Kybernetika 47 no. 2, 207-221, 2011

Noncooperative games with noncompact joint strategies sets: Increasing best responses and approximation to equilibrium points

Rosa María Flores-Hernández and Raúl Montes-de-Oca

Abstract:

In this paper conditions proposed in Flores-Hernández and Montes-de-Oca \cite{Flores} which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied.

Keywords:

monotone maximizer in an optimization problem, noncooperative game, supermodular game, increasing optimal best response for each player, equilibrium point

Classification:

91A10

References:

  1. E. Altman and Z. Altman: S-modular games and power control in wireless networks. IEEE Trans. Automat. Control 48 (2003), 839-842.   CrossRef
  2. E. Burger: Introduction to the Theory of Games. Prentice Hall, Englewood Cliffs, N. J. 1963.   CrossRef
  3. R. M. Flores-Hernández and R. Montes-de-Oca: Monotonicity of minimizers in optimization problems with applications to Markov control processes. Kybernetika 43 (2007), 347-368.   CrossRef
  4. D. Fudenberg and J. Tirole: Game Theory. The MIT Press, Cambridge 1991.   CrossRef
  5. P. Milgrom and J. Roberts: Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58 (1990), 1255-1277.   CrossRef
  6. U. Rieder: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131.   CrossRef
  7. R. K. Sundaram: A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996.   CrossRef
  8. D. M. Topkis: Minimizing a submodular function on a lattice. Oper. Res. 26 (1978), 305-321.   CrossRef
  9. D. M. Topkis: Equilibrium points in nonzero-sum n-person submodular games. SIAM J. Control Optim. 17 (1979), 773-787.   CrossRef
  10. D. M. Topkis: Supermodularity and Complementarity. Princeton University Press, Princeton, N. J. 1998.   CrossRef
  11. X. Vives: Nash equilibrium with strategic complementarities. J. Math. Econ. 19 (1990), 305-321.   CrossRef
  12. D. D. Yao: S-modular games with queueing applications. Queueing Syst. 21 (1995), 449-475.   CrossRef