840770010 and Supercomputing Methods in Mathematical Modelling of Prob-
lems in Engineering and Natural Sciences, project of the Student Grant Agency of the
Czech Technical University in Prague No. 283 OHK4-009/10 P3913.

(Received July 20, 2010)

R EF ERENC ES

[1] M. M. Baskaran and R. Bordaweker: Optimizing Sparse-Vector Matrix Multiplication
on Gpus. IBM Research Report RC24704, IBM 2009.

[2] N. Bell and M. Garland: Implementing sparse matrix-vector multiplication on
throughput oriented processors. In Supercomputing’09, Nov. 2009.

[3] M. Beneš: Mathematical and computational aspects of solidification of pure sub-
stances. Acta Math. Univ. Comenian. 70 (2000), 123–151.

[4] M. Beneš: Mathematical analysis of phase-field equations with numerically efficient
coupling terms. Interfaces and Free Boundaries 3 (2001), 201–221.

[5] M. Beneš: Diffuse-interface treatment of the anisotropic mean-curvature flow. Appl.
Math. 80 (2003), 6, 437–453.

270 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

[6] M. Beneš: Phase Field Model of Microstructure Growth in Solidification of Pure
Substances. PhD. Dissertation, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University, Prague 1997.

[7] M. Beneš, K. Mikula, T. Oberhuber, and D. Ševčovič: Comparison study for level set
and direct Lagrangian methods for computing Willmore flow of closed plannar curves.
Computing and Visualization in Science 12 (2009), 307–317.

[8] M. Bertalmio, V. Caselles, G. Haro, and G. Sapiro: Handbook of Mathematical Models
in Computer Vision. PDE-Based Image and Surface Inpainting, Springer 2006, pp. 33–
61.

[9] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder: Sparse matrix solvers on the gpu:
Conjugate gradients and multigrid. ACM Trans. Graphics 22 (2003), 3, 917–924.

[10] L. Buatois, G. Caumon, and B. Levy: Concurrent number cruncher: a gpu implemen-
tation of a general sparse linear solver. Internat. J. Parallel Emerg. Distrib. Syst. 24

(2009), 3, 205–223.

[11] Y.-G. Chen, Y. Giga, and S. Goto: Uniqueness and existence of viscosity solutions
of generalized mean curvature flow equations. J. Differential Geom. 33 (1991), 3,
749–786.

[12] U. Clarenz: The Wulff shape minimizes an anisotropic Willmore functional. Interfaces
and Free Boundaries 6 (2004), 351–360.

[13] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu: A finite element method
for surface restoration with smooth boundary conditions. Computer Aided Geometric
Design 21 (2004), 5, 427–445.

[14] K. Deckelnick and G. Dziuk: Mathematical aspects of evolving interfaces. Lecture
Notes in Math. 1812, Numerical Approximation of Mean Curvature Flow of Graphs
and Level Sets, Springer-Verlag, Berlin–Heidelberg 2003, pp. 53–87.

[15] G. Dziuk, E. Kuwert, and R. Schätzle: Evolution of elastic curves in Rn: Existence
and computation. SIAM J. Math. Anal.41 (2003), 6, 2161–2179.

[16] L.C. Evans and J. Spruck: Motion of level sets by mean curvature II. Trans. Amer.
Math. Soc. 330 (1993), 1, 321–332.

[17] Y. Giga: Surface evolution equations: A level set approach. Birkhauser Verlag 2006.

[18] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.H. Buijssen, M. Grajew-
ski, and S. Turek: Exploring weak scalability for fem calculations on a gpu-enhanced
cluster. Parallel Computing, Special issue: High-performance computing using accel-
erators 33 (2007), 685–699.

[19] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker, C. Becker, and
S. Turek: Using gpus to improve multigrid solver performance on a cluster. Internat.
J. Comput. Sci. Engrg. 4 (2008), 1, 36–55.

[20] D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, and S. Turek:
Co-processor acceleration of an unmodified parallel solid mechanics code with feastgpu.
Internat. J. Comput. Sci. Engrg. 4 (2009), 4, 254–269.

[21] A. Grama, A. Gupta, G. Karypis, and V. Kumar: Introduction to Parallel Computing.
Pearson, Addison Wesley 2003.

[22] M. E. Gurtin: On the two-phase stefan problem with interfacial energy and entropy.
Arch. Rational Mech. Anal. 96 (1986), 200–240.

The CUDA implementation of the method of lines for the curvature dependent flows 271

[23] A. Handlovičová, K. Mikula, and F. Sgallari: Semi-implicit complementary volume
scheme for solving level set like equations in image processing and curve evolution.
Numer. Math. 93 (2003), 675–695.

[24] M. Harris: Optimizing parallel reduction in cuda. NVIDIA CUDA SDK 2007.

[25] W. Helfrich: Elastic properties of lipid bilayers: theory and possible experiments.
Zeitschrift für Naturforschung 28 (1973), 693–703.

[26] G. Huisken: Flow by mean curvature of convex surfaces into spheres. J. Differential
Geometry 20 (1984), 237–266.

[27] G. Huisken: Non-parametric mean curvature evolution with boudary conditions. J.
Differential Geom. 77 (1988), 369–379.

[28] M. Kimura: Topics in mathematical modeling. Jindřich Nečas Center for Mathemati-
cal Modelling 4, Lecture Notes, Geometry of Hypersurfaces and Moving Hypersurfaces
in Rm for the Study of Moving Boundary Problems, Matfyzpress, Publishing House
of Mathematics and Physics, Charles University in Prague 2008, pp. 39–94.

[29] J. Kruger and R. Westermann: Linear algebra operators for gpu implementation of
numerical algorithms. ACM Trans. Graphics 22 (2003), 3, 908–916.

[30] E. Kuwert and R. Schätzle: Gradient flow for the Willmore functional. Comm. Anal.
Geom. 10 (2003), 2, 307–340.

[31] E. Kuwert and R. Schätzle: The Willmore flow with small initial energy. J. Differ.
Geom. 57 (2001), 409–441.

[32] U. F. Mayer and G. Simonett: Evolution equations: Applications to physics, industry,
life scienses economics. Self-intersections for Willmore flow, Progress in nonlinear
differential equations and their applications, Birkhäuser Verlag, Basel 2003, pp. 341–
348.

[33] K. Mikula: Image processing with partial differential equations. In: Modern Methods
in Scientific Computing and Applications (A. Bourlioux and M. Gander, eds.), NATO
Science Ser. II 75, Kluwer Academic Publishers, Dodrecht 2002, pp. 283–322.

[34] K. Mikula and A. Sarti: Parametric and geometric deformable models: An application
in biomaterials and medical imagery. In: Parallel co-volume subjective surface method
for 3D medical image segmentation 2, 2007, pp. 123–160.

[35] J. C. C. Nitsche: On new results in the theory of minimal surfaces. Bull. Amer. Math.
Soc. 71 (1965), 195–270.

[36] T. Oberhuber: Complementary finite volume scheme for the anisotropic surface dif-
fusion flow. In: Proc. Algoritmy 2009 (A. Handlovičová, P. Frolkovič, K. Mikula, and
D. Ševčovič, eds.), pp. 153–164.

[37] T. Oberhuber: Numerical Solution of Willmore Flow. PhD. Thesis, Faculty of Nuclear
Sciences and Physical Engineering, Czech Technical University in Prague, 2009.

[38] M. Pharr, ed.: GPU Gems 2: Programming Techniques for High-Performance Graph-
ics and General–Purpose Computation. Addison-Wesley, 2005.

[39] G. Simonett: The Willmore flow near spheres. Differential and Integral Equations 14

(2001), 8, 1005–1014.

[40] V. Šimek, R. Dvořák, F. Zbořil, and J. Kunovský: Towards accelerated computation of
atmospheric equations using CUDA. In: 11th Internat. Conf. on Computer Modelling
and Simulation, pp. 449–454, 2009.

272 T. OBERHUBER, A. SUZUKI AND V. ŽABKA

[41] S. Svetina and B. Žekš: Membrane bending energy and shape determination of phos-
pholipid vesicles and red blood cells. Eur. Biophys. J. 17 (1989), 101–111.

[42] E. Vitásek: Numerické metody (In Czech). SNTL, Nakladatelstv́ı technické literatury,
1987.

[43] N. J. Walkington: Algorithms for computing motion by mean curvature. SIAM J.
Numer. Anal. 33 (1996), 6, 2215–2238.

[44] Y. Zhang, J. Cohen, and J. D. Owens: Fast tridiagonal solvers on the gpu. In: Proc.
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
2010, p. 10.

[45] Nvidia, http://developer.download.nvidia.com/compute/cuda/3 0/toolkit/docs/
NVIDIA CUDA ProgrammingGuide.pdf. NVIDIA CUDA Programming Guide 3.0,
2010.

Tomáš Oberhuber, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical

University in Prague, Trojanova 13, 120 00 Praha 2. Czech Republic.

e-mail: tomas.oberhuber@fjfi.cvut.cz

Atsushi Suzuki, CERMICS ENPC, 6 et 8 avenue Blaise Pascal, Cité Descartes – Champs

sur Marne, 77455 Marne la Vallée. France.

e-mail: Atsushi.Suzuki@cermics.enpc.fr

Vı́tězslav Žabka, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical

University in Prague, Trojanova 13, 120 00 Praha 2. Czech Republic.

e-mail: vitezslav.zabka@fjfi.cvut.cz

	INTRODUCTION
	Mathematical formulation
	Numerical approximation
	The CUDA implementationof the Runge--Kutta--Merson solver
	The Runge--Kutta--Merson solver for the Method of Lines
	Implementation of the Runge--Kutta--Merson solver on CPU
	Implementation of the Runge--Kutta--Merson method in CUDA

	Computational results
	Conclusion
	Appendix

