Kybernetika 46 no. 4, 600-608, 2010

Cut properties of resemblance

Vladimir Janiš, Magdaléna Renčová, Branimir Šešelja and Andreja Tepavčević


The resemblance relation is used to reflect some real life situations for which a \f equivalence is not suitable. We study the properties of cuts for such relations. In the case of a resemblance on a real line $E$ we show that it determines a special family of crisp functions closely connected to its cut relations. Conversely, we present conditions which should be satisfied by a collection of real functions in $E$ in order that this collection determines a resemblance relation.


fuzzy sets, resemblance relation, cuts




  1. M.~De Cock and E.~Kerre: Why fuzzy T-equivalence relations do not resolve the Poincar\'e paradox, and related issues. Fuzzy Sets and Systems {\mi 133} (2003), 181--192.   CrossRef
  2. M.~De Cock and E.~Kerre: On (un)suitable fuzzy relations to model approximate equality. Fuzzy Sets and Systems {\mi 133} (2003), 137--153.   CrossRef
  3. V.~Jani\v s, M.~Ren\v cov\' a, B.~\v{S}e\v{s}elja, and A.~Tepav\v{c}evi\'{c}: Construction of fuzzy relation by closure systems. In: PReMI 2009 (S.~Chaudhury et al., eds.), LNCS 5909, Springer-Verlag, Berlin\,--\,Heidelberg 2009, pp.\,116--121.   CrossRef
  4. M.~Kalina: Derivatives of fuzzy functions and fuzzy derivatives. Tatra Mountains Math. Publ. {\mi 12} (1997), 27--34.   CrossRef
  5. B.~\v{S}e\v{s}elja and A.~Tepav\v{c}evi\'{c}: Completion of ordered structures by cuts of fuzzy sets: an overview. Fuzzy Sets and Systems {\mi 136} (2003), 1--19.   CrossRef
  6. B.~\v{S}e\v{s}elja and A.~Tepav\v{c}evi\'{c}: Representing ordered structures by cuts of fuzzy sets: an overview. Fuzzy Sets and Systems {\mi 136} (2003), 21--39.   CrossRef
  7. B.~\v{S}e\v{s}elja and A.~Tepav\v{c}evi\'{c}: Equivalent fuzzy sets. Kybernetika {\mi 41} (2005), 115--128.   CrossRef