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EVERY CONTINUOUS FIRST ORDER 
AUTOREGRESSIVE STOCHASTIC PROCESS 
IS A GAUSSIAN PROCESS 

FRIEDRICH LIESE 

The notion of a process X(t) with independent increments is generalized. It is required that for 
0 = to <h < • • • < . „ <T the r.v. X(t0), X(h) - a(to,ti)X(t0),..., X(tn) - a(tn-i,tn)X(tn-i) 
are independent with some suitable function a(s,t). This class consists of Markov processes with a 
special structure of transition kernels and includes both the processes with independent increments and 
the regular Markov processes introduced by Vajda. The main result is that under some mild additional 
conditions every continuous process from this class is a GauB-Markov-process. 

1. F IRST O R D E R AUTOREGRESSIVE PROCESSES 

A discrete t ime stochastic process X0, X\,... is commonly called a first order autore-

gressive process if there are constants a0, a\,... so tha t the random variables X0, X\ — 

a0X0, X-2—a\X\,... are independent. Analogously we call a continuous t ime stochastic 

process X(t), 0 < t < T, a first order autoregressive process if there exists a function 

a(s,t), 0 < s < t < T, so that for every 0 = t0 < t\ < • • • < tn < T the random 

variables X(t0), X(t\)- a(t0,t\) X(t0),..., X(tn) - a(tn-\, tn) X(tn-\) are independent . 

Obviously every process with independent increments is a first order autoregressive pro­

cess with a = 1 and every first order autoregressive process is a MarkoV process. But 

these Markov processes have a special structure. 

P r o p o s i t i o n . A real valued process X(t), 0 < t < T, is a first order autoregressive 

process iff there are distributions QSit and a function a(s,t) for 0 < s < t < T so tha t 

for every Borel set B of the real line 

P(X(t)e B | X(s)) = QSit(B-a(s,t)X(s)) a .s . (1) 

Suppose now X(t), 0 < t < T, is a Gaufi-Markov-process and denote by a(t) = EX(t) 

and R(s,t) = EX(s)X(t) — a(s) a(t) the expectation and covariance function, respec­

tively. Using the convention ab+ = a/b if b ^ 0 and ab+ = 0 if b = 0 the condi­

tional distr ibution of A'(<) given X(s) = x is known to be normal distribution with 
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expectat ion a(t) - a(s)R(s,t)(R(s,s))+ + xR(s,t)(R(s,s))+ and variance a2(s,t) = 

R(t,t)(\ - R2(s,t)(R(s,s)R(t,<))+), respectively, (see [1]). In this connection a nor­

mal distribution with mean fi and variance zero is understood to be a ^-distribution 

which is concentrated at the point y, . If we denote by QSit a normal distribution with 

mean a(t) — a(s)R(s,t)(R(s, s))+ and variance a2(s,t) and introduce a by a(s,t) = 

R(s, t)(R(s, s))+ then the representation (1) holds which implies that X( t ) is a first order 

autoregressive process. Furthermore, if we suppose a(s, t) > 0 for every 0 < s < t < T 

then with if as s tandard normal density 

W 0 6B|X(.)-.) = / í | i í 5 y ( :«(VfcíM | ( 

where £(s,t) = a(t) — a(s,t)a(s) . 

Vajda [4] calls every Markov process X for which the representation (2) with some 

density holds which is not necessarily the density of a normal distribution a regular 

Markov process. Consequently by the Proposition every regular Markov process is a first 

order autoregressive process. 

The meaning of regular Markov processes is due to the fact tha t for two regular 

Markov processes which differ only in the mean value function the Renyi distance of the 

corresponding distributions may be explicitly calculated. This distance is impor tant for 

determining the asymptotic behaviour of error probabilities in the problem of testing 

statistical hypotheses. For details we refer to [2] and [4]. 

Now we restrict to continuous processes X, i.e. every realization of the process X is a 

continuous real valued function on [0,T]. If X is a process with independent increments 

and consequently an autoregressive process with a = 1 then X is known to be a Gaussian 

process with independent increments. The main goal of this paper is to give an answer 

to the question whether a similar s ta tement continues to hold in the more general class 

of first order autoregressive processes. 

2. RESULTS 

To formulate the results we need some special classes of functions. Denote by C the set 

of all real continuous functions a(s,t), 0 < s <t <T with a(s, .s) = 1 and by 13 the set 

of all real functions so tha t 

d(T) = supf[\a(tt^,t,)\ < cc (3) 
;=i 

where the supremum is taken over all 0 < t0 < • • • < tn < T. 

T h e o r e m 1. If X(t), 0 < t < T, is a continuous first order autoregressive stochastic 

process with a £ C fl U and X(0) is normally distributed then X(t) is a GauB-Markov 

process. 
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If we impose moment conditions to the process X then the conditions required to a 

may be weakened. 

T h e o r e m 2. If X(t), 0 < t < T, is a continuous first order autoregressive stochastic 

process with a _ C, EX2(t) < oo, 0 < t < T, and if A(0) is normally distr ibuted then 

X(t) is a Gaufi-Markov process. 

Corol lary. Let X(t), 0 < t < T, be a continuous regular Markov process and assume 

A(0) is normally distributed. If either a fulfils a g C n U or both a _C and EX2(t) < oo, 

0 < t < T, are satisfied then X(t) is a Gaufi-Markov process. 

3. P R O O F S 

At first we proof the Proposition. 

Let / be any non-negative Bore] measurable function on Rn+1 and assume X(t) is 

first order autoregressive. If Qst denotes the distribution of X(t) — a(s, t)X(s) then for 

0 < / , < • • • < . „ <T,ak = a(tk^,tk), Yk = X(tk)-akX(tk^)tfk> 1, Y0 = X(0), 

Qk = Qtk.ltth 

Ef(X(Q),X(h),...,X(tn)) = 

E f(Y0, Kj + a i Y o , - . . , Yn + a n Y n _, + • • • + an ... a ,Y 0 ) = 

= / ' " / / (2/0,2/i + a i 2 / 0 , . . . , 2 / n + a„y n _i + . . . + an---a1y0) 

Qn(dyn)...Qi{dyi)Px{0)(dyo) 

= / • • / f(x0,x-i,...,xn)Qn(dxn - a n x „ _ , ) - - - ( 5 i ( d _ i - a^o) PX(0)(dx0). 

Consequently X(t) is a Markov process with transition kernels 

P(X(t) _ B I X(s) =x)= QStt(B - a(s, t)x). 

If conversely X(t) is a Markov process with these transition kernels then the above 

calculation shows that the random variables A ( 0 ) , A ( i i ) — a(0,ti)X(0),..., X(tn) — 

a ( < „ _ i , i n ) A ( t „ _ i ) are independent which means tha t X(t) is a first order autoregressive 

process. O 

The proofs of the Theorems 1 and 2 are based on a series of lemmas which will be 

now established. 

The first lemma is a well-known characterization of continuous stochastic processes 

with independent increments. For a proof we refer to [3]. 
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Lemma 1. If W(t), 0 < t < T, is a continuous stochastic process with inde­
pendent increments and W(0) = 0 then there exist a continuous function a(t) and a 
non-decreasing continuous function b(t), 0 < t < T, so that W(t) — W(s) is normally 
distributed with mean a(t) — a(s) and variance b(t) — b(s) for every 0 < s < t < T, 
i.e. W is a Gaussian process with expectation function a(t) and covariance function 
R(s,t) = mm(b(s),b(t)). 

Lemma 2. Let Z\,..., Zn be independent random variables with P(\Zi\ > 1) = 0, 
i = 1 , . . . , n. If P(\Z\ H h Zn\> a) < -^ where e is the basis of the natural logarithm 
then there exist constants Lm depending on m only so that 

E|Zi + • • • + Zn\
m < Lm(\ + a)m (4) 

The proofs of Lemma 1 and 2 may be found in [3]. 

Lemma 3. Let X(t), 0 < t < T, be a continuous first order autoregressive stochastic 
process with a € C D 15. -If E| A"(0)|m < oo for every m > 0 then 

E\X(t)\m < oo (5) 

for every 0 < t < T, m > 0. 

Proof . Let 0 < t <T be fixed and define tk,n = **, k = 0 , . . . ,n. 
Put 

n,n = X(tk,n) - a (.*_.,„,.•*,„) X (**_,,„) 

for k = 1 , . . . , n and set ?b,n = X(0). Using the abbreviation 

Pk,n = Y[a(t,-hn,tlM) 
i=k 

we get 
x(t) = Yn,n + /?n,ftYn_i,n + • • • + /?2,ny1)ft + 0l>nYo,n 

Introduce the event Ak,n by 

Ak,n = {\/3k,nYk„hn\ < 1} . 

Let / (A ) denote the indicator function of the event A. To approximate X(t) we introduce 
Xn(t) by 

Аrn(ť) = ^А,nИ- 1 ,n/(А f c ,„). 
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Then 

p(\x(t) - phnx(o) - xn(t)\ >e)<p ( ^ in.nl > ~j 

* f U. | ; : ( g - j f M > .4) + 

+ p ((13gg». i1 - "('—Ml) -pt w-)l > ^ 

The continuity of the process X ensures that the first term on the right hand side tends 
to zero as n —» oo. By the continuity of X again we get sup |-Y(s)| < oo a. s. As a(s,t) 

0<s<« 

is uniformly continuous for 0 < s < t < T the second term also fends to zero as n —• oo. 
Hence 

Jim P (\X(t) - fa,nX(Q) - Xn(t)\ >e) = 0 (6) 

Note also that 

P(\Xn(t)\ >a)<P (\X(t) - phnX(0) - Xn(t)\ >e) + P (\X(t) - &,nX(0)\ >a-e) 

< P (\X(t)\ > ^ p ) + P (V(0 ) | > tZl) + P (\X(t) - phnX(0) - Xn(t)\ > e) 

Hence for all sufficiently large a and n the sum on the right hand side does not exceed 
—-. Thus we may apply Lemma 2 and obtain 

E\Xn(t)\
m < Lm(l + a)m . 

Hence by the Minkowski inequality for m > 1 

(E\^,nX(0)+Xn(t)rfm<d(t)(E\X(0)\m)l/m + (Lm(l+a)m)l/m (7) 

Using this inequality with m + S, S > 0, instead of m we see that the sequence \f3i,nX(§) + 
Xn(t)\

m is uniformly integrable, n = 1,2,... . The rest follows from (6) and (7). ' O 

Proof of Theorem 2. As EX2(t) < oo the expectation a(t) = EX(t) also exists 
and it is easy to see that the process X — a is autoregressive of first order iff the process 
X has the same property. Hence we may assume EX(t) = 0, 0 < t < T, without loss of 
generality in the sequel. 
Put R(s,t) = EX(s)X(t). For 0 < s < t < T the random variables X(0),X(s) -
a(0,s)X{0), X(t) - a(s,t)X(h) are independent. Hence X(s) and X(t) - a(s,t)X(s) 
are also independent and we get; 

R(s,t) = a(s,t)R(s,s) (8) 

If R(t0,t0) = 0 for some 0 < t0 < T then R(s,t0) = 0 for all s for which t0 - s is 
sufficiently small as the assumption a £ C implies a(s,t0) ^ 0. But then (8) yields 
R(s,s) = 0. Hence there are only two cases 
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1. R(s, s) > 0 for every 0 < s < T . 

2. There exists 0 < t0 < T with R(t0,t0) = 0 and R(s,s) = 0 which means X(s) = 0 

for every 0 < s < t0, where X(0) = 0 follows from the continuity of the process X. 

In the second case we shift the origin to t0 in order to get a process A' for which R(t,t) = 

EX2(t) > 0 for every 0 < t < T = T — t0 The above consideration shows that we may 

assume R(s,s) > 0 for every 0 < s <T without loss of generality. 

Assume now 0<s<t<u<T. Then by the independence of X(t) — a(s,i)X(s) 

and X(u)-a(t,u)X(t) and (8) 

0 = E(X(t) - a(s, t)X(s))(X(u) - a(t, u)X(t)) = R(s, t)(a(s, u) - a(s, t)a(t, u)) 

R(s,s) > 0 and (8) imply for every 0 < s <i <u<_T 

a(s,t)(a(s,u) -a(s,t)a(t,u)) = 0 (9) 

The continuity of a shows that this relation also holds for 0 < s < t < u < T. Hence 

a(0,t)(a(0,u) - a(Q,t)a(t,u)) = 0. 

If o(0 , HO) = 0 for some 0 < u0 < T then a € C implies a(0,t) = 0 for all t for 

which M0 — / is sufficiently small. Hence under the assumption a(0,uo) = 0 we have 

inf{(( : a ( 0 . u ) = 0} = 0 in contradiction to o (0 ,0 ) = 1. This means a(0,u) ^ 0 for 

every 0 < u < T. Introduce the process W by 

W(t) = (a(0,t))~\X(t)-X(0). 

W is a continuous stochastic process with W(Q) = 0. Furthermore we get from (9) the 

relation a(0,s)a(s,t) = a(0,t). Hence W(t)-W(s) = ^(X(t)-a(s,t)X(s)). As A is 

a first order autoregressive process we see that W is a continuous stochastic process with 

independent increments. Lemma 1 yields that W is Gaussian process. The definition 

of an autoregressive process implies that A'(0) is independent of the process W. Since 

A'(0) was supposed to be normally distributed and 

X(t) = a(0,t)(W(t) + X(0)) 

the process A' is again a Gaussian process and Theorem 2 is established. • 

The proof of Theorem 1 is a consequence of Lemma 3 and Theorem 2. The Corollary 

follows from the Proposition and Theorem 1 and 2. 

(Received May 6, 1991.) 
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