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P R O P E R T I E S OF REACHABILITY 
AND ALMOST REACHABILITY SUBSPACES 
OF IMPLICIT SYSTEMS: THE EXTENSION P R O B L E M 

H E L E N E L I O P O U L O U AND N I C O S K A R C A N I A S 

A geometric characterisation of the reachability subspaces and almost reachability sub-
spaces of implicit systems of the type S(F,G) : Fx — Gx is given. Furthermore a classi­
fication of the almost reachability subspaces of such systems, based on the property that 
almost reachability spaces, or subspaces of such spaces can be extended to reachability 
spaces, is presented. In addition, necessary and sufficient conditions have been given for 
the above properties to hold true. The property of extension of a certain type of subspace 
to another type is integral part of the study of generalised dynamic cover problems of 
geometric theory. 

1. INTRODUCTION 

In this paper we are dealing with the concepts of reachability and almost reachability 
of implicit systems of the type S(F,G) : Fx — Gx where F, G £ B/nxn. The 
nature of properties examined, is based on the ability of a space of a certain type 
to be transformed by extension to another type of invariant space. Such a problem 
emerges in the study of generalised dynamic cover problems of geometric theory 
[11,16], which are intimately connected with the problem of selection of inputs, 
outputs, on a given system and in particular with the problem of model projection 
[12]. The current approach is based on S(F,G) type implicit descriptions. Clearly, 
such a system does not represent a dynamical system since the solutions which are 
due to some initial conditions, are not uniquely defined. In spite of this, the fact 
that a generalised system SC(E,A,B) : Ex — Ax -\- Bu is strongly related to an 
autonomous system S(NE, NA) where N is an annihilator of B, i.e. NB = 0, 
suggests that S(F, G) defines a feedback free representation of a generalised system 
[15] and thus the family of solutions for a given initial condition corresponds to the 
set of all trajectories generated by the given initial condition and all possible control 
inputs or equivalently state feedbacks. 

The notions of reachability and almost reachability concerning a dynamical sys­
tem can be also introduced to the case of S(F, G) systems. An a t tempt in this 
direction has been done in [9,15] and this paper extends those introduced there. A 
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summary of the background results is presented in Section 2, where in Section 3 a 
geometric characterisation of the concepts of the reachability, almost reachability, as 
well as their related spaces is given. In Section 4 we classify the almost reachability 
subspaces in two types by showing that there exists almost reachability subspaces 
that can be extended to reachability ones and others that cannot; the later family 
is called pure almost reachability spaces. The classification problem is linked to the 
following two problems: (i) given an almost reachability subspace, derive necessary 
and sufficient conditions which allow determining whether, or not the almost reach­
ability space can be extended to a reachability space, (ii) given a pure reachability 
space derive necessary and sufficient conditions under which there exists a subspace 
of the pure reachability space that can be extended to a reachability space. Both 
the above two problems are linked to the property of an almost reachability space 
to be covered, or a subspace of it to be covered by a reachability space and they 
belong to the general family of cover problems considered in [16]; the tools however 
here are geometric rather than algebraic. 

2. BACKGROUND RESULTS ON THE MATRIX PENCIL PROPERTIES OF 
REACHABILITY, ALMOST REACHABILITY SPACES 

Consider a generalised autonomous system, or implicit form of the type 

S(F,G) Fx(t) = Gx(t), F,GeRmXn. 

Clearly, such a system does not represent a dynamical system since the solution 
which is due to some initial condition is not always uniquely defined. However, it 
has been shown [13,15] that a generalised system Se(E, A, B) : E x = A x + B u is 
strongly related to an autonomous system S(NE, NA), where N is a left annihilator 
of B i.e., NB = 0 and thus S(F,G) descriptions may simulate the feedback free 
representation of a generalised systems [15]. Inversely, S(F,G) descriptions and 
related subspace problems are linked to the standard theory through the notion of 
invariant forced realisation [10], which allows the parameterisation of the family of 
solutions for a given initial condition in terms of control inputs, or feedbacks. 

By examining S(F, G) independently from the links to an Se(E,A, B) system we 
may define the concepts of reachability and almost reachability using the standard 
dynamic notions introduced for regular systems [23, 24] as follows: 

Definition 2.1 . [9,15] A subspace 7Z C Rn will be called a reachability subspace 
of S(F, G), if for all x\, X2 £71 there exists a family of smooth solutions M. £ 7Z of 
S(F,G) such that for any x(t) £ M. with x(0) = x\ 3 T < oo with x(T) = x-i for 
all t > 0. 

Definition 2.2. [9,15] A subspace V C Rn is an almost reachability subspace of 
S(F,G), if for all x0, x\ £ V, some time t0, and e > 0, there is a smooth solution 
x(t) of S(F, G) such that xe(0) = x0, xe(t0) = x\ and d(xe(t), V) < e for all t > 0. 
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R e m a r k 2 . 1 . [9] An alternative characterisation of an almost reachability space 
of the S(F,G) system is given using distributional solutions [22,23] as follows: A 
subspace V £ Rn is an almost reachability subspace of S(F, G) if for all XQ, X\ £ V, 
there is a distributional trajectory x(t) of S(F, G) that joins XQ, X% and remains in 
V. 

Def in i t ion 2 .3 . We define as the maximal reachability subspace of S(F,G), the 
space 1Z* with the property that if 1Z* is a reachability space and if 1Z is any reach­
ability subspace of S(F, G) then 1Z C 1Z*. 

Similarly, we may define: 

Def in i t ion 2 .4 . We define as the maximal almost reachability subspace of S(F, G) 
the space V* with the property that V* is an almost reachability space and, if V is 
any almost reachability subspace of S(F, G), then V C V * . 

The system S(F, G) is said to be reachable, if 1Z* = Rn and almost reachable, if 
V* = Rn. Some of the basic results previously derived for such subsystems are given 
below [9,11,13,15]. 

T h e o r e m 2 . 1 . Consider S(F, G) and let X(s) = [x\(s),. . ., xp(s)] be any minimal 
basis matr ix of J\fr{sF — G}. Then, the following properties hold true: [11] 

(i) If x(s) G Rn[s], x(s) = xo + sxi + • • • + skXk and we denote by 1Z(x(s)) = 
sp{a;o, xi,. .. ,xn} = IZx, then 1ZX is a reachability space, if and only if x(s) £ 
K{sF-G}. 

(ii) The set of reachability spaces 1Zx±, • • •, IZx are least dimension, dim 1Zxx — 
Si + 1 and form an independent set; £,-, i £ p are the cmi of sF — G and 1Z* = 
Rxt © • • • © 1Zxp is the maximal reachability space of the system. 

Before we proceed, we define some further notions needed for the subsequent 
developments. 

Def in i t ion 2 .5 . [3,11] i) Let X(s) = [x\(s), • • •, xp(s)] be a minimal basis for 

J\fr{sF-G}, where x{(s) = xf sd> +xd
i
l~1 s'1^1 + • • - + x°, V z £ p . Then, the space 

V* = spaceja^ 1 , . . ., xp
p} is called the high coefficient space of X(s). 

(ii) For the pair (F,G), a set of vectors S(d;xi) = {x\, .. . ,Xd} satisfying the 
conditions 

Fxi = 0, Gxx = Fx2) • . .,Gxk-i = Fxk, x\ -/ 0 

is said to define a semicyclic chain (sc) of length d with xx generator, and S(d; X\) = 
sp{x\, . . ., Xd} is the supporting space of the sc chain. A sc S(d; x%) will be called 
prime, if dimnS(dr; x\) = d and will be called maximal, if there is no prime S(d'; SBI)SC, 
d! > d such that S(d; x\) is a proper subset of S'(d'; x\). 
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(iii) A set of sc chains S(V,Q) = {S(di;xi)\...; {S(dvr,xv)}, where V — {d\t... 
..., dv} is the set of chain lengths and Q = {x±,..., xv] is the set of generators, will 
be called prime, if the vectors is S(V,Q) are linearly independent, and will be called 
complete if each S(di] Xi) is maximal. 

(iv) If TV is the reachability space and S(V, Q) = YA=\ S(di] X{) is the supporting 
space of S(V,Q) then the set S(V,Q) is called pure if S(V,Q)f\7l* = {0}. 

With these preliminary definitions we have the following result [4] 

T h e o r e m 2 .2 . For any (F, G) pair the following properties hold true: 

(i) There is a pure set of sc chains S(V,Q), if and only if sF — G has a set of 
infinite elementary divisors (ied). 

(ii) If Voo(F, G) = {sd', i £ v} is the set of ied of sF — G, there exists complete 

and pure maximal sets of sc Soo(Voo]Q), where Doo = {d\,..., dv} and a supporting 

space Sco = YA-I S(dn\Xi) with dimSoo = Y?i=i 8d.-

(iii) If TV, V* are the maximal reachability, almost reachability spaces respectively 
of (F, G), there exists always a maximal complete and pure set of sc Soo(Voo', Q) with 
supporting space »5oo such tha t 

v* = Sooen*. 

The chains Soo(Voo',Q) established by the above result are referred to as normal sc 
and characterise the set of ied of the pencil. The generation of such chains (structure 
of the set of generators Q) is discussed in [3,4]. 

Def in i t ion 2.6. The system S(F, G) is said to be almost reachable if V* = Rn 

and reachable if TV = Rn. 

In [9] is has been shown that : 

T h e o r e m 2 .3 . The system S(F,G) is almost reachable if and only if the pencil 
sF — G has as possible Kronecker invariants infinite elementary divisors, column 
minimal indices and zero row minimal indices. 

T h e o r e m 2.4 . The system S(F, G) is reachable if and only if the pencil sF — G 
has as possible Kronecker invariants column minimal indices and zero row minimal 
indices. 

The above results are established by combining the notions of invariant forced 
realisation [10], the s tandard linear system characterisation of subspaces [23,24], and 
the matr ix pencil characterisation of them [8]. The matr ix pencil characterisation 
of an almost reachable, reachable system also leads to the following characterisation 
of subspaces [13,15]: 
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P r o p o s i t i o n 2 .1 . Let V C Rn and V be a basis matrix for V. Then: V is said to 
be an almost reachability subspace for the S(F, G) system if the pencil sFV — GV 
has a possible Kronecker invariants infinite elementary divisors, column minimal 
indices and zero row minimal indices. 

P r o p o s i t i o n 2 .2 . Let V C Rn and V be a basis matr ix for V. Then: V is said 
to be a reachability subspace, if the pencil sFV — GV has as possible Kronecker 
invariants column minimal indices and zero row minimal indices. This is equivalent 
to that V is spanned by the vector coefficients of a polynomial vector x(s) for which 
(sF-G)x(s) = 0. 

The above results on the matr ix pencil characterisation of subspaces provide 
the means for deriving some new geometric characterisation of them. A complete 
t reatment of the Toeplitz based geometry of minimal bases which is related to reach­
ability properties is given in [11]. Some further characterisation of the reachability 
and almost reachability spaces of an S(F, G) system are summarised next. We first 
define some important families of vector space sequences for the pair (F, G) [13,18]. 

Def in i t ion 2.7. Let F,G £ RmXn. We may define the following sequences of 
subspaces of Rn: 

Q(F,G) = {JCo = {0}, JCk+l = F-l(GICk), k>0} (2.1) 

V(G,F) = {T0 = Rn,Tk+1=G~1(FTk), k>0} (2.2) 

Note tha t the above sequences have been studied in [1,2,13,17] and they are the 
pencil forms of the sequences characterising standard geometric properties [23,24]. 
Using the above sequences we have: 

T h e o r e m 2 .5 . (i) The maximal almost reachability space V* in S(F, G) is the 

limit of the sequence {JCk}k£N defined by (2.1), tha t is V* — /C*. 

(ii) For the maximal reachability space of the S(F,G) system 71*, we have that 

r = rnv*, 
where V* = /C* is the limit of the {Kk}k^N sequence defined as in (2.1) and T* is 
the limit of the sequence {Tk}kEM defined as by (2.2). 

Clearly, the above characterisations of the maximal almost reachable maximal 
reachable subspace of an S(F, G) system are very similar to those in [20] concerning 
those of the corresponding spaces of Se(E, A, B) system. 
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T h e o r e m 2 .6 . A subspace V C Rn is an almost reachability subspace for the 
S(F, G) system if and only if 

V = limVifc where Vk = V C\ F~l GVk, V0 = {0}. (2.3) 

P r o o f . Let V be a basis matr ix for V. Then, the proof follows by the fact that 
the limit space of the (2.3) sequence is the sum of the spaces spanned by the vector 
coefficients of the polynomial belonging to a minimal basis for sFV — GV and of 
the chains characterising the set of the i.e. d. of this pencil (see [14,18]). • 

T h e o r e m 2 .7 . A subspace n C Rn is a reachability subspace for the S(F,G) 
system if and only if 

n = lim Rk n \imnk 

where 

nk = nnF-1Gnk-i, n0 = {R}, and nk = l i m i n e - 1 FKk-i, n0 = n. 

P r o o f . Let R be any basis matr ix for n. Then, the intersection of the limit 
spaces of the above sequences can be expressed as a sum of the subspaces formed 
by the vector coefficients of the polynomials belonging to a minimal basis of the 
right null space of sFR — GR pencil (for a proof of the above fact see [6,18]). This 
ract combined with the characterisation of a reachability space, as in Proposition 
2.2 establishes the result. • 

3. CLASSIFICATION OF T H E ALMOST REACHABILITY SUBSPACES OF 
T H E S(F,G) SYSTEM, BASED ON THE EXTENSION 

Some further properties of the almost reachability spaces related to their classifi­
cation are considered next. The present classification is based on the property of 
whether the space can be extended to a reachability space, or not, which is equiva­
lent to a cover type of classification. In fact, it has been shown [12] that one of the 
fundamental family of problems involved in the selection of systems of inputs, out­
puts on a system are those referred to as Model Projection Problems (MPP); such 
problems involve the reduction of the potential sets of inputs, outputs to smaller 
sets, referred to as effective sets. The study of MPPs is equivalent to the problem 
of covering a given invariant space with another one of certain invariant type; an 
integral part of this study is the extension of a certain invariants subspace type of 
another type, which is considered here. We first define: 

Def in i t ion 3 . 1 . A subspace V C Rn is said to be a single generated almost reach­

ability space (s.g.a.r.s.) for S(F,G) system if 

i) V = limVfc, Vfc = VnF- 1 GVjb_i 1 Vo = {0}, 
li) dim(VnjV r F) = 1. 

It is rather straightforward to show that : 
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T h e o r e m 3 . 1 . A subspace V of dimension k is a s.g.a.r.s. for the S(F,G) system 
if and only if there exists vectors {x[, x<i,. . ., xk} such that they form a basis for V 
and satisfy the following conditions 

Fxi = 0, Gx\ = Fx2, • • •,Fxk-i — Gxk (3-1) 

sp{x[} = VC)X{F}. 

Def in i t ion 3 .2 . We say that an almost reachability subspace V C Rn can be 
extended to a reachability one, if there exists a reachability subspace K, K, C Rn 

such that V C I C . 

The next theorem describes the necessary and sufficient conditions which must 
be satisfied by an almost reachability subspace in order that it can be extended to 
a reachability one. 

T h e o r e m 3 .2 . An almost reachability subspace V C Rn can be extended to a 
reachability space, if and only if V C 1Z*. 

P r o o f . Let V C Rn be such that it can be extend to a reachability subspace. 
Then, there exists a subspace W C Rn such that V + W is a reachability space. Since 
V + W C 1Z* the proof of the only if part is obvious. Assume now that V C 1Z* and 
let {x{, i — 1, . , . , / * } be a basis matr ix for V. Then for VX{ there exists a reachability 
subspace say Hi containing a?s- (for the proof of this fact see [14]). Consider now the 
space Xw=i fti') then, by taking into account the statement of Theorem 2.7 it is not 
hard to show that this is a reachability subspace; furthermore, V C X}i=i^» a n ^ 
this completes the proof. • 

It is well known [7] that the i.e. d. of ar ight singular pencil sF — G (i. e. jVr {(sF— 
G)} •£ {0}) are related to chains of linearly independent vectors of (3.1) type with the 
addition property that span{?y1,. .. ,yk}C\7Z* = {0}; furthermore by Theorem 2.7 it 
is not hard to see that the space spanned by the vectors belonging to such a chain is 
an almost reachability space. Then, Theorem 3.2 ensures that such a space cannot 
be extended to a reachability space. Thus, it is convenient to define: 

De f in i t ion 3 .3 . An almost reachability space will be called pure, if it cannot be 
extended to a reachability subspace. 

The following theorem describes a sufficient condition under which a single gen­
erated almost reachability subspace can be characterized as pure. 

), 

T h e o r e m 3 .3 . If a s.g.a.r.s. for the S(F,G) system is generated by a vector not 

belonging to the high coefficient space of jVr{.sF - G}, then it is pure. 
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P r o o f . Let W = Bpaaa(y1 , . . . ,yk) be a single generated almost reachability 
space for which y\ £ V*. Then, we claim that W n V,* = {0}. To prove this let 
Z\ E TV n W. Then, z\ may be expressed as 

* l = O i y i + Vakyk. (3.2) 

Consider the vectors zu, v — 1 , . . . , k defined by 

k 
z» = ^2aiyj-v+i> v = l,...,k. (3.3) 

j=u 

Note that they satisfy the following conditions 

Fz\ = Gz2,...,Fzk-\ =Gzk, Fzk = 0. (3.4) 

• 

Since for z\ it has been assumed that Z\ E TV we have that there exists polyno­
mial vector x(s) of Nr{sF — G} having Z\ as one of its nonzero vector coefficients 
(for the proof of this fact see [11]). 

Let x(s) = xu sv + • • • + x^+\ sM + 1 + z\ sM + x^_\ s^~l + • • • + x\ s + xo be such 
a vector. Then, by the way that the vector coefficients of x(s) are related and by 
the fact tha t the y\, ,yk satisfy relations of (3.1) type it follows that 

Gx0 = 0, F xQ = Gx\- • •Fxll = G z\, F z\ = G z2 • • • F zk-\ = G zk, Fzk=0. 

(3-5) 
The above according to the properties of the high coefficient space V* see [9,14] 

implies zk = ak y1 E V*; however, it is given that yy £ V* and therefore we conclude 
ak = 0. By substituting ak = 0 in the expression for z\,..., zk_\ given by (3.3), 
(3.4) yields Lnce more that ak-\ = 0. By proceeding along the same lines we get 
a2 = • • • = ak = 0. Then, (3.2) show that TZ* C\W = spa,n{y\} C\V*; however by our 
hypothesis s p a n j y j C\V* = {0} and therefore, TV n W = {0}. • 

The generalisation of Theorem 3.3 is given below: 

T h e o r e m 3.4. Let V be an almost reachability space for which V njV r F DV* = 
{0}. Then V is a pure reachability space. 

The p r o o f of the above result follows by generalising the previous arguments. 
Some further properties related to the cover of subspaces of pure almost s.g.a.r.s. 
are examined below. 

P r o p o s i t i o n 3 . 1 . Let V be a pure s.g.a.r.s. for the S(F,G) system. Then, there 
exists a subspace W of V with the property that W can be extended to a reachability 
subspace, if and only if V has as a generator a vector belonging to V*. 

P r o o f . Consider V = spanjjci , . . . ,xk} such that SBi,...,SBi are linearly inde­
pendent and satisfy conditions of the (3.1) type. Clearly, if x\ E V* then we have 
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tha t V n TZ* -- {0}. Let {xu ..., x*} be a basis for the ft* n V space. Since for 
Vi = 1 , . . . , A there exists a reachability space containing X{ as it has been discussed 
in the proof of Theorem 3.1. The proof of the sufficiency is rather obvious. 

To prove the necessity of the results let V = W © W be such that there exists K 
with W C K and K being a reachability subspace. Furthermore, assume tha t K is of 
minimal dimension. Then, for K we will have that dim(/C njV r F) = 1 (see [3,14]); 
by the fact tha t the vectors {x\, .. ., Xk} satisfy condition of (3.1) type we have tha t 
(Vn jV r F) = (WnjVr F) = s p a n l x j } and thus /CnjV r F = s p a n j ^ i } . Since K is a 
reachability space then x\ £ V* (see [14]) and this completes the proof. • 

By generalising the above arguments we have: 

T h e o r e m 3.5 . Let V be a pure almost reachability space. Then there exists 
a subspace W of V with the property that W can be extended to a reachability 
subspace, if and only if V njV r F HV* ^ {0}. 

The results here provide a geometric framework for the study of generalised dy­
namic cover problems, in the special case where the space to be covered is an almost 
reachability space; the approach allows the construction of minimal covers for a 
large family of spaces to be covered by reducing the overall problem to a problem of 
extending semicyclic chains, bases. 

4. CONCLUSIONS 

We have shown that the reachability and almost reachability subspac.es of a im­
plicit system description S(F,G) can be characterised in geometric terms in a way 
very similar to tha t of the corresponding spaces of a generalised Se(E, A, 3) system, 
as it has been given in [20]. We have proved that there exists almost reachability 
subspaces tha t can be extended to reachability ones and others that cannot. Fur­
thermore, we described the condition which allow us to determine whether or not 
a given almost reachability subspace can be extended to a reachability one. In ad­
dition, we have given the necessary and sufficient conditions under which there exists 
a subspace of a pure reachability space that can be extended to a reachability space. 

The classification of the almost reachability spaces according to their property 
to be extended, or not to a reachability space, is intimately related to the study 
of minimal covers for subspaces of the almost reachability type. Such problems are 
important in the study of many geometric theory problems and are central in the 
study of selection of effective sets of inputs, outputs from larger sets associated with 
progenitor type models [12]. 

(Received February 13, 1995.) 
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