Kybernetika 56 no. 3, 516-542, 2020

Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization

Da-Ke Gu and Da-Wei ZhangDOI: 10.14736/kyb-2020-3-0516

Abstract:

This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile, it also proposes a novel method to realize multi-objective design and optimization. Multiple performance objectives, containing overall eigenvalue sensitivity, $H_2$ norm, $H_\infty$ norm and low compensation gain, are formulated by arbitrary parameters, then robustness and low compensation gain criteria are expressed by a comprehensive objective function which contains each performance index weighted. By utilizing degrees of freedom (DOFs) in arbitrary parameters, we can optimize the comprehensive objective function such that an optimized dynamic compensator is found to satisfy the robustness and low compensation gain criteria. Finally, an example of attitude control of combined spacecrafts is presented which proves the effectiveness and feasibility of the parametric approach.

Keywords:

quasi-linear systems, parametric control, dynamic compensator, multi-objective design and optimization, utilize DOFs in parameter matrices

Classification:

93B60, 93B52, 93B51

References:

  1. J. Chang: Dynamic compensator-based second-order sliding mode controller design for mechanical systems. IET Control Theory A 7 (2013), 13, 1675-1682.   DOI:10.1049/iet-cta.2012.1027
  2. C. K. Chen, T. W. Lai, J. J. Yan and T. L. Liao: Synchronization of two chaotic systems: Dynamic compensator approach. Chaos Soliton. Fract. 39 (2009), 15, 1055-1063.   DOI:10.1016/j.chaos.2007.04.004
  3. J. F. S. Dos Santos, P. C. Pellanda and A. M. Simões: Robust pole placement under structural constraints. Syst. Control Lett. 116 (2018), 8-14.   DOI:10.1016/j.sysconle.2018.03.008
  4. G.-R and Duan: Generalized Sylvester Equations -- Unified Parametric Solutions. CRC Press Taylor and Francis Group, Boca Raton 2014.   CrossRef
  5. G.-R. Duan: Parametric control of quasi-linear systems by output feedback. In: Proc. 14th International Conference on Control, Automation and Systems, IEEE Press, Gyeonggi-do 2014, pp. 928-934.   DOI:10.1109/iccas.2014.6987917
  6. G.-R. Duan and H.-H. Yu: LMIs in Control Systems Analysis, Design and Applications. CRC Press Taylor and Francis Group, Boca Raton 2013.   DOI:10.1201/b15060
  7. D.-K. Gu, G.-P. Liu and G.-R. Duan: Parametric control to a type of quasi-linear second-order systems via output feedback. Int. J. Control 92 (2019), 2, 291-302.   DOI:10.1080/00207179.2017.1350885
  8. D.-K. Gu, D.-W. Zhang and G.-R. Duan: Parametric control to a type of quasi-linear high-order systems via output feedback. Eur. J. Control. 47 (2019), 44-52.   DOI:10.1016/j.ejcon.2018.09.008
  9. D.-K. Gu, D.-W. Zhang and G.-R. Duan: Parametric control to linear time-varying systems based on dynamic compensator and multi-objective optimization. Asian J. Control (2019).   DOI:10.1002/asjc.2112
  10. D.-K. Gu and D.-W. Zhang: Parametric control to second-order linear time-varying systems based on dynamic compensator and multi-objective optimization. App. Math. Comput. 365 (2020), 124681.   DOI:10.1016/j.amc.2019.124681
  11. I. Hashem, D. Telen, P. Nimmegeers, F. Logist and J. V. Impe: Multi-objective optimization of a plug flow reactor using a divide and conquer approach. IFAC-PapersOnLine 50 (2017), 1, 8722-8727.   DOI:10.1016/j.ifacol.2017.08.1712
  12. L. Jadachowski, T. Meurer and A. Kugi: Backstepping observers for periodic quasi-linear parabolic PDEs. IFAC Proc. Vol. 47 (2014), 3, 7761-7766.   DOI:10.3182/20140824-6-za-1003.01246
  13. M. Klug, E. B. Castelan and V. J S. Leite: A dynamic compensator for parameter varying systems subject to actuator limitations applied to a T-S fuzzy system. IFAC Proc. Vol. 44 (2011), 1, 14495-145000.   DOI:10.3182/20110828-6-it-1002.02175
  14. T. Knüppel and F. Woittennek: Control design for quasi-linear hyperbolic systems with an application to the heavy rope. IEEE T. Automat. Control 60 (2015), 1, 5-18.   DOI:10.1109/tac.2014.2336451
  15. U. Konigorski: Pole placement by parametric output feedback. Syst. Control Lett. 61 (2012), 2, 292-297.   DOI:10.1016/j.sysconle.2011.11.015
  16. K. Li, T. Nagasio and T. Kida: Gain-scheduling control for extending space structures. Trans. Japan Soc. Mechani. Engineers Series C 70 (2004), 702, 1401-1408.   DOI:10.1299/kikaic.70.1401
  17. D. Lim, K. Yi, S. Jung, H. Jung and J. Ro: Optimal design of an interior permanent magnet synchronous motor by using a new surrogate-assisted multi-objective optimization. IEEE T. Magn. 51 (2015), 11, 1-4.   DOI:10.1109/tmag.2015.2449872
  18. G.-P. Liu and R. J. Patton: Eigenstructure Assignment for Control System Design. John Wiley and Sons, Hoboken 1998.   CrossRef
  19. P. Manuel, R. Gonzalo and T. Victor: Linear attraction in quasi-linear difference systems. J. Differ. Equ. Appl. 17 (2011), 5, 765-778.   DOI:10.1080/10236190903260820
  20. K. Mehrotra and P. Mahapatra: A jerk model to tracking highly maneuvering targets. IEEE T. Aero. Elec. Sys. 33 (1997), 4, 1094-1105.   DOI:10.1109/7.624345
  21. M. Mihai: Optimal singular control for quasi-linear systems with small parameters. Proc. Appl. Math. Mech. 7 (2007), 4130033-4130034.   DOI:10.1002/pamm.200700782
  22. R. J. Patton, G.-P. Liu and Y. Patel: Sensitivity properties of multirate feedback control systems, based on eigenstructure assignment. IEEE Trans. Automat. Control 40 (1995), 2, 337-342.   DOI:10.1109/9.341806
  23. D. Rotondo, F. Nejjari and V. Puig: Model reference switching quasi-LPV control of a four wheeled omnidirectional robot. IFAC Proc. Vol. 47 (2014), 3, 4062-4067.   DOI:10.3182/20140824-6-za-1003.00054
  24. J. H. Seo, H. Shim and J. Back: Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach. Automatica 45 (2009), 11, 2659-2664.   DOI:10.1016/j.automatica.2009.07.022
  25. S. X. She and S. J. Dong: Varying accelerated motion and comfort. Phys. Engrg. 16 (2006), 35-37. (In Chinese)   CrossRef
  26. J.-J. E. Slotine and W.-P. Li: Applied Nonlinear Control. Pearson Education Company, Upper Saddle River 1991.   CrossRef
  27. Y. R. Tang, X. Xiao and Y. M. Li: Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor. Measurement 109 (2017), 51-64.   DOI:10.1016/j.measurement.2017.05.036
  28. T. Tsuzuki and Y. Yamashita: Global asymptotic stabilization for a nonlinear system on a manifold via a dynamic compensator. IFAC Proc. Vol. 41 (2008), 2, 6178-6183.   DOI:10.3182/20080706-5-kr-1001.01043
  29. T. Yi, D. Huang, F. Fu, H. He and T. Li: Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process. IEEE Trans. Ind. Electron. 63 (2016), 4, 2488-2500.   DOI:10.1109/tie.2015.2510977
  30. T. Yuno and Y. Ohtsuka: Rendering a prescribed subset invariant for polynomial systems by dynamic state-feedback compensator. IFAC-PapersOnLine 49 (2016), 18, 1042-1047.   DOI:10.1016/j.ifacol.2016.10.305
  31. B. Zhou and G.-R. Duan: A new solution to the generalized Sylvester matrix equation $AV-EVF=BW$. Syst. Control Lett. 55 (2009), 3, 193--198.   DOI:10.1016/j.sysconle.2005.07.002
  32. D. Zhou, J. Wang, B. Jiang, H. Guo and Y. Ji: Multi-task multi-view learning based on cooperative multi-objective optimization. IEEE Access 6 (2018), 19465-19477.   DOI:10.1109/access.2017.2777888
  33. E. Zola, F. Barcelo-Arroyo and A. Kassler: Multi-objective optimization of WLAN associations with improved handover costs. IEEE Commun. Lett. 18 (2014), 11, 2007-2010.   DOI:10.1109/lcomm.2014.2359456