Kybernetika - Article detailKybernetikaInternational journal published by Institute of Information Theory and AutomationBoundary layer phenomenon for three-point boundary value problem for the nonlinear singularly perturbed systemsZ. ArtsteinStability in the presence of singular perturbations.Nonlinear Anal. 34(6) (1998), 817-827.Z. ArtsteinSingularly perturbed ordinary differential equations with nonautonomous fast dynamics.J. Dynam. Different. Eqs. 11 (1999), 297-318.Z. ArtsteinV. GaitsgoryThe value function of singularly perturbed control system.Appl. Math. Optim. 41 (2000), 425-445.V. GaitsgoryOn a pepresentation of the limit occupational measures set of a control system with applications to singularly perturbed control systems.SIAM J. Control Optim. 43(1) (2004), 325-340.E. BurmanJ. GuzmánD. LeykekhmanWeighted error estimates of the continuous interior penalty method for singularly perturbed problems.IMA J. Numer. Anal. 29(2) (2009), 284-314.V. GaitsgoryM. T. NguyenMultiscale singularly perturbed control systems: Limit occupational measures sets and averaging.SIAM J. Control Optim. 41(3) (2002), 954-974.M. GopalModern Control System Theory.New Age International, New Delhi 1993.Y. GuoW. GePositive solutions for three-point boundary value problems with dependence on the first order derivative.J. Math. Anal. Appl. 290(1) (2004), 291-301.K. W. ChangF. A. HowesNonlinear Singular Perturbation Phenomena: Theory and Applications.Springer-Verlag, New York 1984.A. KhanI. KhanT. AzizM. StojanovicA variable-mesh approximation method for singularly perturbed boundary-value problems using cubic spline in tension.Internat. J. Comput. Math. 81 (2004), 12, 1513-1518.R. A. KhanPositive solutions of four-point singular boundary value problems.Appl. Math. Comput. 201 (2008), 762-773.P. KokotovicH. K. KhaliJ. O'ReillySingular Perturbation Methods in Control, Analysis and Design.Academic Press, London 1986.S. NatesanM. RamanujamInitial-value technique for singularly-perturbed turning-point problems exhibiting twin boundary layers.J. Optim. Theory Appl. 99 (1998), 1, 37-52.R. VrabelThree point boundary value problem for singularly perturbed semilinear differential equations.E. J. Qualitative Theory of Diff. Equ. 70 (2009), 1-4.