KYBERNETIKA — VOLUME 62 (2026), NUMBER 1, PAGES 35-54

AN IMPROVED DESCENT DIRECTION FOR
PATH-FOLLOWING ALGORITHM IN MONOTONE
LINEAR COMPLEMENTARITY PROBLEMS

LINDA MENNICHE, BILLEL ZAOUI AND DJAMEL BENTERKI

We present a new full-Newton step feasible interior-point method for solving monotone linear
complementarity problems. We derive an efficient search direction by applying an algebraic
transformation to the central path system. Furthermore, we prove that the proposed method
solves the problem within polynomial time. Notably, the algorithm achieves the best-known
iteration bound, namely O(y/nlog 2 )-iterations. Finally, comparative numerical simulations
illustrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

The monotone linear complementarity problem (LCP) is an important problem in op-
timization and mathematics, where the goal is to find a solution that satisfies specific
linear constraints and complementarity conditions. This problem has applications in
various fields, including game theory, economics and engineering [2].

Primal-dual interior-point methods (IPMs) become one of the most active methods
for solving wide classes of optimization problems thanks to their polynomial complexity
and their numerical efficiency [16] 21].

The determination of the search direction plays a key role in the case of IPMs. There-
fore, Darvay in [4] proposed a new technique for finding search directions for linear
optimization (LO). This technique is based on an algebraic equivalent transformation
(AET) with a square root function applied to the centering equation of the system which
characterizes the central path. The new search directions are obtained by applying New-
ton’s method to the resulting system. Later, Achache [I], Wang and Bai [17, 18| [19] and
Wang et al. [20] extended Darvay’s approach to convex quadratic programming (CQP),
second-order cone optimization (SOCQO), semidefinite optimization (SDO), symmetric
cone optimization (SCO) and the P, (k)-LCP, respectively. Moreover, Kheirfam and

Haghighi [9] proposed the function ¥ (t) = Q(T\/{\ft) in the AET technique to solve the
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P,(x)-LCPs. In addition, Darvay et al. in [3] took the function t(t) = t — /¢ in this
technique to present new primal-dual interior point algorithm (IPA) for LO. For more
related papers about the AET technique, we refer the reader to [5, [6l [8] [TT], 22] 23] 24],
etc.

In [10], Kheirfam and Nasrollahi used the AET technique with the power function
Py(t) = t4/2(q > 1), to develop a full-Newton short-step IPA for LO. They introduced
a set of new search directions based on the parameter q. Additionally, with the choices
T = m and 6 = m for ¢ > 3, they derived an iteration bound given
4q9(q—2)

N+ ——5 v
by O | v/nlog w . It is worth noting that the work of Kheirfam and

Nasrollahi [I0] relies on some earlier contributions (see e.g., [4, 12} 15 [16]). Additionally,
from the iteration bound in [10], we see that when ¢ becomes very large, 6 becomes very
small. This makes the rate 1 — 6 (which controls the decrease of the barrier parameter)
approach one, leading to slower convergence and potentially even divergence of the
algorithm. Therefore, using a large value of g in 9, (t) = t9/2 can result in poor numerical
performance. To address this, Grimes and Achache in [7] reconsidered the analysis of
their TPA for LO in the context of monotone LCP. They proposed a non-parametric
univariate function, 1 (t) = t5/2, to improve the numerical results of these algorithms.

Motivated by the works mentioned above, we propose a new full-Newton step feasible
IPM for monotone LCPs, based on the AET technique. In our approach, we use the
function v (t) = t5/3 to derive new efficient search directions via a full-Newton step in
the transformed system. We show that the new algorithm has polynomial complexity
with an iteration bound of O(y/nlog?). Furthermore, to validate the effectiveness of
our algorithm, we conducted numerical tests to compare its performance with that of
Grimes and Achache [7], as well as tests using problems from the quadprog test collection
[14].

The paper is organized as follows: Section [2| presents the concept of central path and
derives the classical search direction. In Section [3] we describe the new search direction
and the algorithm framework. Section [] analyzes the complexity of the algorithm.
Section [f] provides numerical experiments and comparisons. Finally, Section [6] concludes
with a summary and future works.

The notations used in this paper are as follows: R™ denotes the set of n-dimensional
real vectors. R™*" is the set of m x n matrices. The componentwise product (Hadamard
product) of vectors x and y is denoted as xy = (z1y1, T2y, - . ., Tnyn)’, and their elemen-

T
T1 T x
1727...771) with y; # 0 for all s = 1,...,n. For
Y1 Y2 Yn
a vector x and a scalar p, the elementwise power is denoted by 2P = (2], 25,... 2P

The Euclidean norm and the infinity norm are denoted by || - || and || - ||, respectively.

x
twise division is given by — = (
Y

).

2. PROBLEM FORMULATION

The LCP requires the computation of a vector pair (z,y) € R?*" satisfying

>0, y>0, y=Mz+gq, 2'y=0, (1)
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where M is a given n X n matrix and ¢ is a given vector in R™.

The last equation in system , known as the complementarity condition, can also be
written as xzy = 0, where xy denotes the Hadamard product of the vectors = and y.
Thus, system can be rewritten as

Throughout the paper, we will use the following notation for various subsets associated
with the LCP

e F(LCP) = {(z,y) € R? :2 >0,y > 0,y = Mz + ¢}, representing the affine fea-
sibility set of the LCP.

o FO(LCP) = {(z,y) € R*: 2 >0,y > 0,y = Mz + ¢}, denoting the strictly feasi-
ble affine set of the LCP.

o S(LCP) = {(z,y) € F(LCP) : zy = 0}, indicating the solution set of the LCP.

Moreover, we make the following assumptions for the LCP
e Assumption 1: The strictly feasible affine set F°(LCP) # 0.

e Assumption 2: The matrix M is positive semidefinite. Under this condition, the
LCP is called monotone.

Given these assumptions, the set S(LCP) is nonempty and convex.

2.1. The classical central path approach for LCP

The main idea behind path-following IPMs is to introduce a parameter p to create a
sequence of feasible points that converge to a solution. This is achieved by considering
a parametrized version of the system
y=Mz+q,
_ (3)
vy =pe, x20, y=>0,

where e is the all-ones vector of length n. For any parameter p > 0, system defines
the so-called central path of the monotone LCP.

Under the previously mentioned assumptions, there exists a unique solution (z(u), y(u))
to system for each p > 0, as shown in [I3]. We refer to the solutions (z(u),y(u))
as the p-centers of the monotone LCP. Notably, as p approaches zero, (z(u),y(@)) con-
verges to a solution of .

By applying Newton’s method to system , we can develop a classical path-following
algorithm to approximate this central path.

In the next section, we introduce a new variant to improve the approximation of the
central path.
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3. NEW SEARCH DIRECTION

Following [4], the AET technique for computing a new search direction for interior point
algorithms (IPAs) is based on the transformation of the centrality equation

Ty = pe in to the new equation 1) <xj) = ¢(e), where ¢ : (0,400) — R is a

continuously differentiable and invertible function, i.e., ¥ ™! exists. Then, the system
is transformed to the following system

y=Mzx+q,
¥ (”Ly) —b(e), 2,y >0, )

Using Newton’s method to solve the nonlinear system , we obtain the following linear
system
Ay — MAzxz =0,
1 . (zy s Ty Yy (5)
—y1p () Az + Jay) () Ay =1ple) =9 () .
o I I ju

Here, Az and Ay denote the search directions, v/’ denotes the derivative of .
We introduce the following notation

A A
U_\/@,d_\/f,dx_v L and d, = =Y. (6)
% y x Yy

AzA
po(dy +dy) = yAx + Ay, dydy = el
7

Here, we obtain

We can easily verify that the system is written in the following form

d, — Md, =0,
! _ (7)
dy +dy = P,.
(02 B
Where P, = M and M = DMD with D = diag(d).
vy’ (v?)
In this paper, we shall consider 9 : (0,400) — R, such that ¢ (t) = t3. Then
P, = §(v*% — ). (8)
5
To analyze the algorithm, we define a proximity measure to the central path as follows
5 -3
3(v) = oz, y, 1) = g [ P =l ™% —v ] (9)
where || . || denotes the Euclidean norm.

It is clear that
dv) =0 v=ecs zy=pe.

Now, we describe the corresponding algorithm as follows.
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Algorithm 1 Interior point algorithm for monotone LCP
Require: Accuracy parameter € > 0; Barrier update parameter 0 < 6 < 1; Threshold
parameter 0 < 7 < 1; Initial point (2°,9%) € F°(LCP) and x° > 0 such that

§(2%,y%, ) <7

1: Initialization: Set x = 20, y = 3, p = u°.

2: while 27y > ¢ do

3:  Update p = (1—0)p.

4:  Solve the system and use (6) to obtain (Az, Ay).
5.  Update z = x + Az and y = y + Ay.

6: end while

4. ANALYSIS OF THE ALGORITHM

In this section, we present a detailed analysis of the proposed algorithm. We aim to
show its main theoretical features, such as maintaining strict feasibility and effectively
reducing the duality gap. Using key lemmas, we prove the algorithm’s convergence and
provide bounds on the number of iterations needed to achieve a given accuracy.

We start with the following technical lemma which will be useful throughout our analysis.

Lemma 4.1. Let (d;,dy) be a solution of system (7)) with § = 6(z,y, 1), ¢ > 0. Then

<dfd, < 9 52 1
and 9
dodylloo € 02, dudy | < —= 02, 11
o < 1550 ey < 2=, (1)
where || - ||oo denotes the infinity norm.

Proof. To prove the first inequality in 7 we use the relationships given in and
@, we get

1 1
dld, = —(Ax)TAy = —(Az)" MAz >0,
I u

this last inequality holds because M is a positive semidefinite matrix.
For the second inequality in , from 7 we have

1P]1* = llds + dyl* = lldo||* + lldy|I* + 2d7 dy > 2d7d,.
Since || P,||? = %52, it follows that
9
2dTd, < &%
7Y =95

Then
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Thus, the first part of the lemma is proved.
Now, we have

dydy = ((dz + dy)2 —(ds — dy)z) :

| =

Furthermore, it is evident that
e + dy||* = |de — dy||* + 4d3 .
Since dXd, > 0, we conclude that
”dw - dyH < Hdw + dy”

Thus, we get

2+ dy)? — (e~ a,?]]

1
< L (I + 2 )

[dedylloe =

gimm(wu+%2m%—dﬂﬁ

1 1 179 9
< = n 2:7P'u2:772 :72.
< gl + 42 = IR0 = 3 (5) = o0

Next, for the final statement in the second part of the lemma, we have

1 2

o I = ¥ et = g (s + )2 - (0 - )
1 2

— (@ 4 - @ - a2

IN

1
L (T

IN

4
1 1 1/3
e +dy||* = S||P|* = <[ =6
glldz +dyllI” = Sl Pl 8<5>

1/3\* 1 3\ 2 9
Hence, ||ddy|| < 4/= (=) 64=—= (=) 62 = 52,
[l =g <5> 2V2 <5> 50v/2

This completes the proof. O

The following lemma ensures that the iterates generated by the algorithm after a full-
Newton step remain in the strictly feasible region of the LCP under a certain proximity
measure.

Lemma 4.2. let § = §(z,y, p) < X2, then (z4,y4) = (z + Az,y + Ay) € F(LCP).

Proof. Let 0 <a <1 and (z,y) € FO(LCP). We define

(o) =z +alz, yi(a)=y+ alAy.
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Thus,
o (Q)ys(a) = 2y + a(zAy + yAz) + o?AzAy.

From equations @ and , we get

24 (@)ys () = p? + apuP, + a*udyd,
=p((1—a)®+a(v®+vP, + adydy)) . (12)

Now, the inequality 1 (a)y(a) > 0 holds if
v+ vP, + adgzdy > 0.
From equations and with § < 13707 we have

v +oP, + adyd, > v +oP, — alldgdy e

952
>v? 4 vP, —
> V7 + vk alOOe
9 3/ 1 962
=0 —H)f(v 3—1})—05—6
) 100
>2U2+§’U7%76
) ) '
Clearly, 4 (a)y4 (o) > 0 holds if
2 3
51}24-51)_%—620
242 , 3,4
Let F(t) = £t* + £t75 — 1 for all t > 0. Then
4 4 1 4 28 _1o
F'(t)=—t——t75, F'(t)=—-+—t"5, Vt>D0.
() =zt—ztd, P=c+ ¥, w>o0

Since F is strictly convex, it has a unique minimum. Moreover, F’(1) = 0, which implies
that F'(t) reaches its minimum at ¢ = 1. Since a strictly convex function cannot go below
its minimum, we conclude that

F(t)> F(1)=0 Vt>0.

Thus, we have

Therefore, x4 (a)y4+(a) > 0 for all 0 < o < 1, meaning that x4 («) and y4(a) do not
change sign for any 0 < o < 1. Additionally, we have 2, (0) = 2 > 0 and y4(0) =y > 0.
Then, 24 (1) = 4 > 0 and y4(1) = y+ > 0, ensuring that z; and y; are strictly
feasible. 0

10 3 /100
Lemma 4.3. If § = §(z,y,p) < 3 then min(vy) > 1—01/7 — 62, where vy =

[T+Y+
o’
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Proof. We know from Lemma that x4 > 0 and y4 > 0, thus vy = R AN
V' w

well-defined.
Setting « =1 in and using , we obtain

2 3
vi =2+ 0P, + dydy = 502 + gv_% +dyd,. (13)

According to the previous lemma, we know that if § < 13—0, then

which implies that

Using , we get

|
—
S|e
[aw]
7 N
—_
Nel Naw)
o
|
>,
(V]
"
3

Thus, we conclude that

3 /100

2252,

0V 9

This completes the proof of the lemma. a
We state the following lemma which will be used in the next part of the analysis.

min(vy) >

Lemma 4.4. ([3], Lemma 5.2) Let f : [d,00) — (0,00) be a decreasing function
with d > 0, furthermore, let us consider the positive vector v of length n such that
min(v) > d. Then

1f (w)(e = v*)I| < f(min(v))[le —v?]| < f(d)]le — 7]

In the following lemma, we prove the local quadratic convergence of the full-Newton
step.

Lemma 4.5. Let (z,y) € FO(LCP) and § < 2. Then

syv-F(100 2\ °_ 3(10 52\°
ot = b,y u)<(w) <9 5) 10<9 6> (2+ - )52
Y+ 1) = 187052 5 5002 ’

Moreover, if § <1, sodt <62
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Proof. From the definition of the proximity measure, we have

_T
_z v,.°% —w
+ +
e T N e e e |
€—U+
We define the function .
fy =20
1=

) = ~T S 4 85 2
(1—1¢2)2
Let us define the function
7 _ 10 13 _4 2
)= —=t e |
fi(t) 3 +3 ,

we calculate the first and the second derivatives of this function, we get

70 13 52 =«
()= —t"3 — —t75 =2t
fl( ) 9 9 )
and 910 364
" __JiY,_16 QLu=x 10
V)= -Gt et 2,
We observe that f{(t) =0 for t =1, and f{'(1) = =2%% < 0. Hence, ¢t = 1 is a maximum
of f1(t), which implies that
filt) < f1(1) =0, VE>0.
Thus, we conclude that

f’(t)z(lfl(g)g<0, Vt > 0,t# 1.

Then, f is a decreasing function on (0,+0c0). By applying Lemma we can write
5 = | f(vs)(e —v2)| < f (minvy)) fle — 2],

where

Fmin(v,) < f(fg 0 52) _
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Moreover, we have

le =03 || = lle = (v* + vP, + dody ) |
= |le = v* —vP, — dgdy||

2 3 4
< lle— 202 = 2u7H) 4 dud .
Since 5 5 o5
—_ = 2 — = _% = L— 2
He 5U 5’0 H ng(v) 9 v ’
where 2 9 3 _4 14 20 10
o(v) = e—FU"— 35U 3 _ Sv3 —2u3 —3u3
(V=3 —v)2 5(e— v )2
5% — 2% — 3t
Let’s consider the function p(t) = ’ 310 ’
5(1—1t73)2
After some calculation, we obtain
1
o(t) = T 14¢5 — 85 —6t5 —6t3 — 18t5 — 83| <0, Vt> 0.
— 3
So, ¢ is continuous and strictly decreasing, also ¢(0) = 0 and lim;_, o @ (t) = —%. Then
2
5 < o(t) <0, Vt>0.

Thus

2
0 < |e(v;)] <z Vi=1,n.
Additionally, we know that
2_ 9 2 2 2
1Po[" = 5207 lle()llo < 7 and [IBJ]| < [[Pu]l"

Thus, we obtain

2., 3 . 2%, 2,
I I 3 < [T PU = —0".
e — 20— 304 < o) oo 2RI = 2
Moreover, from (L1)) we have ||d.d,|| < ﬁ(s?’ S0

2 9
e — 02 <(—|—>62.
el < (5 + 575

This gives
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L since h is a

Finally, let us define the function h(d) = f( /20— (52> for 6 < g,
159 )

increasing function, we conclude that h(5) < h(3) = f( 00— ) = f(¥5

1,8042. Then, we get
\/1591> (2 9 )52

+< At
’ f( 40 5 50v2
O

Thus, we have completed the proof
The following lemma shows the impact of a full-Newton step on the new duality gap
Lemma 4.6. Let 6 = é(xy, ). Then, the duality gap satisfies
(1) ys < p(n +26°).

In addition, if § < 1 7> Then
(z4)"yy < 2un.

Proof. From (13]), we know that
2
vi =02+ 0P, + dydy = 502 + %v_é + dydy.

Thus,
TyYy = U (1)2 +oP, + da:dy)
2 2248 v F —
_ Ut 5v
=pule —l— 9 P ( T — + dydy
25 o
<ple+ P + dydy
this last inequality holds because
4
2,2 3,75
202 4 3478 2
5Yi 5 Vi ¢ = _<P(Ui> < 3 <1, Vi

0< — 5
()

Using the previously inequality and , we get
T T 25 2 2
(@) yr =€ (wyys) Sp{n+ | Pll”+ 0
9 50
<p(n+ 262) )
Finally, if § < %7 then 62 < 1. Therefore,
(z4)Ty+ < pn+2) < 2um,
O

because n + 2 < 2n, Vn > 2, which completes the proof.
The next lemma shows the influence of full-Newton step on the proximity measure
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Lemma 4.7. Let (z,y) € FO(LCP) such that § := §(zy, p) < & and p* = (1 - 0)u,
where 0 < 8 < 1. Then

~

(1_9)3@./130_52) s 130_52K2 .

(1-0)2 —(1—0)7 — 135(1—0)262

6(v44) =024, Yyt p4) <

1

Moreover, if ¢ < 1 and 6 = 1=, n>1, then &(zyy4;py) < 3.

9v/n?

_ T4y T+¥+ 1
Vpy = \/ . \/(1 — o @ _9)U+. (15)

From the definition of the proximity measure, we have

Proof. Let

_7 7)_5 — U++
S(viq) = 8(xp,yp, py) = 033 —vpy | = | FE——(e —v3,) (16)

(e—viy)

Let us compute the two expression of previous norm. From ([15)), we get
_7
v, 3 — vy = v - —vs ).
++ ++ (1_ % + (1_9)% +
5 ,1
! "
2

also ( ) )
1—-0)e—vy
e — 'Ui+ = T (18)

Substituting (17)) and (18] into (16]), we get
(1- 0)31) - o ‘

s = o[ -

Define the function

(1—0)5t3 —t

t = —

g(t) a—o -

Since ¢'(t) < 0 for all ¢ > 0, the function ¢ is decreasing. Using Lemmas and we
deduce

vt > 0.

8(0s 1) <~ glmin(v,)[| (1 — O)e — 2

(1-0)

7
-3
] 5 3 100 3 100
] ( - 0) 3 <1(] 79 - 52) 10 79 - 52

=0 <1—9>—(1%\/W)2
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Furthermore, by using (|14), we get
1(1 = 0)e — vl < [le — v +[|6e]]

2 9
<4+ —%)%+0Vn. 20
(5 50\/5) vn (20)
Substituting into , we obtain

i
5 - _§ -
-0 (H/E-) —H/E- 2
+ 0" +0
: K5 50\f> f}

S(vgq) < (1_9)%_(1_9)%_100( 9) 2

Now, suppose that § < i and 6 = ﬁ, we have

(o) oo (o sag)oeh< ()i

Let us define the following function

-0 (5 -r) - E e

(1-0)2 —(1-0)7 — 155(1 — )72

|~

fa(6) =

The function fs is increasing for each § < i, because

1
fa(t) = ﬂg(hl(t))7
since hi(t) = 130\/ 100 _ 42 and g¢(t) = (1(_9)3;_:2_t are both decreasing. So
70 < (7).
where
(103 (V)5 V159
f2<411) - 401609 "
(1-0)2 - @(1 —0)2

(1-0)F (A7) - 1
1a(0) = A W0 <0<
( )2 — 1800 )2

Since f3(0) is increasing, we obtain

5 7
1y _ (tege - e
f3(9)§f3(9> (§)%_ 16092v2
9



48 L. MENNICHE, B. ZAOUI AND D. BENTERKI

Finally, we get

8\5 (V/IB91\~5 _ 1591
) < (9) ( 40 ) 40 Z 9 1+1 30,2225<1.
(8) — 10092y3 4
9 3

6(vgs

5 50xf

This completes the proof. O
The following lemma establishes an upper bound on the number of iterations required
for the algorithm.

1
Lemma 4.8. Suppose that the pair (2°,9°) € FO(LCP) such as 6(2°,y°, u°) < T for

a fixed u° > 0. Moreover, let (z¥,4*) be the point obtained after k iterations. The
inequality (z%)Ty* < e is satisfied when

1 2nu
kzlog( e )
0 €

Proof. After k iterations, we have u* = (1 — 0)*u°, Lemma implies that
() Ty* < 2pFn < (1 - 0)*2nu°.
Hence, the inequality (z*)Ty* < e holds if
(]. — 9)k2ﬂﬂ() S €.

Taking logarithm, we get

klog(1 —0) <loge — log 2npuy.
As —log(1—0) >0, V 0 <6 <1, then the above inequality holds if

Mo

kO > log 2nug — loge = log
Hence the result. g

Theorem 4.9. Using the default § = ﬁ, n>1, 7= i and pg = % Then the obtained

algorithm requires at most O(/nlog 2) iterations for getting the e-approximate solution
for LCP.

Proof. Using § = gfv o = 5 in the previously lemma, the result holds. (|

5. NUMERICAL EXPERIMENTS

In this section, we present comparative numerical tests between our proposed algorithm
With its parameter 6y, = f and the algorithm of Grimes and Achache [7], which uses
O:p, = ﬁ Both algorithms are tested under the same accuracy parameter e = 104,
For the numerical experiments, we use two examples with fixed sizes and one example
with a variable size of monotone LCPs. The tests are implemented using MATLAB
R2009b. We refer to the algorithm of Grimes and Achache as ” M1” and to our algorithm
as "M?2”. The results compare the number of iterations, ”Iter,” required to find an
e-approximate solution and the computation time, ”T(s),” measured in seconds.
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Example 5.1. Let us consider the following monotone LC'P.

6 6 4 3 2 —20.5
8 21 14 10 12 —64.5
M=1|4 14 13 5 9 |,q=]-445
410 5 6 5 —29.5
3 12 8 4 10 —36.5

The starting points for the algorithms are as follows
2°=(1,1,1,1,1)%, 4° = (0.5,0.5,0.5,0.5,0.5)T.
An obtained solution was given as follows
x* = (0.6364, 2.3222,0.5847,0.0001, 0.2046) "

y* = (0,0,0,0.2149,0.00001)7.

The numerical results of this example are summarized in Table

Tab. 1. Comparative results for Example

M1 M2
Tter T(s) Tter T(s)
1116 0.084491 199 0.022823

Example 5.2.

1 0 -05 0 1 3 O -1

0 05 0 0 2 1 -1 3

-05 0 1 05 1 2 -4 1

M = 0 0 05 05 1 -1 0 |,¢g=1] -1

-1 -2 -1 -1 0 0 O )

-3 -1 =2 1 0 0 O 6

0 1 4 0 0 0 O 1.5

We consider the following initial point
2 = (0.98,0.14,0.31,1.84,0.32,0.12,0.17)7,4° = M2 + ¢.
An obtained solution was given as follows
z* = (1,0,0,2,0,0,0)7,

y* =(0,3,1.5,0,2,5,1.5)7.

The numerical results of this example are summarized in Table
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Tab. 2. Comparative results for Example

M1 M2
Tter T(s) Tter T(s)
1366 0.115969 244  0.024603

Example 5.3. (with variable dimension)

12 2 - 2
25 6 --- 6

M=]26 9 - 10 , q=—Me+e.
2 6 10 --- 4n-3

The starting points are 2° = 1° = e.
The obtained results of this example for different sizes of n were summarized in Table

Tab. 3. Comparative results for Example

n M1 M2
Tter T(s) Tter T(s)

10 1797 0.1968 322 0.0374
25 3070 1.0811 554 0.3104
50 4587 6.2128 829 0.9149
100 6832 43.8086 1237 5.6703
500 17065 5515.8748 3097 1001.9191

Remark 5.4. The obtained results via our algorithm [1| (M2) show its efficiency com-
pared to the algorithm of Grimes and Achache (M1). This efficiency is measured by a
smaller number of iterations and reduced computation time registered in M 2.

The efficiency of our approach M2 becomes increasingly evident as the dimension of the
problem grows, as illustrated in Table

5.1. Improvement of the algorithm

Since the parameter 6 used in both algorithms is dependent on the dimension of the
problem n (in the denominator), it decreases as n grows, leading to slower convergence.
To improve this, we propose comparing the two algorithms M1 and M2 with fixed values
of 6 chosen from the set {0.1, 0.3, 0.5, 0.7, 0.9}.

The results of the previously examples [5.1} 5.2 and [5.3] are summarized in Table
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Tab. 4. Comparative results for fixed value of 0
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Example n 0 M1 M2
Tter T(s) Tter T(s)
0.1 97 0.030379 97 0.011122
0.3 29 0.006749 29 0.006653
Example 05 0.5 21 0.005521 16 0.005566
0.7 21 0.005659 15 0.005104
0.9 21 0.005345 15 0.005162
0.1 100 0.136678 100 0.124180
0.3 30 0.016931 30 0.015831
Example 07 0.5 21 0.006876 16 0.006114
0.7 21 0.006335 12 0.005090
0.9 21 0.006245 12 0.004569
0.1 125 0.213962 125 0.197624
0.3 38 0.080153 37 0.079202
50 0.5 27 0.070043 20 0.051982
0.7 26 0.046911 15 0.036607
0.9 26 0.045135 15 0.035956
0.1 132 0.931735 132 0.935253
0.3 40 0.283016 39 0.287833
100 0.5 28 0.201628 21 0.162714
0.7 28 0.195372 16 0.119690
Example 0.9 28 0.188696 16 0.113299
0.1 147 58.121058 147 99.896615
0.3 44 18.294447 44 17.869089
500 0.5 31 11.676487 23 9.082781
0.7 31 11.545788 18 7.269387
0.9 31 11.473889 17 6.654589
0.1 154 374.00098 154 371.581444
0.3 46 111.844714 46 112.215909
1000 0.5 33 81.198650 24 58.907683
0.7 32 80.103787 19 47.175033
0.9 32 78.317369 18 44.956709

Remark 5.5. Using fixed values of 8, the results show clear improvements compared
to the theoretical 0y, for both algorithms. When 6 increases, the computation time and
the number of iterations decrease. In addition, our approach gives better results than
the approach of Grimes and Achache [7] and these advantages become more noticeable

as 6 and the problem size grow.

Now, to confirm our previous observations, we will solve some problems from the
quadprog test collection (https://CRAN.R-project.org/package=quadprog) using dif-
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ferent values of . The obtained results are summarized in Table [l

Tab. 5. Comparative results for some quadprog problems

Problem 0 M1 M2
Tter T(s) Tter T(s)
0:n 707 0.0548 126 0.0123
0.1 69 0.0087 69 0.0058
Jecovic 0.3 21 0.0049 21 0.0047
0.5 15 0.0046 11 0.0042
0.7 15 0.0042 9 0.0031
0.9 15 0.0040 8 0.0028
04 379 0.0376 68 0.0082
0.1 43 0.0065 43 0.0061
Tamne 0.3 14 0.0046 13 0.0042
0.5 10 0.0039 7 0.0030
0.7 9 0.0036 6 0.0029
0.9 9 0.0033 5 0.0025
0:1 1512 0.2511 272 0.0531
0.1 69 0.0163 69 0.0156
0.3 21 0.0093 21 0.0087
Genhs 28 0.5 16 0.0061 12 0.0054
0.7 16 0.0057 10 0.0051
0.9 16 0.0055 10 0.0047

6. CONCLUSION

In this paper, we have introduced an efficient feasible full-Newton step interior point
algorithm to solve monotone linear complementarity problems. We have demonstrated
that the resulting algorithm solves the problems in polynomial time, ensuring both
efficiency and robustness. Furthermore, numerical experiments highlight the superior
performance of our approach. Additionally, the implementation of our approach, with
fixed values of the update parameter 6, results in a significant reduction in both number
of iterations and computation time.

In the future, we will extend this approach to more generalized problems, such as
semidefinite linear complementarity problems.
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