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1. INTRODUCTION

This paper deals with noncooperative games (see [2, 4, 10]) on Euclidean spaces
with noncompact sets of feasible joint strategies and with a finite set of players in
order to obtain increasing optimal best responses for each player. To meet this goal,
the theory on the monotone minimizers for a certain class of minimization problems
obtained in [3] is applied in a dual maximization version.

An interesting implication of this monotonicity is that it allows to construct
algorithms, which generate a monotone sequence of strategies that converges to an
equilibrium point. In fact, in the noncompact framework of this article an algorithm
to approximate equilibrium points for noncooperative games is supplied.

The main antecedents for obtaining increasing optimal best responses for each
player at noncooperative games are [5, 9, 10, 11] and [12]. In [9] and [10] compact
sets of feasible joint strategies are assumed. On the other hand, in [5, 11] and [12]
there are considered compact sets of feasible strategies for each player given strategies
of the other players, and the sets of feasible joint strategies as the Cartesian product
of these sets. In all these works, certain supermodularity conditions on the payoff
functions are taken into account.
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The novel contribution here is to remove the compactness in the sets of feasible
joint strategies and the hypothesis of supermodularity on the payoff functions. The
main assumption to meet this goal is to consider that the payoff functions in the
games taken into account are sup-compact and superadditive. Also, observe that
with this extension, in particular, it is possible to consider a noncompact version of
the two queues in tandem model (see [12]) in order to obtain increasing optimal best
responses for each player (see Example 3.4 below).

Furthermore, with the same hypothesis mentioned two paragraphs before, [9] and
[10] include two algorithms to approximate the equilibrium points (Round–Robin
optimization and simultaneous optimization). [1] and [12] give only one algorithm of
a Round–Robin optimization kind requiring also ascending sets of feasible strategies
for each player given strategies of the other players.

The contribution here is to present a version of the Round–Robin optimization al-
gorithm with minimal compactness conditions requiring the sets of feasible strategies
for each player given strategies of the other players to be decreasing or increasing.

The paper is organized as follows. Section 2 provides basic concepts and results on
lattices and the conditions that guarantee the existence of monotone maximizers. In
Section 3 the theory on noncooperative games and the existence of increasing optimal
best responses for each player are presented. Finally, in Section 4 the algorithm to
approximate equilibrium points for noncooperative games is given.

2. MONOTONE MAXIMIZERS IN OPTIMIZATION PROBLEMS

2.1. Terminology and some results of lattice theory

This section contains concepts and results of the lattice theory (see [10]) applied
to a Euclidean space, for instance, R

n, where n is a positive integer. For such a
space, the partial order � defined componentwise will be used, i. e., if x and y are
vectors, then the inequality x � y is understood as xi ≤ yi, for all i (where ≤ is
the usual order in R). Moreover, x ∧ y := inf{x, y} = (inf{x1, y1}, . . . , inf{xn, yn})
and x ∨ y := sup{x, y} = (sup{x1, y1}, . . . , sup{xn, yn}). Besides, [x,∞) := {z =
(z1, . . . , zn) ∈ R

n : xi ≤ zi < ∞, for all i} (obviously, if n = 1, this is the common
notation of a closed-open interval in R).

Following the notation given in [3], let Γ be a fixed subset of R
n. Let Θ be a

subset of Γ. γ̂ is an upper (lower) bound for Θ if γ̂ ∈ Γ and θ � γ̂ (γ̂ � θ) for each
θ ∈ Θ. γ̂ is the greatest (least) element of Θ if γ̂ is an upper (lower) bound for Θ
and γ̂ ∈ Θ. The supremum (infimum) of Θ is the least upper bound (greatest lower
bound), when the set of upper (lower) bounds of Θ has a least (greatest) element.
It is denoted by sup Θ (inf Θ). The notation supΓ Θ (infΓ Θ) is used as well if the
set Γ is not clear from the context.

Γ is said to be a lattice if γ1 ∧ γ2 and γ1 ∨ γ2 ∈ Γ, for all γ1, γ2 ∈ Γ.

Let Γ be a lattice and let Θ be a subset of Γ. Θ is a sublattice of Γ if Θ contains
θ ∧ θ′ and θ ∨ θ′ (with respect to Γ), for all θ, θ′ ∈ Θ. For a lattice Γ, £(Γ) denotes
the set of all nonempty sublattices of Γ.

Some of the following results have already been used in [3]. Now, in this pa-
per there are included some convenient versions of these results (and others not
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related to [3]), necessary for taking into account maximization problems instead of
minimization ones.

Let Γ1 and Γ2 be sets and let Θ be a subset of Γ1 × Γ2. The section of Θ in
γ2 ∈ Γ2 is Θγ2

= {γ1 : γ1 ∈ Γ1, (γ1, γ2) ∈ Θ} and the projection of Θ on Γ2 is
ΠΓ2

Θ = {γ2 : γ2 ∈ Γ2, Θγ2
6= ∅}.

Lemma 2.1. (Topkis [10], Lemma 2.2.3 (a)) Suppose that Γ1 and Γ2 are lattices
and Θ is a sublattice of Γ1 × Γ2. Then the section Θγ2

of Θ at each γ2 ∈ Γ2 is a
sublattice of Γ1.

Let Θ be a sublattice of a lattice Γ. Θ is a subcomplete sublattice of Γ if for each
nonempty subset Ψ of Θ, sup Ψ and inf Ψ exist and are contained in Θ. In fact, a
lattice in which every nonempty subset has a supremum and an infimum is complete.

Let Γ be a lattice. Let Θ and Υ be subsets of Γ. Θ is lower than Υ, written
Θ ⊑ Υ, if θ ∧ υ ∈ Θ and θ ∨ υ ∈ Υ for all θ ∈ Θ and υ ∈ Υ.

Let Γ be a lattice. Let Z be a nonempty subset of R
m, where m is a positive

integer. For x ∈ Z, let Γ(x) be a nonempty sublattice of Γ. It is said that the
correspondence x → Γ(x) is ascending if x → Γ(x) is increasing with respect to the
relation ⊑, i. e., Γ(x) ⊑ Γ(y), for x � y in Z.

Lemma 2.2. (Topkis [10], Theorem 2.4.5 (a)) Suppose that Γ1 and Γ2 are lattices.
If Θ is a sublattice of Γ1 × Γ2, then the section Θγ2

of Θ at γ2 ∈ Γ2 is ascending in
γ2 on the projection

∏

Γ2
Θ of Θ on Γ2.

Throughout this section let X and A be fixed nonempty Borel subsets of R
n

and R
m, respectively. For each x ∈ X , let A(x) be a nonempty (measurable)

subset of A (i. e., x → A(x) is a correspondence from X to A). Suppose that
K := {(x, a) : x ∈ X, a ∈ A(x)} is a measurable subset of X × A.

A correspondence x → A(x) from X to Rm is called lower hemicontinuous if for
any sequence {xk} in X with a limit point x′ in X and any a′ in A(x′) there exists
a sequence {ak} with ak in A(xk) for each k and having a′ as the limit point.

A function W : K → R is superadditive (it has isotone or increasing differences)
on K if W (y, a) + W (x, b) ≤ W (y, b) + W (x, a) for all x � y in X and a � b, with
a, b ∈ A(x)∩A(y). W is called subadditive (it has antitone or decreasing differences)
on K if −W is superadditive on K.

Let K be a lattice. A function ω : K → R is supermodular on K if ω(k) + ω(k′) ≤
ω(k ∨ k′) + ω(k ∧ k′), for each k and k′ ∈ K. w is called submodular if −w is
supermodular.

Lemma 2.3. Let V, W and ω be functions from K to R.

a) If V and W are superadditive functions, then V + W is superadditive.

b) Suppose that K is a lattice. If v and w are supermodular on K, then v + w is
supermodular on K as well.

c) Let K be a lattice. If W is superadditive on K, then W is supermodular on K.

d) Let K be a lattice. If ω(·, ·) is supermodular, then ω(x, ·) is also supermodular,
for each x ∈ X .
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e) Let K be a lattice. If W is a superadditive, increasing, and real-valued function
on K, and h is a convex, increasing, and real-valued function on the real line,
then h ◦ W is a superadditive function on K.

f) If W : R
n → R is twice differentiable, then W is superadditive if and only if

∂2W (x)
∂xi∂xj

≥ 0 for all distinct i and j and all x.

P r o o f . a) is proved in [3]. The proof of b) is a direct consequence of the definition
of a supermodular function. c) is a consequence of Theorem 10.12 in [7] considering
Z as K in the corresponding proof. d) follows from Lemma 2.4 c) in [3] since −w
is a submodular function. e) is a consequence of the dual results for supermodular
functions which appear in Table I and Theorem 3.1 of [8]. Finally, f) is a result that
appears in [10], p. 42. �

Let G : K → R be a function, which is measurable and bounded above (for
instance, a nonpositive one), and consider the following maximization problem:

max
a∈A(x)

G(x, a), (1)

x ∈ X (recall that x → A(x) is a correspondence from X to A). Also, for each
x ∈ X , define A∗(x) by

A∗(x) :=

{

a ∈ A(x) : G(x, a) = max
a∗∈A(x)

G(x, a∗)

}

.

Assumption 2.4. a) G is an upper semicontinuous (u.s.c.) function on K.
b) G is sup-compact on K, that is, for every x ∈ X and s̄ ∈ R, the set As̄(x) := {a ∈
A(x) : G(x, a) ≥ s̄} is compact.

Lemma 2.5. (Rieder [6], Theorem 4.1) Assumption 2.4 implies that there exists a
measurable function g : X → A such that g(x) ∈ A∗(x), x ∈ X , i. e. g is a maximizer
for (1). In particular, observe that A∗(x) 6= ∅, for every x ∈ X .

Lemma 2.6. Assumption 2.4 implies that A∗(x) is a compact set, for each x ∈ X .

P r o o f . The proof of Lemma 2.6 is similar to the proof of Lemma 2.6 in [3] using
the fact that G is u.s.c. and sup-compact instead of l.s.c. and inf-compact, because
now a maximization problem is considered instead of a minimization one. �

Lemma 2.7. (Topkis [10], Theorem 2.7.1) For each x ∈ X , suppose that A(x) is a
lattice and G(x, ·) is supermodular. Then, for every x ∈ X , A∗(x) is a sublattice of
A(x).

Lemma 2.8. (Topkis [10], Theorem 2.8.1) Suppose that Assumption 2.4 holds. If
A is a lattice, x → A(x) is ascending, A(y) ⊂ A(x) for x � y in X, G(x, ·) is
supermodular, for each x ∈ X , and G is superadditive on K, then x → A∗(x) is
ascending.
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Remark 2.9. Lemma 2.8 is also valid when A(x) ⊂ A(y) is considered instead of
A(y) ⊂ A(x) for x � y in X. To do this, it suffices to substitute the expression (2.8.2)
in [10], p. 75 by

0 ≤ f(y, b) − f(y, a ∨ b) ≤ f(y, a ∧ b) − f(y, a) ≤ f(x, a ∧ b) − f(x, a) ≤ 0.

2.2. Increasing maximizers of superadditive functions

In this subsection, problem (1) stated in Subsection 2.1 will be referred to.
There will be presented a result which allows to obtain increasing maximizers in

unbounded optimization problems. This result extends, in the context of Euclidean
spaces, a previous one obtained by Topkis [10] (see Theorem 2.8.3 in [10]). The
result in question is also a direct consequence of Theorem 3.2 in [3].

Lemma 2.10. Suppose that A and K are lattices. If x → A(x) is ascending (in
particular, for each x ∈ X , A(x) is a sublattice of A), A(y) ⊂ A(x) (or A(x) ⊂
A(y)) for x � y in X, G is superadditive on K, and Assumption 2.4 holds, then for
f(x) := supA∗(x), x ∈ X , it is obtained that f(x) � f(y), for all x � y. Moreover,
f(x) ∈ A∗(x) for every x ∈ X , i. e., f is a maximizer for (1).

P r o o f . The proof of Lemma 2.10 is similar to the proof of Theorem 3.2 in [3].
In fact, a maximization problem is considered here instead of a minimization one.
Specifically, to obtain the proof of Lemma 2.10, it is necessary to consider the proof
of Theorem 3.2 in [3] with the following changes: a) substitute a subadditive G by
a superadditive one, and b) instead of applying Lemmas 2.4 b), 2.6 and 2.8, use
Lemmas 2.3 c), 2.6, 2.8 (and Remark 2.9). �

Remark 2.11. For Lemma 2.10, the function f ′(x) := inf A∗(x), x ∈ X , also works
as an increasing maximizer for (1), using Lemma 2.3 b) of [3].

Example 2.12. Consider X = A = Z (where Z is the set of integers). Take A(x) =
[x,∞) ∩ Z, x ∈ X , and define G(x, a) = −ea−x, (x, a) ∈ K.

Lemma 2.13. Example 2.12 satisfies the assumptions of Lemma 2.10. (Therefore,
f(x) := supA∗(x), x ∈ X , is an increasing maximizer.)

P r o o f . This example is a direct consequence of Example 3.2 in [3]. In [3] in Lemma
3.2 it is proved that −G is a subadditive and inf-compact function on K; therefore,
G is a superadditive and sup-compact function on K, respectively, by definition. �

3. INCREASING OPTIMAL BEST RESPONSES FOR NONCOOPERATIVE
GAMES

3.1. Noncooperative games

A noncooperative game (see [10]) is a triple {N, K, {fi : i ∈ N}} consisting of a
nonempty set of players N , a set K of feasible joint strategies, and a collection of
payoff functions {fi : i ∈ N} such that the payoff function fi(x) is defined on K
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for each player i ∈ N . The set of players N is assumed to be finite and it takes
the form N = {1, . . . , n} where n = |N |. The strategy of player i is an mi−vector
xi. Let m =

∑n
i mi. A joint strategy is an m−vector x = (x1, . . . , xn) composed of

the strategies xi of each of the n players. The set of feasible joint strategies K is a
subset of R

m. The payoff function for each player i ∈ N is a real-valued function fi

defined on K such that for any feasible joint strategy x, player i receives the utility
fi(x).

For any joint strategy x and any player i, let x−i denote the vector of strategies
of all players in N except player i. For any joint strategy x, any player i, and any
mi−vector ai, let (x−i, ai) denote the joint strategy vector with the strategy xi of
player i replaced by ai in x and the other components of x left unchanged. Then
x = (x−i, xi) for any joint strategy x and any player i. The set of feasible strategies
for player i given the strategies x−i for the other players is denoted by

Ai(x−i) = {ai : (x−i, ai) ∈ K};

that is, Ai(x−i) is the section of K at x−i. For any player i, let

X−i = {x−i : Ai(x−i) 6= ∅}

be the collection of all vectors x−i of strategies for players other than i such that
there is some strategy ai for player i with (x−i, ai) being a feasible joint strategy;
that is, X−i is the projection of K on the coordinates of the strategies of all players
except player i. For any player i, let

Ai =
⋃

x−i∈X−i

Ai(x−i)

be the set of all his strategies that are a component of any feasible joint strategy;
that is, Ai is the projection of K on the coordinates of the strategy of player i. Note
that x−i is in R

m−mi , (x−i, ai) is in R
m, Ai(x−i) is a subset of R

mi , X−i is a subset
of R

m−mi , and Ai is a subset of R
mi . For x ∈ K, define

K(x) = (×i∈NAi(x−i)) ∩ K,

where ×i∈NAi(x−i) is the usual Cartesian product of the sets Ai(x−i), for i ∈ N .
Note that K = ×i∈NAi if and only if K(x) = K for each x in K.
For each vector x−i in X−i, the set of the best responses for player i is defined as:

A∗
i (x−i) :=

{

ai ∈ Ai(x−i) : fi(x−i, ai) = max
a∗

i
∈Ai(x−i)

fi(x−i, a
∗
i )

}

,

given x−i. For each player i, the correspondence x−i → A∗
i (x−i) from X−i to Ai is

called the best response correspondence.
For each feasible joint strategy x in K and each a ∈ K(x), define

G(x, a) =
∑

i∈N

fi(x−i, ai).
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For each feasible joint strategy x ∈ K, the set of best joint responses is given by:

A∗(x) =

{

a ∈ K(x) : G(x, a) = max
a∗∈K(x)

G(x, a∗)

}

and it consists of all feasible joint strategies such that the strategy for each player
i is feasible given x−i, and the sum of the payoffs to the n players is maximized
given that player i receives the payoff resulting from using the strategy for player i
instead of xi in x. The correspondence x → A∗(x) from K to K is called the best
joint response correspondence.

A noncooperative game {N, K, {fi : i ∈ N}} is a supermodular game if the set
K of feasible joint strategies is a sublattice of R

m, the payoff function fi(x−i, ai) is
supermodular in ai on Ai(x−i) for each x−i in X−i and each player i, and fi(·, ·) is
superadditive on Ki := {(x−i, ai) : x−i ∈ X−i, ai ∈ Ai(x−i)}, for each i.

Remark 3.1. a) In the definition of a supermodular game, fi(x−i, ai) is supermo-
dular in ai on Ai(x−i) for each x−i in X−i and each player i, as a consequence of
the fact that fi(·, ·) is superadditive on Ki for each i (see Lemma 2.3 c) and d)).
b) Notice that Ki = K, for each i.

A feasible joint strategy x is an equilibrium point if

fi(x−i, ai) ≤ fi(x)

for each ai in Ai(x−i) and each i ∈ N , that is, if x is in K and xi is in A∗
i (x−i) for

each i. Given an equilibrium point, there is no feasible way for any player to strictly
improve its utility if the strategies of all the other players remain unchanged.

The following well-known result characterizes the equilibrium points of a noncoo-
perative game as the fixed points of the best joint response correspondence.

Lemma 3.2. (Topkis [10], Lemma 4.2.1) The set of all equilibrium points for a
noncooperative game (N, K, {fi, i ∈ N}) is identical to the set of fixed points of the
correspondence x → A∗(x) from K to K.

In the rest of this section, the theory developed in Subsection 2.2 will be applied
to a certain class of supermodular games to obtain increasing optimal best responses
for each player i, on Euclidean spaces.

3.2. Increasing optimal best responses for player i

Theorem 3.3. Consider a supermodular game {N, K, {fi : i ∈ N}} for which the
set K of feasible joint strategies is nonempty, and for each i, Ai is a lattice on R

mi ,
Ai(·) is decreasing (or increasing), and the payoff function fi(·, ·) is u.s.c. and sup-
compact on Ki; the last consideration means that for all x−i ∈ X−i and s̄ ∈ R,
As̄(x−i) := {ai ∈ Ai(x−i) : fi(x−i, ai) ≥ s̄} is compact. Then

i) The set A∗
i (x−i) of the best responses for each player i is a nonempty compact

sublattice of Rmi for each x−i in X−i.
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ii) For each i and each x−i in X−i, there exists the supremum of A∗
i (x−i), and it

belongs to A∗
i (x−i) (in fact, the supremum is called the optimal best response

for each player i and each x−i in X−i).

iii) The best response correspondence x−i → A∗
i (x−i) is ascending on X−i for each

player i.

iv) The optimal best response is an increasing function from X−i into Ai for each
player i.

P r o o f . A∗
i (x−i) :=

{

ai ∈ Ai(x−i) : fi(x−i, ai) = maxa∗

i ∈Ai(x−i) fi(x−i, a
∗
i )

}

is
nonempty and compact because fi satisfies Assumption 2.4 (see Lemmas 2.5 and
2.6), for each i, by hypothesis. Because K is a sublattice of R

m, its section Ai(x−i)
is a sublattice of Rmi for each i and each x−i in X−i by Lemma 2.1. Since each
payoff function fi(x−i, ai) is supermodular in ai on Ai(x−i), for each x−i in X−i,
by hypothesis (see also Remark 3.1 a)), and Ai(x−i) is a lattice of R

mi , for each i,
A∗

i (x−i) is a sublattice of Ai(x−i), for each i, as a consequence of Lemma 2.7. Thus
A∗

i (x−i) is a compact sublattice of Ai(x−i). Part (ii) now follows from Theorem
2.3.1 of [10].

Because K is a sublattice of R
m, the section Ai(x−i) is ascending in x−i on the

projection X−i for each i by Lemma 2.2. Parts (iii) and (iv) follow from Lemma
2.10 considering that A = Ai, K = Ki (see Remarks 2.11 and 3.1 b)), for each i. �

3.3. Example

Example 3.4. Two queues in tandem (see [12]).
Consider two single-server queues in tandem. Each server has iid (independent and
identically distributed) exponential service times, with nonnegative rates µ1 and µ2,
respectively. Assume µ ≥ µ1 ∨ µ2. Server 1 has an infinite source of input jobs, and
there is a finite buffer between server 1 and server 2. The throughput of the system
is µ1 ∧ µ2; and the expected number of jobs in the buffer is equal to µ1/(µ2 − µ1)
if µ1 < µ2, and equal to M > 0 if it is otherwise (see Example 2.4, p. 455 in [12]).
For i = 1, 2, let pi(µ1 ∧ µ2) be the profit function for service i, and ci(µi) be the
operating cost function. Suppose that it is also an inventory cost function g(·) for
the jobs in the buffer.

The two servers (players) maximize the following payoff functions respectively:

f1(µ1, µ2) := p1(µ1 ∧ µ2) − c1(µ1) − g

(

µ1

µ2 − µ1

)

,

and

f2(µ1, µ2) := p2(µ1 ∧ µ2) − c2(µ2) − g

(

µ1

µ2 − µ1

)

,

with

A1(µ2) =

{

{µ1 : 0 ≤ µ1 < µ2}, µ2 6= µ
{µ1 : 0 ≤ µ1 ≤ µ2}, µ2 = µ, 0

.
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A2(µ1) =

{

{µ2 : µ1 < µ2 ≤ µ}, µ1 6= 0
{µ2 : µ1 ≤ µ2 ≤ µ}, µ1 = 0

.

Lemma 3.5. Let g(·) be an increasing, convex, bounded, twice differentiable and
real-valued function on R

2, let pi(·) be an increasing, continuous, convex and bounded
function on the real line, and let ci(·) be a continuous and bounded function, for
i = 1, 2. Then the game (N, K, {fi : i ∈ N}) of Example 3.4 is a supermodular one,
and the optimal best response for player i is increasing.

P r o o f . It is not difficult to observe that A1(·) is increasing (i. e. A1(x) ⊂ A1(y)
for x ≤ y), A2(·) is decreasing (i. e. A2(y) ⊂ A2(x) for x ≤ y), and that Ai (for
i = 1, 2) and K are lattices.

It is possible to verify that pi(µ1 ∧ µ2) for i = 1, 2 is superadditive applying
Lemma 2.3 e), due to W (µ1, µ2) := µ1 ∧µ2 is an increasing, superadditive and real-
valued function on Ki = {(µ−i, µi) : µ−i ≥ 0, µi ∈ Ai(µ−i)} for i = 1, 2, and using
the fact that pi(·) is an increasing and convex function, for i = 1, 2. Also, Lemma

2.3 f) implies that g
(

µ1

µ2−µ1

)

is a superadditive function. Thus, fi is superadditive

on Ki for each i, as a consequence of the above and of applying Lemma 2.3 a).
By Lemma 2.3 b), f1(·, µ2) and f2(µ1, ·) are trivially supermodular, for all µ2 ∈

A2(µ1) and all µ1 ∈ A1(µ2), respectively; it is also due to Remark 3.1 a).
Thus, the game described here is a supermodular one.
Furthermore, observe that fi is a continuous function on Ki, for each i, and it is

sup-compact on Ki due to the continuity and boundedness of fi for i = 1, 2. Thus,
the hypotheses of Theorem 3.3 are satisfied, concluding so that Example 3.4 has an
increasing optimal best response for player i. �

Remark 3.6. Observe that the sets A1(µ2), µ2 6= µ and A2(µ1), µ1 6= 0 are non-
compact. The set K is noncompact as well.

4. ALGORITHMS TO APPROXIMATE AN EQUILIBRIUM POINT

The following algorithm corresponds to the iterative decision-making process by
which the n players take turns with each player successively maximizing that player’s
own payoff function with respect to its own feasible strategies while the strategies of
the other n − 1 players are held fixed; that is, each individual player proceeds in a
Round–Robin fashion (see [10] pp. 185–188) to update his own strategy by selecting
a best response.

4.1. Round–Robin optimization

The following algorithm will be used under the assumptions of Theorem 4.2 below in
order to generate an infinite sequence of feasible joint strategies; besides, a stopping
rule is provided.

Algorithm 4.1. Given a noncooperative game (N, K, {fi : i ∈ N}), proceed as
follows:
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a) If K contains its infimum, inf K, set x0,0 = inf(K). Otherwise, stop.

b) Given xk,i in K for any nonnegative integers k and i with i < n, let xk,i+1 =

(xk,i

−(i+1), a
k,i+1
i+1 ) where ak,i+1

i+1 is the infimum of the set A∗
i+1(x

k,i

−(i+1)) if such

an element exists. Otherwise, stop.

c) Increment i by 1. If i = n then, to set xk+1,0 = xk,n, increment k by 1, and
take i = 0; xk,n has been generated for some k. Return to step b) and continue.

Theorem 4.2 establishes monotonicity and stops when applied to a supermo-
dular game with certain characteristics. Part (a) of Theorem 4.2 shows that the
sequence xk,i generated by Algorithm 4.1 is increasing in k and i. This reduces
the problem of finding xk,i+1 given xk,i for i < n in step b) of Algorithm 4.1

from a maximization problem over Ai+1(x
k,i

−(i+1)) to a maximization problem over

Ai+1(x
k,i

−(i+1)) ∩ [xk,i
i+1,∞).

Theorem 4.2. Consider a supermodular game (N, K, {fi : i ∈ N}) for which the
set K of feasible joint strategies is nonempty such that S = inf K ∈ K, and for
each i, the set Ai is a lattice on R

mi , the set Ai(S−i) is compact if the set Ai(·) is
decreasing (where S−i denotes the infimum of K except the ith component), and the
set Ai is compact if Ai(·) is increasing, and the payoff function fi(x−i, ai) is u.s.c.
and sup-compact on Ki. Then

a) Algorithm 4.1 never stops at step a) or step b) and this generates an infinite
sequence xk,i that is increasing in k and i for k = 0, 1, . . . and i = 0, . . . , n.
Hence, there exists a feasible joint strategy x′ in K such that limk→∞ xk,i = x′

for i = 0, . . . , n.

b) If a feasible joint strategy appears n successive times in the sequence {xk,i :
k ≥ 0, 1 ≤ i ≤ n} generated by step b) of Algorithm 4.1, then this joint
strategy is an equilibrium point.

c) If Algorithm 4.1 generates an equilibrium point at some iteration, then it
generates the same equilibrium point at each subsequent iteration.

P r o o f . Algorithm 4.1 does not stop at step (a) because the nonempty sublattice
K contains its infimum, and it does not stop at step (b) by part (ii) of Theorem 3.3.
Therefore, steps (a) and (b) of Algorithm 4.1 proceed without stopping, and this
generates an infinite sequence of feasible joint strategies.

Since x0,0 is the infimum of the sublattice K, x0,i ≤ x0,i+1 for i = 0, . . . , n − 1;
specifically, x0,i

i+1 ≤ x0,i+1
i+1 = a0,i+1

i+1 for i = 0, . . . , n − 1, where a0,i+1
i+1 is the infimum

of A∗
i+1(x

0,i

−(i+1)) ⊂ Ai+1(x
0,i

−(i+1)) and x0,i
i+1 ∈ Ai+1(x

0,i

−(i+1)). In addition, x0,i ≤ x1,i

for i = 0, . . . , n, because x1,i ≥ x1,0 (since x1,i ≥ x1,i−1 for i = 1, . . . , n), and
x1,0 := x0,n ≥ x0,i, for i = 0, . . . , n. Now suppose that integers k′ and i′ are
such that 1 < k′, 0 ≤ i′ ≤ n − 1, xk,i ≤ xk,i+1 for all k = 1, . . . , k′ − 1 and
i = 0, . . . , n− 1. This supposition implies that xk,i ≤ xk+1,i for all k = 1, . . . , k′ − 1
and i = 0, . . . , n because xk+1,i ≥ xk+1,0 := xk,n ≥ xk,i for i = 0, . . . , n. Suppose
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also that xk′,i ≤ xk′,i+1 for i = 0, . . . , i′ − 1. Since this supposition holds for k′ = 1

and i′ = 1, it suffices to show that xk′,i′ ≤ xk′,i′+1. Because ak′−1,i′+1
i′+1 is the infimum

of A∗
i′+1(x

k′−1,i′

−(i′+1)), ak′,i′+1
i′+1 is the infimum of A∗

i′+1(x
k′,i′

−(i′+1)), and xk′−1,i′ ≤ xk′,i′ by

the induction hypothesis, part (iv) of Theorem 3.3 implies that ak′−1,i′+1
i′+1 ≤ ak′,i′+1

i′+1

and hence

xk′,i′ = (xk′,i′

−(i′+1), a
k′−1,i′+1
i′+1 ) ≤ (xk′,i′

−(i′+1), a
k′,i′+1
i′+1 ) = xk′,i′+1.

Therefore, xk,i is an infinite sequence increasing in k and i, for k ≥ 0 and i = 0, . . . , n;
specifically, ak,i

i ≤ ak+1,i
i for k ≥ 0 and i = 0, . . . , n.

This result and the fact that Ai(·) is decreasing for some i, by hypothesis, implies
that

ak,i
i ∈ A∗

i (x
k,i−1
−i ) ⊂ Ai(x

k,i−1
−i ) ⊂ . . . ⊂ Ai(x

0,i−1
−i ) ⊂ Ai(x

0,0
−i ),

for k ≥ 0. Then, as ak,i
i ∈ Ai(x

0,0)
−i ) is an increasing sequence in k, for each i fixed,

and Ai(x
0,0
−i ) is a compact set, by hypothesis, ak,i

i converges to some x′
i ∈ Ai(x

0,0
−i ),

for this kind of i.

Now, if Ai(·) is increasing for the rest of i, the result obtained implies that

ak,i
i ∈ A∗

i (x
k,i−1
−i ) ⊂ Ai(x

k,i−1
−i ) ⊂ Ai,

for k ≥ 0. Then, as ak,i
i ∈ Ai is an increasing sequence in k, for each i fixed, and Ai

is a compact set, by hypothesis, ak,i
i converges to some x′

i ∈ Ai, for these i.
So xk,i converges to x′ = (x′

1, . . . , x
′
n).

Part (b) follows directly from the definition of an equilibrium point.
Suppose xk,i is an equilibrium point and i < n. To establish part (c), it suffices

to show that xk,i+1 = xk,i, or equivalently, that ak,i+1
i+1 = ak,i

i+1. Because xk,i is an

equilibrium point, ak,i
i+1 is in A∗

i+1(x
k,i

−(i+1)) by Lemma 3.2. By step (b) of Algorithm

4.1, ak,i+1
i+1 is the infimum of A∗

i+1(x
k,i

−(i+1)) and so ak,i+1
i+1 ≤ ak,i

i+1. By part (a),

ak,i
i+1 ≤ ak,i+1

i+1 . Hence, ak,i+1
i+1 = ak,i

i+1, and part (c) holds. �

Theorem 4.3 below shows that the limit point of an increasing sequence generated
by Algorithm 4.1 is an equilibrium point.

Theorem 4.3. Consider a supermodular game (N, K, {fi : i ∈ N}) for which the
set K of feasible joint strategies is nonempty, for each i x−i → Ai(x−i) is a lower
hemicontinuous correspondence from X−i to R

mi , and the payoff function fi(x) is
continuous in x on K for each i. The limit point of the increasing sequence generated
by Algorithm 4.1 is an equilibrium point.

P r o o f . Let {xk,i} be the sequence generated by Algorithm 4.1. By part a) of
Theorem 4.2, this sequence is increasing in k and i and it converges to a limit point
x′. Pick any i with 1 ≤ i ≤ n and any a′

i in Ai(x
′
−i). Since limk→∞ xk,i = x′

and x−i → Ai(x−i) is a lower hemicontinuous correspondence, there exists ak
i in
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Ai(x
k,i
−i) for k = 0, 1, . . . such that limk→∞ ak

i = a′
i. By the construction of xk,i

i in

step b) of Algorithm 4.1, fi(x
k,i
−i , a

k
i ) ≤ fi(x

k,i
−i , x

k,i
i ) = fi(x

k,i) for each k (recall that

ak
i ∈ Ai(x

k,i
−i) and

xk,i
i = inf A∗

i (x
k,i
−i)

= inf

{

ai ∈ Ai(x
k,i
−i) : fi(x

k,i
−i , ai) = max

a∗

i
∈Ai(x

k,i
−i

)
fi(x

k,i
−i , a

∗
i )

}

for each k). By the continuity of fi(x),

fi(x
′
−i, a

′
i) = lim

k→∞
fi(x

k,i
−i , a

k
i ) ≤ lim

k→∞
fi(x

k,i) = fi(x
′).

Hence, x′ is an equilibrium point. �

Lemma 4.4. Example 3.4 has an equilibrium point and it can be approximated by
an increasing sequence of feasible joint strategies applying Algorithm 4.1.

P r o o f . The conclusion of Theorem 4.2 is valid for Example 3.4 since inf K =
(0, 0) ∈ K, and A2(0) = [0, µ] and A1 = [0, µ] are both compact sets. The rest of
hypotheses has already been verified in the proof of Lemma 3.5.

Furthermore, it is not difficult to observe that Example 3.4 satisfies the hypotheses
of Theorem 4.3, because x−i → Ai(x−i) is a lower hemicontinuous correspondence
from X−i to R

mi for each i, and the rest has already been verified in the proof of
Lemma 3.5. �

The following examples illustrate Algorithm 4.1 when the equilibrium point ap-
pears in two and in four iterations.

Example 4.5. Consider Ai(·), i = 1, 2 as in Example 3.4 with the following specific
characteristics in the payoff functions f1 and f2:

1. Let pi be an increasing, continuous, convex and bounded function on the real
line with pi(0) = 0, for i = 1, 2.

2. Let ci(·) be an increasing, continuous and bounded function.

3. Let g(·) be an increasing, convex, bounded, twice differentiable and real-valued
function on R

2.

Lemma 4.6. In Example 4.5, the equilibrium point is reached in two iterations.

P r o o f . Following Algorithm 4.1, observe that inf K = (0, 0) = µ0,0 = (µ0,0
1 , µ0,0

2 ),
also the facts that k = 0 and i = 0 imply that µ0,1 = (a0,1

1 , µ0,0
−1), with

a0,1
1 = inf A∗

1(µ
0,0
−1) = inf A∗

1(µ
0,0
2 ) = inf A∗

1(0)

= inf

{

a1 ∈ A1(0) : f1(0, a1) = max
a∗

1
∈{0}

f1(0, a∗
1)

}

,
(2)
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where

f1(0, a∗
1) = p1(0 ∧ a∗

1) − c1(a
∗
1) − g

(

a∗
1

0 − a∗
1

)

= p1(0) − c1(a
∗
1) − g(M).

Then a∗
1 = 0, a0,1

1 = 0, and µ0,1 = (0, 0).

Now for i = 1, µ0,2 = (µ0,1
−2, a

0,2
2 ), with

a0,2
2 = inf A∗

2(µ
0,1
−2) = inf A∗

2(µ
0,1
1 ) = inf A∗

2(0)

= inf

{

a2 ∈ A2(0) : f2(0, a2) = max
a∗

2
∈[0,µ]

f2(0, a∗
2)

}

,
(3)

where

f2(0, a∗
2) = p2(0 ∧ a∗

2) − c2(a
∗
2) − g

(

0

a∗
2 − 0

)

= p2(0) − c2(a
∗
2) − g(0),

and as c2 is an increasing function on [0, µ], the maximum of f2 ocurrs in a∗
2 = 0.

Thus a0,2
2 = 0 and µ0,2 = (0, 0). Then µ0,1 = (0, 0) = µ0,2 implies that (0, 0) is an

equilibrium point, by Theorem 4.2 b) and c). �

Example 4.7. Consider Ai(·), i = 1, 2 as in Example 3.4 with the following specific
characteristics in the payoff functions f1 and f2:

1. Let pi be a constant function on the real line, i. e. pi(·) = c, for c ∈ R.

2. Let c1(µ1) =
(

µ1 −
µ
4

)2
and c2(µ2) =

(

µ2 −
µ
2

)2
.

3. Let g(·) be a constant function on R
2, i. e. g(·) = d, for d ∈ R.

Lemma 4.8. In Example 4.7, the equilibrium point is reached in four iterations.

P r o o f . Following Algorithm 4.1, observe that inf K = (0, 0) = µ0,0 = (µ0,0
1 , µ0,0

2 ),
also the facts that k = 0 and i = 0 imply that µ0,1 = (a0,1

1 , µ0,0
−1), where a0,1

1 is
defined as in (2) with

f1(0, a∗
1) = p1(0) − c1(a

∗
1) − g(M)

= c −
(

a∗
1 −

µ

4

)2

− d.

Then a∗
1 = 0, a0,1

1 = 0, and µ0,1 = (0, 0).

Now for i = 1, µ0,2 = (µ0,1
−2, a

0,2
2 ), where a0,2

2 is defined as in (3), with

f2(0, a∗
2) = p2(0) − c2(a

∗
2) − g(0)

= c −
(

a∗
2 −

µ

2

)2

− d.

Thus, a∗
2 = µ

2 , a0,2
2 = µ

2 , and µ0,2 = (0, µ
2 ).
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When i = 2 = n, µ1,0 = µ0,2 = (0, µ
2 ), k = 1 and i = 0. In this case, µ1,1 =

(a1,1
1 , µ1,0

−1), with

a1,1
1 = inf A∗

1(µ
1,0
−1) = inf A∗

1(µ
1,0
2 ) = inf A∗

1

(µ

2

)

= inf

{

a1 ∈ A1

(µ

2

)

: f1

(µ

2
, a1

)

= max
a∗

1
∈[0,

µ
2
)
f1

(µ

2
, a∗

1

)

}

,

where

f1

(µ

2
, a∗

1

)

= p1

(µ

2
∧ a∗

1

)

− c1(a
∗
1) − g

(

a∗
1

µ
2 − a∗

1

)

= p1(a
∗
1) −

(

a∗
1 −

µ

4

)2

− d

= c −
(

a∗
1 −

µ

4

)2

− d.

Thus, a∗
1 = µ

4 , a1,1
1 = µ

4 , and µ1,1 = (µ
4 , µ

2 ).

Now for i = 1, µ1,2 = (µ1,1
−2, a

1,2
2 ), with

a1,2
2 = inf A∗

2(µ
1,1
−2) = inf A∗

2(µ
1,1
1 ) = inf A∗

2

(µ

4

)

= inf

{

a2 ∈ A2

(µ

4

)

: f2

(µ

4
, a2

)

= max
a∗

2
∈( µ

4
,µ]

f2

(µ

4
, a∗

2

)

}

,

where

f2

(µ

4
, a∗

2

)

= p2

(µ

4
∧ a∗

2

)

− c2(a
∗
2) − g

( µ
4

a∗
2 −

µ
4

)

= p2

(µ

4

)

−
(

a∗
2 −

µ

2

)2

− d

= c −
(

a∗
2 −

µ

2

)2

− d.

Then a∗
2 = µ

2 , a1,2
2 = µ

2 , and µ1,2 = (µ
4 , µ

2 ). Thus, as µ1,1 =
(

µ
4 , µ

2

)

= µ1,2, then
(µ

4 , µ
2 ) is an equilibrium point, by Theorem 4.2 b) and c). �
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