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PARAMETRIC CONTROL TO QUASI-LINEAR SYSTEMS
BASED ON DYNAMIC COMPENSATOR
AND MULTI-OBJECTIVE OPTIMIZATION

Da-Ke Gu and Da-Wei Zhang

This paper considers a parametric approach for quasi-linear systems by using dynamic com-
pensator and multi-objective optimization. Based on the solutions of generalized Sylvester
equations, we establish the more general parametric forms of dynamic compensator and the
left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters.
By using the parametric approach, the closed-loop system is converted into a linear constant
one with a desired eigenstructure. Meanwhile, it also proposes a novel method to realize multi-
objective design and optimization. Multiple performance objectives, containing overall eigen-
value sensitivity, H2 norm, H∞ norm and low compensation gain, are formulated by arbitrary
parameters, then robustness and low compensation gain criteria are expressed by a comprehen-
sive objective function which contains each performance index weighted. By utilizing degrees
of freedom (DOFs) in arbitrary parameters, we can optimize the comprehensive objective func-
tion such that an optimized dynamic compensator is found to satisfy the robustness and low
compensation gain criteria. Finally, an example of attitude control of combined spacecrafts is
presented which proves the effectiveness and feasibility of the parametric approach.

Keywords: quasi-linear systems, parametric control, dynamic compensator, multi-
objective design and optimization, utilize DOFs in parameter matrices
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1. INTRODUCTION

In the real-world, many practical nonlinear dynamical systems are quasi-linear, such
as attitude control of combined spacecrafts [16], spacecraft rendezvous [7], chaotic sys-
tems synchronization [8], robotics [26] and other applications [20, 25], such that there
has been attracting considerable research attention. For example, Knüppel and Woit-
tennek present a class of feed-forward control for the model of heavy rope described
by quasi-linear hyperbolic equations, through this method, the control problem can be
transformed into a Cauchy problem w.r.t. space [14]. Rotondo et al. combine reference
model approach with linear matrix inequalities to design a linear parameter-varying
controller which is suitable for quasi-linear time-varying form, therefore, a trajectory
tracking problem of a four wheeled omni-bearing robot is solved based on this technique
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[23]. Jadachowski et al. consider a design problem of observers for a type of quasi-linear
parabolic partial differential equations, they propose an extended Luenberger observer
based on backstepping method such that ensuring the boundary conditions of dynamic
exponential decay when linearizing observer error [12]. Additionally, there are also other
approaches to deal with quasi-linear systems [19, 21].

Unfortunately, there are several disadvantages for the above methods. Firstly, these
above methods are invalid in time-varying nonlinear systems. Secondly, the closed-loop
systems resulted in by these methods are generally nonlinear. Thirdly, the common
technique of these methods is to design static output feedback on the basis of differ-
ent control strategies, however static output feedback cannot arbitrarily configure all
closed-loop poles. In the study, we design a dynamic compensator to solve these above
mentioned drawbacks by a parametric approach, further, the DOFs can be increased
because of the higher order offered by dynamic compensator such that it is benefit to
realize multi-objective design and optimization.

Dynamic compensator, a class of dynamical output feedback, has attracted the great
attention of scholars. For instance, Tang et al. utilize robust sliding control and linear
quadratic optimal regulation to design dynamic compensator for an unmanned aerial
vehicle quad-rotor [27]. For polynomial systems, Yuno and Ohtsuka provide a suffi-
cient condition for existence of dynamic compensator and propose an exact algorithm
to compute such a compensator [30]. Chen et al. realize the master-slave chaotic syn-
chronization through dynamic compensator and give a sufficient condition to maintain
the global synchronization such that the strictly positively real constraint is ignored [2].
Tsuzuki and Yamashita implement a global asymptotic stabilization on a Riemannian
manifold by using a dynamic compensator and a global Lyapunov function for input-
affine systems [28]. Moreover, some others researches also give effective approaches to
design dynamic compensator [1, 13, 24]. However, on the one hand, the performances of
dynamic compensator of these above methods are limited because of utilizing the orig-
inal state vector rather than the additional compensation vector. On the other hand,
these methods lead into a large and complicated computation load such that the design
process is inflexible and it is difficult to realize performances optimization. Noteworthy,
the proposed parametric approach can deal with these drawbacks effectively and has
been successfully used to design dynamic compensator and implement multi-objective
optimization for linear time-varying systems [9, 10].

Note that optimization has become an essential problem to be urgently solved when
implementing the basic requirements of control systems. In practice, multi-objective
control problems are difficult and remain mostly open to this date. Therefore, a large
number of works have been devoted to multi-objective optimization methods. For exam-
ple, Lim et al. consider a novel surrogate-assisted multi-objective optimization algorithm
to optimize the torque amplitude, torque ripple, and magnet usage simultaneously for
interior permanent magnet synchronous motor, which can reduce the noise, vibration,
and cost [17]. Hashem et al. present a divide and conquer technique to realize multi-
objective optimization based on the solution to the Pareto front, under this method, a
more intuitive and more high-speed procedure can be obtained to handle conflict design
objectives for a plug flow reactor [11]. Zhou et al. transform multi-task multi-view
problem into a multi-objective optimization problem and present a cooperative multi-
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objective quantum-behaved particle swarm optimization algorithm, which is better than
other machine-learning algorithms, to solve the multi-objective optimization problem
[32]. For more see [29, 33], the most notable fact is that variables to be optimized in
the above methods possess physical meanings such that it can be only optimized in a
given region, that is, local optimal solution. However, in this paper, these variables to
be optimized are arbitrary parameters provided by the proposed parametric approach,
which have no physical meanings, therefore, the optimized interval is greatly expanded
such that it is a benefit to find a globally optimal solution.

This research investigates a parametric approach for quasi-linear systems by using
dynamic compensator and multi-objective optimization. Inspiring by the solutions of
generalized Sylvester equations [4, 31], parametric approach transforms system design
into determining a matrix Λ which contains closed-loop eigenvalues. Moreover, this ap-
proach gives a more complete parametric expressions of the left and right eigenvector
matrices with a group of arbitrary parameters. Then, the generally parametric form
of dynamic compensator is developed which consists of the left and right eigenvector
matrices and the matrix Λ. Further, it also considers a multi-objective optimization
problem. By utilizing the DOFs in arbitrary parameters to optimize a synthetic objec-
tive function, an approximately global optimal solution can be obtained to deal with
conflicts among design objectives and to reduce the difficulties when implementing dy-
namic compensator.

The main contributions of the proposed work focus on three aspects. Firstly, the
presented work proposes a parametric approach which can convert the closed-loop system
into a linear constant one with expected eigenstructure and provide the flexibility and
DOFs in arbitrary parameters when designing controller. Secondly, we design a class of
dynamic output feedback controller, called dynamic compensator, which can effectively
deal with the flaws of state and static output feedback. Thirdly, we also consider a novel
technique to multi-objective optimization which can implement a string of practical
requirements of control systems.

The remainder of this paper is divided into 5 sections. In Section 2, the problem
formulation of dynamic compensator for quasi-linear systems is presented, and some
preliminary preparations are given. Section 3 proposes the generally parametric form
of dynamic compensator in two cases, and gives a general design procedure of dynamic
compensator. Further, a multi-objective optimization problem is considered in Section
4. In Section 5, attitude control of combined spacecrafts is presented to prove the effec-
tiveness and feasibility of the parametric approach. Section 6 summarizes the proposed
work and prospects the future work.

2. PROBLEM FORMULATION AND PRELIMINARIES

2.1. Problem statement

In this study, we investigate a class of quasi-linear systems as follows{
ẋ = A(θ, x)x+B(θ, x)u,

y = C(θ, x)x,
(1)
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where x ∈ Rn, u ∈ Rr, y ∈ Rm are state vector, control input and measured output,
A(θ, x) ∈ Rn×n, B(θ, x) ∈ Rn×r, C(θ, x) ∈ Rm×n are the system coefficient matrices,
which are piecewise continuous functions of x and θ, θ is a time-variant parameter as

θ(t) =
[
θ1(t) θ2(t) · · · θk(t)

]T ∈ Ω ⊂ Rk, t ≥ 0, (2)

where Ω is a compact set.

Assumption 2.1. B(θ, x) and C(θ, x) are uniformly bounded in relation to θ and x.

Assumption 2.2.

rank
[
sI −A(θ, x) B(θ, x)

]
= rank

[
sI −AT(θ, x) CT(θ, x)

]
= n, ∀s ∈ C.

For system (1), we design a dynamic compensator as{
ξ̇ = F (θ, x)ξ +M(θ, x)y,

u = P (θ, x)ξ +Q(θ, x)y,
(3)

where ξ ∈ Rp is compensation vector, F (θ, x) ∈ Rp×p, M(θ, x) ∈ Rp×m and P (θ, x) ∈
Rr×p, Q(θ, x) ∈ Rr×m are the coefficient matrices of dynamic compensator (3) to be
determined. With dynamic compensator (3), we obtain the closed-loop system as[

ẋ

ξ̇

]
= Ac(θ, x)

[
x
ξ

]
, (4)

where

Ac(θ, x) =

[
A(θ, x) +B(θ, x)Q(θ, x)C(θ, x) B(θ, x)P (θ, x)

M(θ, x)C(θ, x) F (θ, x)

]
.

This paper considers the design problem of dynamic compensator (3) for quasi-linear
systems (1) such that closed-loop system (4) has a linear constant form with an expected
eigenstructure, that is the aim of this design is to let Ac(θ, x) be similar to an arbitrarily
constant matrix Λ ∈ C(n+p)×(n+p).

Lemma 2.1. Let T (θ, x) and V (θ, x) ∈ C(n+p)×(n+p) be the left and right closed-loop
eigenvector matrices satisfied

TT(θ, x)Ac(θ, x) = ΛTT(θ, x),

Ac(θ, x)V (θ, x) = V (θ, x)Λ.
(5)

Based on the above discussion, the problem of parametric design for quasi-linear
systems (1) with a dynamic compensator (3) can be stated as follows.

Problem 2.1. (DC—I) Given the quasi-linear systems (1) satisfied Assumptions 2.1
and 2.2, and an arbitrarily constant matrix Λ, exist the left and right closed-loop eigen-
vector matrices T (θ, x) and V (θ, x), and obtain the coefficient matrices F (θ, x), M(θ, x)
and P (θ, x), Q(θ, x) satisfying

TT(θ, x)V (θ, x) = I, (6)

and
TT(θ, x)Ac(θ, x)V (θ, x) = Λ. (7)
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Generally, quasi-linear systems (1) under dynamic compensator (3) is equivalent to
that {

Ẋ = Ā(θ, x)X + B̄(θ, x)U,

Y = C̄(θ, x)X,
(8)

where

U = K(θ, x)Y, (9)

meanwhile, XT =
[
xT ξT

]T
, and

Ā(θ, x) =

[
A(θ, x) 0

0 0

]
, B̄(θ, x) =

[
B(θ, x) 0

0 Ip

]
,

C̄(θ, x) =

[
C(θ, x) 0

0 Ip

]
, K(θ, x) =

[
Q(θ, x) P (θ, x)
M(θ, x) F (θ, x)

]
.

Thus the closed-loop system is obtained as

Ẋ = Āc(θ, x)X, (10)

where

Āc(θ, x) = Ā(θ, x) + B̄(θ, x)K(θ, x)C̄(θ, x).

Based on the above deduction, Problem 2.1 is converted into the following Problem 2.2.

Problem 2.2. (DC—II) Given the quasi-linear systems (8) and an arbitrarily con-
stant matrix Λ, exist the left and right closed-loop eigenvector matrices T (θ, x) and
V (θ, x), and obtain the static output feedback gain matrix K(θ, x) ∈ R(r+p)×(m+p)

satisfying

TT(θ, x)V (θ, x) = I, (11)

and

TT(θ, x)Āc(θ, x)V (θ, x) = Λ. (12)

2.2. Preliminary results

For the quasi-linear systems (1), a pair of right coprime factorization (RCF) is given as

(sI −A(θ, x))N(θ, x, s) = B(θ, x)D(θ, x, s), (13)

where N(θ, x, s) ∈ Rn×r[s] and D(θ, x, s) ∈ Rr×r[s] are a pair of polynomial matrices.
Denote N(θ, x, s) = [nij(θ, x, s)]n×r and D(θ, x, s) = [dij(θ, x, s)]r×r, and

ω1 = max {deg(nij(θ, x, s)), i = 1, 2, · · · , n, j = 1, 2, · · · , r} ,
ω2 = max {deg(dij(θ, x, s)), i = 1, 2, · · · , r, j = 1, 2, · · · , r} ,
ω = max {ω1, ω2} .

(14)
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Then, N(θ, x, s) and D(θ, x, s) are written as
N(θ, x, s) =

ω∑
i=0

Ni(θ, x)si,

D(θ, x, s) =

ω∑
i=0

Di(θ, x)si.

(15)

Another pair of RCF is also given as

(sI −AT(θ, x))H(θ, x, s) = CT(θ, x)L(θ, x, s), (16)

where H(θ, x, s) ∈ Rn×m[s] and L(θ, x, s) ∈ Rm×m[s] are a pair of polynomial matrices.
Denote H(s) = [hij(θ, x, s)]n×m and L(s) = [lij(θ, x, s)]m×m, and

τ1 = max {deg(hij(θ, x, s)), i = 1, 2, · · · , n, j = 1, 2, · · · ,m} ,
τ2 = max {deg(lij(θ, x, s)), i = 1, 2, · · · ,m, j = 1, 2, · · · ,m} ,
τ = max {τ1, τ2} .

(17)

Then, H(θ, x, s) and L(θ, x, s) are written as
H(θ, x, s) =

τ∑
i=0

Hi(θ, x)si,

L(θ, x, s) =

τ∑
i=0

Li(θ, x)si.

(18)

Lemma 2.2. Given the quasi-linear systems (1) satisfied Assumptions 2.1 and 2.2, let

N̄(θ, x, s) =

[
0 N(θ, x, s)
Ip 0

]
, D̄(θ, x, s) =

[
0 D(θ, x, s)
sIp 0

]
,

H̄(θ, x, s) =

[
0 H(θ, x, s)
Ip 0

]
, L̄(θ, x, s) =

[
0 L(θ, x, s)
sIp 0

]
,

(19)

thereby, N̄(θ, x, s), D̄(θ, x, s) and H̄(θ, x, s), L̄(θ, x, s) in Equation (19) satisfy the fol-
lowing RCF

(sI − Ā(θ, x))N̄(θ, x, s) = B̄(θ, x)D̄(θ, x, s),

(sI − ĀT(θ, x))H̄(θ, x, s) = C̄T(θ, x)L̄(θ, x, s).
(20)

3. SOLUTION TO PROBLEM DC

3.1. Case of Λ arbitrary

Theorem 3.1. Let N(θ, x, s), D(θ, x, s) and H(θ, x, s), L(θ, x, s) satisfy RCFs (13) and
(16), meanwhile, N̄(θ, x, s), D̄(θ, x, s) and H̄(θ, x, s), L̄(θ, x, s) satisfy RCF (20), then,
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1. The Problem 2.2 has a solution if and only if there exist two arbitrary parameter
matrices Zb ∈ C(m+p)×(n+p) and Zc ∈ C(r+p)×(n+p) satisfying

[
I Λ · · · Λτ

]
Φ(Zb, Zc)


I
Λ
...

Λω

 = I, (21)

where

Φ(Zb, Zc) = ΦT
H(Zb)ΦN (Zc), (22)

and ΦH(Zb) =
[
H̄0(θ, x)Zb H̄1(θ, x)Zb · · · H̄τ (θ, x)Zb

]
,

ΦN (Zc) =
[
N̄0(θ, x)Zc N̄1(θ, x)Zc · · · N̄ω(θ, x)Zc

]
.

(23)

2. When satisfying the above condition, the generally parametric forms of left and
right eigenvector matrices are obtained as

V (θ, x) =

[
V0(θ, x)
V1(θ, x)

]
=

ω∑
i=0

N̄i(θ, x)ZcΛ
i

=

ω∑
i=0

N̄i(θ, x)

[
Zc1
Zc0

]
Λi,

(24)

with

V0(θ, x) =

ω∑
i=0

Ni(θ, x)Zc0Λi, V1(θ, x) = Zc1, (25)

and

T (θ, x) =

[
T0(θ, x)
T1(θ, x)

]
=

τ∑
i=0

H̄i(θ, x)Zb(Λ
T)i

=

τ∑
i=0

H̄i(θ, x)

[
Zb1
Zb0

]
(ΛT)i,

(26)

with

T0(θ, x) =

τ∑
i=0

Hi(θ, x)Zb0(ΛT)i, T1(θ, x) = Zb1, (27)

where Zb0 ∈ Cm×(n+p), Zb1 ∈ Cp×(n+p) and Zc0 ∈ Cr×(n+p), Zc1 ∈ Cp×(n+p) satisfy the
following Constraints.

Constraint 3.1. det V (θ, x) 6= 0.

Constraint 3.2. TT
0 (θ, x)V0(θ, x) + TT

1 (θ, x)V1(θ, x) = I.
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3. Based on the above deduction, the static output feedback gain matrix K(θ, x) is
solved by

K(θ, x) = Wc(θ, x)
(
C̄(θ, x)V (θ, x)

)T
×
((
C̄(θ, x)V (θ, x)

) (
C̄(θ, x)V (θ, x)

)T)−1

,
(28)

or
K(θ, x) =

(
(TT(θ, x)B̄(θ, x))T(TT(θ, x)B̄(θ, x))

)−1

× (TT(θ, x)B̄(θ, x))TWT
b (θ, x),

(29)

where

Wc(θ, x) =

[
Wc0(θ, x)
Wc1(θ, x)

]
=

ω∑
i=0

D̄i(θ, x)ZcΛ
i

=

ω∑
i=0

D̄i(θ, x)

[
Zc1
Zc0

]
Λi,

(30)

with

Wc0(θ, x) =

ω∑
i=0

Di(θ, x)Zc0Λi, Wc1(θ, x) = V1(θ, x)Λ, (31)

and

Wb(θ, x) =

[
Wb0(θ, x)
Wb1(θ, x)

]
=

τ∑
i=0

L̄i(θ, x)Zb(Λ
T)i

=

τ∑
i=0

L̄i(θ, x)

[
Zb1
Zb0

]
(ΛT)i,

(32)

with

Wb0(θ, x) =

τ∑
i=0

Li(θ, x)Zb0(ΛT)i, Wb1(θ, x) = T1(θ, x)ΛT. (33)

P r o o f . Firstly, let us derive Equation (21).
Considering V (θ, x) in Equation (24) and T (θ, x) in Equation (26), we have

V (θ, x) =

ω∑
i=0

N̄iZcΛ
i = ΦN (Zc)


I
Λ
...

Λω

 , (34)

and

TT(θ, x) =

τ∑
i=0

ΛiZT
b H̄

T
i =

[
I Λ · · · Λτ

]
ΦT
H(Zb). (35)

According to Equation (11)

TT(θ, x)V (θ, x) =
[
I Λ · · · Λτ

]
ΦT
H(Zb)ΦN (Zc)


I
Λ
...

Λω

 = I, (36)
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then, the Equation (21) is proved. Therefore, the Equation (11) is equivalent to Equation
(21). Furthermore, by Equation (23), it can be clearly shown that Φ(Zb, Zc) is given by
Equation (22).

We secondly show that V (θ, x) and T (θ, x) can be expressed in the forms of (24)
and (26). Combining Equations (8)–(12), we obtain the following generalized Sylvester
equations as

TT(θ, x)Ā(θ, x) +WT
b (θ, x)C̄(θ, x) = ΛTT(θ, x),

Ā(θ, x)V (θ, x) + B̄(θ, x)Wc(θ, x) = V (θ, x)Λ,
(37)

where
WT
b (θ, x) = TT(θ, x)B̄(θ, x)K(θ, x),

Wc(θ, x) = K(θ, x)C̄(θ, x)V (θ, x).
(38)

Therefore, using the general solution to the generalized Sylvester equations [4, 31], the
parametric solutions are given in Equations (24), (26) and (30), (32).

Considering Equations (19) and (24), V (θ, x) can be written as

V (θ, x) =

ω∑
i=0

N̄iZcΛ
i

=

[
0 N0

Ip 0

]
Zc +

[
0 N1

0 0

]
ZcΛ + · · ·+

[
0 Nω
0 0

]
ZcΛ

ω

=

[
0 N0

Ip 0

] [
Zc1
Zc0

]
+

[
0 N1

0 0

] [
Zc1
Zc0

]
Λ + · · ·+

[
0 Nω
0 0

] [
Zc1
Zc0

]
Λω

=

[ ∑ω
i=0NiZc0Λi

Zc1

]
=

[
V0(θ, x)
V1(θ, x)

]
,

(39)
thus, Equation (25) is proved. The Equation (27) can be proved in the similar way as
shown above.

Now, we derive the parametric solutions of output feedback matrix K(θ, x) in (28)
or (29). Considering Equations (19) and (30), Wc(θ, x) can be written as

Wc(θ, x) =

ω∑
i=0

D̄iZcΛ
i

=

[
0 D0

0 0

]
Zc +

[
0 D1

Ip 0

]
ZcΛ +

[
0 D2

0 0

]
ZcΛ

2 + · · ·+
[

0 Dω

0 0

]
ZcΛ

ω

=

[
0 D0

0 0

] [
Zc1
Zc0

]
+

[
0 D1

Ip 0

] [
Zc1
Zc0

]
Λ

+

[
0 D2

0 0

] [
Zc1
Zc0

]
Λ2 + · · ·+

[
0 Dω

0 0

] [
Zc1
Zc0

]
Λω

=

[ ∑ω
i=0DiZc0Λi

Zc1Λ

]
=

[
Wc0(θ, x)
V1(θ, x)Λ

]
=

[
Wc0(θ, x)
Wc1(θ, x)

]
,

(40)
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thus, Equation (31) is proved. Similarly, we can also obtain Equation (33).

Meanwhile, considering Equation (37)

TT(θ, x)Ā(θ, x)V (θ, x) +WT
b (θ, x)C̄(θ, x)V (θ, x) = Λ,

TT(θ, x)Ā(θ, x)V (θ, x) + TT(θ, x)B̄(θ, x)Wc(θ, x) = Λ,
(41)

we can obtain

WT
b (θ, x)C̄(θ, x)V (θ, x) = TT(θ, x)B̄(θ, x)Wc(θ, x), (42)

then

(TT(θ, x)B̄(θ, x))TTT(θ, x)B̄(θ, x)Wc(θ, x)(C̄(θ, x)V (θ, x))T

= (TT(θ, x)B̄(θ, x))TWT
b (θ, x)C̄(θ, x)V (θ, x)(C̄(θ, x)V (θ, x))T,

(43)

based on Constraint 3.1, V (θ, x) and T (θ, x) are non-singular, under Assumption 2.1, we
can clearly know that (TT(θ, x)B̄(θ, x))T(TT(θ, x)B̄(θ, x)) and (C̄(θ, x)V (θ, x))(C̄(θ, x)
V (θ, x))T are also non-singular (see [5]), pre-multiply both sides of the above Equa-
tion (43) by the inverse of (TT(θ, x)B̄(θ, x))T(TT(θ, x)B̄(θ, x)), post-multiply by the
inverse of (C̄(θ, x)V (θ, x))(C̄(θ, x)V (θ, x))T, clearly shows that two expressions of the
gain matrix K(θ, x) are equivalent to each other, hence, Equations (28) and (29) are be
derived.

In summary, we have proved Theorem 3.1 completely.

�

3.2. Case of Λ diagonal

In general, Λ is required to be a diagonal one

Λ = diag {λ1, λ2, · · · , λn+p} , (44)

where λi ∈ C−, i = 1, 2, · · · , n + p are a set of self-conjugate complex poles. Hence,
V (θ, x), Wc(θ, x) and T (θ, x), Wb(θ, x) are replaced by

V (θ, x) =
[
v1(θ, x) v2(θ, x) · · · vn+p(θ, x)

]
,

vi(θ, x) =

[
v0i(θ, x)

v1i(θ, x)

]
= N̄(θ, x, λi)z

c
i

= N̄(θ, x, λi)

[
zc1i
zc0i

]
,

v0i(θ, x) = N(θ, x, λi)z
c0
i , v1i(θ, x) = zc1i ,

i = 1, 2, · · · , n+ p,

(45)
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Wc(θ, x) =
[
wc1(θ, x) wc2(θ, x) · · · wcn+p(θ, x)

]
,

wci (θ, x) =

[
wc0i (θ, x)

wc1i (θ, x)

]
= D̄(θ, x, λi)z

c
i

= D̄(θ, x, λi)

[
zc1i
zc0i

]
,

wc0i (θ, x) = D(θ, x, λi)z
c0
i , w

c1
i (θ, x) = λiv1i(θ, x),

i = 1, 2, · · · , n+ p,

(46)

and 

T (θ, x) =
[
t1(θ, x) t2(θ, x) · · · tn+p(θ, x)

]
,

ti(θ, x) =

[
t0i(θ, x)

t1i(θ, x)

]
= H̄(θ, x, λi)z

b
i

= H̄(θ, x, λi)

[
zb1i
zb0i

]
,

t0i(θ, x) = H(θ, x, λi)z
b0
i , t1i(θ, x) = zb1i ,

i = 1, 2, · · · , n+ p,

(47)



Wb(θ, x) =
[
wb1(θ, x) wb2(θ, x) · · · wbn+p(θ, x)

]
,

wbi (θ, x) =

[
wb0i (θ, x)

wb1i (θ, x)

]
= L̄(θ, x, λi)z

b
i

= L̄(θ, x, λi)z
b
i = H̄(λi)

[
zb1i
zb0i

]
,

wb0i (θ, x) = L(θ, x, λi)z
b0
i , w

b1
i (θ, x) = λit1i(θ, x),

i = 1, 2, · · · , n+ p,

(48)

with Zc =
[
zc1 zc2 · · · zcn+p

]
,

Zb =
[
zb1 zb2 · · · zbn+p

]
,

(49)

where zb0i ∈ Cm, zb1i ∈ Cp and zc0i ∈ Cr, zc1i ∈ Cp, i = 1, 2, · · · , n+ p indicate the DOFs
in parametric solutions. Then, we give the following Theorem to solve the Problem 2.2.

Theorem 3.2. Let N(θ, x, s), D(θ, x, s) and H(θ, x, s), L(θ, x, s) satisfy RCFs (13) and
(16), meanwhile, N̄(θ, x, s), D̄(θ, x, s) and H̄(θ, x, s), L̄(θ, x, s) satisfy RCF (20), then,

1. Problem 2.2 has a solution if and only if there exist two groups of parameter
vectors zbi ∈ Cm+p and zci ∈ Cr+p satisfying

(zbi )
TH̄T(λi)N̄(λj)z

c
j = δij , i, j = 1, 2, · · · , n+ p. (50)

2. When satisfying the above condition, the generally parametric expressions of the
left and right eigenvector matrices are obtained in Equations (45) and (47).
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Constraint 3.3. det V (λi) 6= 0.

Constraint 3.4. (zb0i )THT(λi)N(λj)z
c0
j + (zb1i )Tzc1j = δij , i, j = 1, 2, · · · , n+ p.

3. Based on the above deduction, the static output feedback gain matrix K(θ, x)
is solved by Equation (28) or (29), where Wc(θ, x) and Wb(θ, x) are substituted by
Equations (46) and (48).

P r o o f . On the basis of Theorem 3.1, when Λ is chosen to be a diagonal one as Equa-
tion (44), T (θ, x), Wb(θ, x) and V (θ, x), Wc(θ, x) can be the form of columns given in
Equations (45)–(48), we prove the results in Theorem 3.2 easily. �

3.3. General procedure

Based on the results in Theorems 3.1 and 3.2, we propose a general procedure to design
the generally parametric form of dynamic compensator (3) for quasi-linear systems (1).

Step 1 Determine an expected closed-loop eigenstructure.
Based on pole assignment theories [3, 15], Λ is required to be a Hurwitz matrix [3, 15],

that is all closed-loop eigenvalues are located in the left-half s-plane,

λi(Λ) ∈ C−, i = 1, 2, · · · , n+ p. (51)

Step 2 Obtain two groups of RCFs N̄(θ, x, s), D̄(θ, x, s) and H̄(θ, x, s), L̄(θ, x, s) .
On the one hand, based on RCFs (13) and (16), acquire N(θ, x, s), D(θ, x, s) and

H(θ, x, s), L(θ, x, s), further, according to Equation (19), obtain N̄(θ, x, s), D̄(θ, x, s)
and H̄(θ, x, s), L̄(θ, x, s). On the other hand, we can also obtain two pairs of solutions
according to (20) as {

N̄(θ, x, s) = adj
(
sI − Ā(θ, x)

)
B(θ, x),

D̄(θ, x, s) = det
(
sI − Ā(θ, x)

)
Ir+p,

and {
H̄(θ, x, s) = adj

(
sI − ĀT(θ, x)

)
CT(θ, x),

L̄(θ, x, s) = det
(
sI − ĀT(θ, x)

)
Im+p.

Step 3 Establish a multi-objective optimization problem.
According to practical requirements of control systems, we establish multiple objec-

tives as
Ji = Ji(Zb, Zc,Λ), i = 1, 2, · · · , l,

then, an objective function representing the comprehensive performance can be formu-
lated as

J =

l∑
i=1

εiJi,
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where εi ∈ [0, 1], i = 1, 2, · · · , l are weight coefficients satisfying

l∑
i=1

εi = 1. (52)

Then, a multi-objective optimization problem is formulated as follows{
min J,

s.t. (21), (51), (52),
(53)

Note that the optimization problem is related to the design parameters Zb, Zc and
Λ, which will be further discussed in Section 4.

Step 4 Find parameters.
In this study, we see Zb and Zc are two arbitrary parameter matrices which give

the DOFs in design process. In other words, seeking Zb and Zc is the key to solve
optimization problem (53).

Step 5 Compute the static output feedback gain matrix K(θ, x) and get the coefficient
matrices of dynamic compensator F (θ, x), M(θ, x) and P (θ, x), Q(θ, x).

By utilizing T (θ, x), Wb(θ, x) and V (θ, x), Wc(θ, x) given in Equations (24)–(27),
(30)–(33) or (46)–(49), the static feedback gain matrix K(θ, x) is solved by Equation
(28) or (29), therefore the coefficient matrices F (θ, x), M(θ, x) and P (θ, x), Q(θ, x) are
obtained.

4. MULTI-OBJECTIVE DESIGN AND OPTIMIZATION

In this study, we successfully solve the Problem 2.2 through Theorems 3.1 and 3.2,
further, there are the DOFs in arbitrary parameters Zb and Zc provided by the para-
metric approach, which can be utilized to improve the comprehensive performances of
closed-loop system.

4.1. Regional pole assignment

We aim to locate these eigenvalues λi, i = 1, 2, · · · , n+ p in an admissible set to satisfy
the practical requirements of control systems. Actually, if placing these closed-loop
eigenvalues within a small interval around the expected location, it can reduce the
difficulties and improve flexibility when implementing controller. Generally, we choose
the form λi < λi < λi, where λi, λi ∈ C are the lower and upper bound. Then, the
closed-loop eigenvalues can be defined as [18]

λi = λi +
(
λi − λi

)
sin2 (‖zci ‖2) , i = 1, 2, · · · , n+ p, (54)

which shows that all closed-loop eigenvalues can utilize arbitrary parameters to move in
the region of s-plane defined by the lower and upper bounds during the design process,
that is, the arbitrary parameters play an important role in defining the location of closed-
loop eigenvalues. Thus, parameter vectors zci , i = 1, 2, · · · , n+p become decisive factors
in the multi-objective optimization problem.
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4.2. Robustness criteria

4.2.1. Low sensitivity

In order that maintaining the stability robustness and performance robustness when
parameters perturbations, a general method is to minimize the sensitivity function of
closed-loop eigenvalues, under general circumstances, we choose the overall eigenvalues
sensitivity as [22]

J1 = ‖V ‖2‖T‖2, (55)

which gives an overall measurement of the condition for eigen-problem.

4.2.2. Disturbance attenuation

Considering the influence of non-modeled system dynamics and external disturbance on
closed-loop system, a bounded disturbance Ḡw(t) is led into closed-loop system (10) as{

Ẋ = Āc(θ, x)X + Ḡw(t),

Y = C̄(θ, x)X,
(56)

for the above system, we obtain relation of Y and w(t) as [6]

Yw(s) = C̄(sI − Āc)−1Ḡ = C̄TT(sI − Λ)−1V Ḡ,

based on H2 and H∞ control theories, the value of ‖Yw(s)‖2 and ‖Yw(s)‖∞ can be
exploited to measure the effort of disturbance on output. In order to simplify the
computation, an effective and easy way is [5]

J2 = ‖V Ḡ‖2, J3 = ‖V Ḡ‖∞. (57)

Based on the above discussion, we establish an objective function to express the
robustness criteria as

JR =

3∑
i=1

εiJi. (58)

4.3. Low compensation gain criteria

As we know, low compensation gain is an important index when designing compensator.
Under the low compensation gain, the series amplifier can be reduced and it is difficult
to produce self-oscillation, which is benefit for physical realization.

According to Equations (3) and (4), we can know that the consumption of energy
is depended on value of compensation vectors. It is noteworthy that the smaller the
compensation vector, the less energy consumed. To further reduce the energy loss during
transient process, we choose the following index

J4 =
1

2
‖F (θ, x)‖2 +

1

2
‖M(θ, x)‖2 (59)
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Fig. 1. Coordinate systems.

Based on the above discussion, we establish an objective function to express the low
compensation gain criteria

JL = ε4J4. (60)

According to Equations (58) and (60), a multi-objective optimization problem can
be formulated as 

min J,

J = JR + JL,

s.t. (21), (51), (52), (54),

(61)

which is exploited to express the comprehensive performance of system.

5. EXAMPLE — ATTITUDE CONTROL OF COMBINED SPACECRAFTS

Consider the attitude motion of the extending space structures in [16], its physical model
is provided in Figure 1, we possess the following mathematical model as Jxα̈

Jyβ̈
Jz γ̈

+

 J̇xα̇− Ω(Jx − Jy + Jz)γ̇ + 4Ω2(Jy − Jz)α− ΩJ̇xγ

J̇yβ̇ + 3Ω2(Jx − Jz)β
Ω(Jx − Jy + Jz)α̇+ J̇z γ̇ + ΩJ̇zα+ Ω2(Jy − Jx)γ

 =

 ux
uy
uz

 , (62)

where α, β and γ indicate the roll angle, pitch angle and yaw angle of the combined
spacecrafts, Jx, Jy and Jz are the inertia variables, Tx, Ty and Tz are the external

input torques, Ω =
√
µ/R3 is orbital angular speed of combined spacecrafts, and µ

is the gravitational parameter and R is the distance from the center of the earth to
combined spacecrafts. It follows from Equation (62) that the in-plane motion (i. e., the
x − z subsystem) and the out-of-plane motion (i. e. the y subsystem) are independent.
Therefore, they can be considered separately. Then, we choose the in-plane motion as[

Jxα̈
Jz γ̈

]
+

[
J̇xα̇− Ω(Jx − Jy + Jz)γ̇ + 4Ω2(Jy − Jz)α− ΩJ̇xγ

Ω(Jx − Jy + Jz)α̇+ J̇z γ̇ + ΩJ̇zα+ Ω2(Jy − Jx)γ

]
=

[
ux
uz

]
, (63)
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let
q =

[
α γ α̇ γ̇

]T
,

hence, the system (63) can be transformed into the following system{
q̇ = A(θ, q)q +B(θ, q)u,

y = C(θ, q)q,
(64)

with

A(θ, q) =


0 0 1 0
0 0 0 1

Θ3 Θ4 Θ1 Θ2

Θ7 Θ8 Θ5 Θ6

 ,

B(θ, q) =


0 0
0 0
1 0
0 1

 , C(θ, q) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
where

Θ1 = −J̇x/Jx, Θ2 = Ω(Jx − Jy + Jz)/Jx,

Θ3 = 4Ω2(Jz − Jy)/Jx, Θ4 = ΩΘ1,

Θ5 = −Ω(Jx − Jy + Jz)/Jz, Θ6 = −J̇z/Jz,
Θ7 = ΩΘ6, Θ8 = Ω(Jx − Jy)/Jz.

Considering Equation (56), a bounded disturbance Ḡw(t) is led into the closed-loop
system (64), where

Ḡ =

[
0 0 2 0 0 0
0 0 0 2 0 0

]T

, w(t) =

{
1, t ∈ [200, 250]

0, else.

Design a dynamic compensator in the form of Equation (3), let p = 2, then, we can
obtain a closed-loop system like Equation (4).

The closed-loop eigenvalues are required to lie in ranges given by

λ1 ∈ [−0.1, 0] ,

λ2 ∈ [−0.2,−0.1] ,

λ3 ∈ [−0.3,−0.2] ,

λ4 ∈ [−0.4,−0.3] ,

λ5 ∈ [−0.5,−0.4] ,

λ6 ∈ [−0.6,−0.5] .

According to RCFs (13) and (16), two groups of RCFs can be obtained as
N(θ, x, s) =

[
1 0 s 0

0 1 0 s

]T

,

D(θ, x, s) =

[
s2 −Θ1s−Θ3 −Θ2s−Θ4

−Θ5s−Θ7 s2 −Θ6s−Θ8

]
,
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and 

H(θ, x, s) = I4,

L(θ, x, s) =


s 0 −Θ3 −Θ7

0 s −Θ4 −Θ8

0 −1 −Θ2 s−Θ6

−1 0 s−Θ1 −Θ5

 .

5.1. Non-optimized solutions

Let
Λ = diag {−0.1,−0.2,−0.3,−0.4,−0.5,−0.6} ,

and

Zc0 =

[
−0.1 0 −0.3 0 −0.5 0

0 −0.2 0 −0.4 0 −0.6

]
, (65)

based on Equations (24) and (25), V0(θ, q) can be obtained as

V0(θ, q) =


−0.1 0 −0.3 0 −0.5 0

0 −0.2 0 −0.4 0 −0.6
0.01 0 0.09 0 0.25 0

0 0.04 0 0.16 0 0.36

 ,
then, choose

Zc1 = V1(θ, q) =

[
1 0 1 0 1 1
0 1 1 1 1 0

]
, (66)

according to Equations (30) and (31), Wc0(θ, q) and Wc1(θ, q) can be obtained as

Wc0(θ, q) =

[
10Θ3−Θ1

100 − 1
1000

5Θ4−Θ2

25
30Θ3−9Θ1

100 − 27
1000

10Θ7−Θ5

100
5Θ8−Θ6

25 − 1
25

30Θ7−9Θ5

100

10Θ4−4Θ2

25
2Θ3−Θ1

4 − 1
8

15Θ4−9Θ2

25
10Θ8−4Θ6

25 − 8
125

4Θ7−Θ5

4
15Θ8−9Θ6

25 − 27
125

]
,

and

Wc1(θ, q) =

[
−0.1 0 −0.3 0 −0.5 −0.6

0 −0.2 −0.3 −0.4 −0.5 0

]
.

Further, based on Equation (21) or (50), we can easily obtain Zb0 and Zb1 as

Zb0 =
1

14


−160 480 −10 −480 10 160
−225 220 150 −325 −45 120
−200 600 −100 −600 100 200
−375 250 250 −425 −75 200

 ,
and

Zb1 =
1

7

[
0 21 0 −21 0 7
−15 24 10 −24 −3 8

]
,
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then, according to Equations (26) and (27), we have

T0(θ, q) =
1

14


−160 480 −10 −480 10 160
−225 220 150 −325 −45 120
−200 600 −100 −600 100 200
−375 250 250 −425 −75 200

 ,
and

T1(θ, q) =
1

7

[
0 21 0 −21 0 7
−15 24 10 −24 −3 8

]
,

meanwhile, based on Equations (32) and (33), we possess Wb0(θ, q) and Wb1(θ, q) as

Wb0(θ, q) =


200Θ3+375Θ7

14 + 8
7 − 300Θ3+125Θ7

7 − 48
7

50Θ3−125Θ7

7 + 3
14

200Θ4+375Θ8

14 + 45
28 − 300Θ4+125Θ8

7 − 22
7

50Θ4−125Θ8

7 − 45
14

200Θ2+375Θ6

14 + 75
4 − 300Θ2+125Θ6

7 − 135
7

50Θ2−125Θ6

7 − 225
14

200Θ1+375Θ5

14 + 90
7 − 300Θ3+125Θ7

7 − 300
7

50Θ1−125Θ5

7 + 20
7

600Θ3+425Θ7

14 + 96
7

25Θ7−100Θ3

14 − 5
14 − 100(Θ3+Θ7)

7 − 48
7

600Θ4+425Θ8

14 + 65
7

25Θ8−100Θ4

14 + 45
28 − 100(Θ3+Θ7)

7 − 36
7

600Θ2+425Θ6

14 + 495
14

25Θ6−100Θ2

14 + 165
28 − 100(Θ2+Θ6)

7 − 120
7

600Θ1+425Θ5

14 + 360
7

25Θ5−100Θ1

14 − 30
7 − 100(Θ1+Θ5)

7 − 20

 ,
and

Wb1(θ, q) =

[
0 −3/5 0 6/5 0 −3/5

3/14 −24/35 −3/7 48/35 3/14 −24/35

]
.

Based on Equation (28) or (29), K(θ, q) can be obtained as

K(θ, q) =


−Θ3 − 41

700
9
70 −Θ4

3
14 −Θ2 −Θ1 − 24

35 0 3
175

−Θ7 − 96
175 −Θ8 − 86

175 −Θ6 − 9
7 −Θ5 − 24

35 − 6
125 − 48

875
− 41

7 − 36
7 − 60

7 − 60
7 − 3

5 − 24
35

47
7

127
28

165
28

50
7

3
5

33
70

 , (67)

that is,

QT(θ, q) =


−Θ3 − 41

700 −Θ7 − 96
175

9
70 −Θ4 −Θ8 − 86

175
3
14 −Θ2 −Θ6 − 9

7
−Θ1 − 24

35 −Θ5 − 24
35

 , P (θ, q) =

[
0 3

175
− 6

125 − 48
875

]
,

M(θ, q) =

[
− 41

7 − 36
7 − 60

7 − 60
7

47
7

127
28

165
28

50
7

]
, F (θ, q) =

[
− 3

5 − 24
35

3
5

33
70

]
,

(68)

under the controller (67) or (68), the closed-loop system can be obtained as

[
q̇

ξ̇

]
=


0 0 1 0 0 0
0 0 0 1 0 0

−41/700 9/70 −24/35 3/14 0 3/175
−96/175 −86/175 −24/35 −9/7 −6/125 −48/875
−41/7 −36/7 −60/7 −60/7 −3/5 −24/35
47/7 127/28 50/7 165/28 3/5 33/70


[
q
ξ

]
.
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5.2. Optimized solutions

Consider the optimization problem in Equation (61), based on the MATLABr function
fminsearch in the MATLABr Optimization Toolbox, choose initial value as Equation
(65) and ε1 = 0.6, ε2 = 0.1, ε3 = 0.2, ε4 = 0.1, we can obtain Zc0 and Λ as

Zc0 =

[
0.6339 0 −2.0210 0 −3.1731 0

0 1.1287 0 −1.1807 0 −3.3006

]
and

Λ = diag {−0.0649,−0.1183,−0.2189,−0.3145,−0.4999,−0.5975} ,
based on Equations (24) and (25), V0(θ, q) can be obtained as

V0(θ, q) =


0.6339 0 −2.0210 0 −3.1731 0

0 1.1287 0 −1.1807 0 −3.3006
−0.0411 0 0.4424 0 1.5862 0

0 −0.1335 0 0.3713 0 1.9721

 ,
then, choose Zc1 = V1(θ, q) as Equation (66), according to Equations (30) and (31),
Wc0(θ, q) and Wc1(θ, q) can be obtained as

Wc0(θ, q) =

[
0.0411Θ1 − 0.6339Θ3 + 0.0027 0.1335Θ2 − 1.1287Θ4

0.0411Θ5 − 0.6339Θ7 0.1335Θ6 − 1.1287Θ8 + 0.0158

2.0210Θ3 − 0.4424Θ1 − 0.0968 1.1807Θ4 − 0.3713Θ2

2.0210Θ7 − 0.4424Θ5 1.1807Θ8 − 0.3713Θ6 − 0.1168

3.1731Θ3 − 1.5862Θ1 − 0.7930 3.3006Θ4 − 1.9721Θ2

3.1731Θ7 − 1.5862Θ5 3.3006Θ8 − 1.9721Θ6 − 1.1783

]
,

and

Wc1(θ, q) =

[
−0.0649 0 −0.2189 0 −0.4999 −0.5975

0 −0.1183 −0.2189 −0.3145 −0.4999 0

]
.

Further, based on Equation (21) or (50), we can easily get Zb0 and Zb1 as

Zb0 =


0.4909 0.1719 −0.6419 0.2782 0.1918 −0.0408
−0.1240 0.7007 −0.0602 −0.6540 0.0136 0.1706
0.4944 0.1731 −1.5208 0.2803 1.0674 −0.0410
−0.5671 1.2243 −0.2753 −1.0110 0.0621 0.7803

 ,
and

Zb1 =

[
0.7092 −0.1018 0.3443 −0.1649 −0.0776 0.0241
0.0642 0.3726 0.0312 0.6032 −0.0070 −0.0883

]
,

then, according to Equations (26) and (27), we have

T0(θ, q) =


0.4909 0.1719 −0.6419 0.2782 0.1918 −0.0408
−0.1240 0.7007 −0.0602 −0.6540 0.0136 0.1706
0.4944 0.1731 −1.5208 0.2803 1.0674 −0.0410
−0.5671 1.2243 −0.2753 −1.0110 0.0621 0.7803

 ,
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and

T1(θ, q) =

[
0.7092 −0.1018 0.3443 −0.1649 −0.0776 0.0241
0.0642 0.3726 0.0312 0.6032 −0.0070 −0.0883

]
,

meanwhile, based on Equations (32) and (33), we possess Wb0(θ, q) and Wb1(θ, q) as

Wb0(θ, q) =


0.5671Θ7 − 0.4944Θ3 − 0.0319 −0.1731Θ3 − 1.2243Θ7 − 0.0203
0.5671Θ8 − 0.4944Θ4 + 0.0080 −0.1731Θ4 − 1.2243Θ8 − 0.0829
0.5671Θ6 − 0.4944Θ2 + 0.1608 −0.1731Θ2 − 1.2243Θ6 − 0.8455
0.5671Θ5 − 0.4944Θ1 − 0.5230 −0.1731Θ1 − 1.2243Θ5 − 0.1924

1.5208Θ3 + 0.2753Θ7 + 0.1405 1.0110Θ7 − 0.2803Θ3 − 0.0875
1.5208Θ4 + 0.2753Θ8 + 0.0132 1.0110Θ8 − 0.2803Θ4 + 0.2057
1.5208Θ2 + 0.2753Θ6 + 0.1205 1.0110Θ6 − 0.2803Θ2 + 0.9720
1.5208Θ1 + 0.2753Θ5 + 0.9748 1.0110Θ5 − 0.2803Θ1 − 0.3664

−1.0674Θ3 − 0.0621Θ7 − 0.0959 0.0410Θ3 − 0.7803Θ7 + 0.0244
−1.0674Θ4 − 0.0621Θ8 − 0.0068 0.0410Θ4 − 0.7803Θ8 − 0.1019
−1.0674Θ2 − 0.0621Θ6 − 0.0446 0.0410Θ2 − 0.7803Θ6 − 0.6368
−1.0674Θ1 − 0.0621Θ5 − 0.7253 0.0410Θ1 − 0.7803Θ5 + 0.0653

 ,

Wb1(θ, q) =

[
−0.0460 0.0120 −0.0754 0.0518 0.0388 −0.0144
−0.0042 −0.0441 −0.0068 −0.1897 0.0035 0.0528

]
.

Based on Equation (28) or (29), K(θ, q) can be obtained as

K(θ, q) =


−Θ3 − 0.0886 −Θ4 − 0.0053 −Θ2 − 0.0241
−Θ7 + 0.0182 −Θ8 − 0.1136 −Θ6 − 0.7821

0.0371 −0.0875 −0.4002
−0.0632 0.1292 0.2024

−Θ1 − 0.6978 0.0301 0.0027
−Θ5 + 0.0184 −0.0108 0.0395
−0.2083 −0.0970 0.0453
−0.3093 0.0273 −0.2371

 , (69)

that is,

QT(θ, q) =


−Θ3 − 0.0886 −Θ7 + 0.0182
Θ4 − 0.0053 −Θ8 − 0.1136
−Θ2 − 0.0241 −Θ6 − 0.7821
−Θ1 − 0.6978 −Θ5 + 0.0184

 ,
P (θ, q) =

[
0.0301 0.0027
−0.0108 0.0395

]
,

M(θ, q) =

[
0.0351 −0.0875 −0.4002 −0.2083
−0.0632 0.1292 0.2024 −0.3093

]
,

F (θ, q) =

[
−0.0970 0.0453
0.0273 −0.2371

]
,

(70)
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under the controller (69) or (70), the closed-loop system can be obtained as

[
q̇

ξ̇

]
=


0 0 1 0 0 0
0 0 0 1 0 0

−0.0886 −0.0053 −0.6978 −0.0241 0.0301 0.0027
0.0182 −0.1136 0.0184 −0.7821 −0.0108 0.0395
0.0371 −0.0875 −0.2083 −0.4002 −0.0970 0.0453
−0.0632 0.1292 −0.3093 0.2024 0.0273 −0.2371


[
q
ξ

]
.

5.3. Simulation and comparison

Choose the initial values as 
q(0) =

[
3 3 3 3

]T
,

ξ(0) =
[

1 1
]T
,

we can obtain the Figures 2 – 9.
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Fig. 2. Variation diagram of roll angle α.

In Figures 2 – 4, we can clearly see that the optimized dynamic compensator leads to a
better transient performance than that of non-optimized one, meanwhile, in Figures 5 –
9, both compensation vectors and control signals of optimized dynamic compensator
are smaller than that of non-optimized one, which means that the optimized dynamic
compensator can achieve better control effects at the cost of less energy and magnitude
of the control signals.

Define Jn as the non-optimized index and Jo as the optimized index, we possess

Jn = 151.8218, Jo = 7.2216.
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Fig. 3. Variation diagram of yaw angle γ.
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Fig. 4. Variation diagram of roll angular velocity α̇.

Jo < Jn, which means that the comprehensive performances of system has been signifi-
cantly improved effectively under the multi-objective optimization.

6. CONCLUSIONS

In this study, a parametric approach is proposed to design dynamic compensator for
quasi-linear systems. This parametric approach presents the completely parametric
expressions of dynamic compensator and the left and right closed-loop eigenvector ma-
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Fig. 5. Variation diagram of yaw angular velocity γ̇.

0 50 100 150 200 250 300 350 400

−600

−500

−400

−300

−200

−100

0

Time [s]

ξ 1
[r
a
d
]

 

 

200 220 240 260 280 300
−15

−10

−5

0

5

 

 

Non−optimized solutions

Optimized solutions

Fig. 6. Variation diagram of compensation vector ξ1.

trices, which are both related to Λ, Zb and Zc.By using the parametric approach, the
closed-loop system can be transformed into a linear time-invariant system with the de-
sired eigenstructure. Moreover, arbitrary parameters Zb and Zc can be used to establish
performance indexes such that a synthetic objective function is formulated to express the
comprehensive performances. By using the DOFs of arbitrary parameters, a dynamic
compensator can be found to satisfy robustness and low compensation gain criteria by
solving a multi-objective optimization problem.



Parametric control to quasi-linear systems based on DC and multi-objective optimization 539

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

200

250

300

350

Time [s]

ξ 2
[r
a
d
/s
]

 

 

200 220 240 260 280 300
−2

0

2

4

6

8

 

 

Non−optimized solutions

Optimized solutions

Fig. 7. Variation diagram of compensation vector ξ2.
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Fig. 8. Variation diagram of control signal ux.

In the future, the main work focuses on two aspects. On the one hand, the presented
results will be developed to second-order quasi-linear systems, which represent the dy-
namic process of many phenomena in nature and have a string of applications. On the
other hand, a more generic multi-objective optimization method will be investigated.
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