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AN IMPROVED DESCENT DIRECTION FOR
PATH-FOLLOWING ALGORITHM IN MONOTONE
LINEAR COMPLEMENTARITY PROBLEMS

Linda Menniche, Billel Zaoui and Djamel Benterki

We present a new full-Newton step feasible interior-point method for solving monotone linear
complementarity problems. We derive an efficient search direction by applying an algebraic
transformation to the central path system. Furthermore, we prove that the proposed method
solves the problem within polynomial time. Notably, the algorithm achieves the best-known
iteration bound, namely O(

√
n log n

ϵ
)-iterations. Finally, comparative numerical simulations

illustrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

The monotone linear complementarity problem (LCP) is an important problem in op-
timization and mathematics, where the goal is to find a solution that satisfies specific
linear constraints and complementarity conditions. This problem has applications in
various fields, including game theory, economics and engineering [2].

Primal-dual interior-point methods (IPMs) become one of the most active methods
for solving wide classes of optimization problems thanks to their polynomial complexity
and their numerical efficiency [16, 21].

The determination of the search direction plays a key role in the case of IPMs. There-
fore, Darvay in [4] proposed a new technique for finding search directions for linear
optimization (LO). This technique is based on an algebraic equivalent transformation
(AET) with a square root function applied to the centering equation of the system which
characterizes the central path. The new search directions are obtained by applying New-
ton’s method to the resulting system. Later, Achache [1], Wang and Bai [17, 18, 19] and
Wang et al. [20] extended Darvay’s approach to convex quadratic programming (CQP),
second-order cone optimization (SOCO), semidefinite optimization (SDO), symmetric
cone optimization (SCO) and the P∗(κ)-LCP, respectively. Moreover, Kheirfam and

Haghighi [9] proposed the function ψ(t) =
√
t

2(1+
√
t)

in the AET technique to solve the
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P∗(κ)-LCPs. In addition, Darvay et al. in [3] took the function ψ(t) = t −
√
t in this

technique to present new primal-dual interior point algorithm (IPA) for LO. For more
related papers about the AET technique, we refer the reader to [5, 6, 8, 11, 22, 23, 24],
etc.

In [10], Kheirfam and Nasrollahi used the AET technique with the power function
ψq(t) = tq/2(q ≥ 1), to develop a full-Newton short-step IPA for LO. They introduced
a set of new search directions based on the parameter q. Additionally, with the choices
τ = 2

(q−1)2+2 and θ = 1
((2q−1)3−5q)

√
n
for q ≥ 3, they derived an iteration bound given

by O

(
√
n log

µ0

(
n+

4q(q−2)

((q−1)2+2)2

)
ϵ

)
. It is worth noting that the work of Kheirfam and

Nasrollahi [10] relies on some earlier contributions (see e.g., [4, 12, 15, 16]). Additionally,
from the iteration bound in [10], we see that when q becomes very large, θ becomes very
small. This makes the rate 1− θ (which controls the decrease of the barrier parameter)
approach one, leading to slower convergence and potentially even divergence of the
algorithm. Therefore, using a large value of q in ψq(t) = tq/2 can result in poor numerical
performance. To address this, Grimes and Achache in [7] reconsidered the analysis of
their IPA for LO in the context of monotone LCP. They proposed a non-parametric
univariate function, ψ(t) = t5/2, to improve the numerical results of these algorithms.

Motivated by the works mentioned above, we propose a new full-Newton step feasible
IPM for monotone LCPs, based on the AET technique. In our approach, we use the
function ψ(t) = t5/3 to derive new efficient search directions via a full-Newton step in
the transformed system. We show that the new algorithm has polynomial complexity
with an iteration bound of O(

√
n log n

ϵ ). Furthermore, to validate the effectiveness of
our algorithm, we conducted numerical tests to compare its performance with that of
Grimes and Achache [7], as well as tests using problems from the quadprog test collection
[14].

The paper is organized as follows: Section 2 presents the concept of central path and
derives the classical search direction. In Section 3, we describe the new search direction
and the algorithm framework. Section 4 analyzes the complexity of the algorithm.
Section 5 provides numerical experiments and comparisons. Finally, Section 6 concludes
with a summary and future works.

The notations used in this paper are as follows: Rn denotes the set of n-dimensional
real vectors. Rm×n is the set ofm×n matrices. The componentwise product (Hadamard
product) of vectors x and y is denoted as xy = (x1y1, x2y2, . . . , xnyn)

T , and their elemen-

twise division is given by
x

y
=

(
x1
y1
,
x2
y2
, . . . ,

xn
yn

)T

with yi ̸= 0 for all i = 1, . . . , n. For

a vector x and a scalar p, the elementwise power is denoted by xp = (xp1, x
p
2, . . . , x

p
n)

T .
The Euclidean norm and the infinity norm are denoted by ∥ · ∥ and ∥ · ∥∞, respectively.

2. PROBLEM FORMULATION

The LCP requires the computation of a vector pair (x, y) ∈ R2n satisfying

x ≥ 0, y ≥ 0, y =Mx+ q, xT y = 0, (1)
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where M is a given n× n matrix and q is a given vector in Rn.
The last equation in system (1), known as the complementarity condition, can also be
written as xy = 0, where xy denotes the Hadamard product of the vectors x and y.
Thus, system (1) can be rewritten as

x ≥ 0, y ≥ 0, y =Mx+ q, xy = 0, (2)

Throughout the paper, we will use the following notation for various subsets associated
with the LCP

• F (LCP) =
{
(x, y) ∈ R2n : x ≥ 0, y ≥ 0, y =Mx+ q

}
, representing the affine fea-

sibility set of the LCP.

• F 0(LCP) =
{
(x, y) ∈ R2n : x > 0, y > 0, y =Mx+ q

}
, denoting the strictly feasi-

ble affine set of the LCP.

• S(LCP) = {(x, y) ∈ F (LCP) : xy = 0}, indicating the solution set of the LCP.

Moreover, we make the following assumptions for the LCP

• Assumption 1: The strictly feasible affine set F 0(LCP) ̸= ∅.

• Assumption 2: The matrixM is positive semidefinite. Under this condition, the
LCP is called monotone.

Given these assumptions, the set S(LCP) is nonempty and convex.

2.1. The classical central path approach for LCP

The main idea behind path-following IPMs is to introduce a parameter µ to create a
sequence of feasible points that converge to a solution. This is achieved by considering
a parametrized version of the system{

y =Mx+ q,

xy = µe, x ≥ 0, y ≥ 0,
(3)

where e is the all-ones vector of length n. For any parameter µ > 0, system (3) defines
the so-called central path of the monotone LCP.

Under the previously mentioned assumptions, there exists a unique solution (x(µ), y(µ))
to system (3) for each µ > 0, as shown in [13]. We refer to the solutions (x(µ), y(µ))
as the µ-centers of the monotone LCP. Notably, as µ approaches zero, (x(µ), y(µ)) con-
verges to a solution of (2).

By applying Newton’s method to system (3), we can develop a classical path-following
algorithm to approximate this central path.

In the next section, we introduce a new variant to improve the approximation of the
central path.
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3. NEW SEARCH DIRECTION

Following [4], the AET technique for computing a new search direction for interior point
algorithms (IPAs) is based on the transformation of the centrality equation

xy = µe in (3) to the new equation ψ

(
xy

µ

)
= ψ(e), where ψ : (0,+∞) → R is a

continuously differentiable and invertible function, i.e., ψ−1 exists. Then, the system
(3) is transformed to the following systemy =Mx+ q,

ψ

(
xy

µ

)
= ψ(e), x, y ≥ 0.

(4)

Using Newton’s method to solve the nonlinear system (4), we obtain the following linear
system ∆y −M∆x = 0,

1

µ
yψ

′
(
xy

µ

)
∆x+ 1

µxψ
′
(
xy

µ

)
∆y = ψ(e)− ψ

(
xy

µ

)
.

(5)

Here, ∆x and ∆y denote the search directions, ψ′ denotes the derivative of ψ.
We introduce the following notation

v =

√
xy

µ
, d =

√
x

y
, dx =

v∆x

x
and dy =

v∆y

y
. (6)

Here, we obtain

µv(dx + dy) = y∆x+ x∆y, dxdy =
∆x∆y

µ
.

We can easily verify that the system (5) is written in the following form{
dy − M̄dx = 0,

dx + dy = Pv.
(7)

Where Pv =
ψ(e)− ψ(v2)

vψ′(v2)
and M̄ = DMD with D = diag(d).

In this paper, we shall consider ψ : (0,+∞) −→ R, such that ψ(t) = t
5
3 . Then

Pv =
3

5
(v−

7
3 − v). (8)

To analyze the algorithm, we define a proximity measure to the central path as follows

δ(v) = δ(x, y, µ) =
5

3
∥ Pv ∥=∥ v− 7

3 − v ∥ . (9)

where ∥ . ∥ denotes the Euclidean norm.
It is clear that

δ(v) = 0 ⇔ v = e⇔ xy = µe.

Now, we describe the corresponding algorithm as follows.
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Algorithm 1 Interior point algorithm for monotone LCP

Require: Accuracy parameter ε > 0; Barrier update parameter 0 < θ < 1; Threshold
parameter 0 < τ < 1; Initial point (x0, y0) ∈ F 0(LCP) and µ0 > 0 such that
δ(x0, y0, µ0) ≤ τ .

1: Initialization: Set x = x0, y = y0, µ = µ0.
2: while xT y > ε do
3: Update µ = (1− θ)µ.
4: Solve the system (7) and use (6) to obtain (∆x,∆y).
5: Update x = x+∆x and y = y +∆y.
6: end while

4. ANALYSIS OF THE ALGORITHM

In this section, we present a detailed analysis of the proposed algorithm. We aim to
show its main theoretical features, such as maintaining strict feasibility and effectively
reducing the duality gap. Using key lemmas, we prove the algorithm’s convergence and
provide bounds on the number of iterations needed to achieve a given accuracy.
We start with the following technical lemma which will be useful throughout our analysis.

Lemma 4.1. Let (dx, dy) be a solution of system (7) with δ = δ(x, y, µ), µ > 0. Then

0 ≤ dTx dy ≤ 9

50
δ2 (10)

and

∥dxdy∥∞ ≤ 9

100
δ2, ∥dxdy∥ ≤ 9

50
√
2
δ2, (11)

where ∥ · ∥∞ denotes the infinity norm.

P r o o f . To prove the first inequality in (10), we use the relationships given in (5) and
(6), we get

dTx dy =
1

µ
(∆x)T∆y =

1

µ
(∆x)TM∆x ≥ 0,

this last inequality holds because M is a positive semidefinite matrix.
For the second inequality in (10), from (8), we have

∥Pv∥2 = ∥dx + dy∥2 = ∥dx∥2 + ∥dy∥2 + 2dTx dy ≥ 2dTx dy.

Since ∥Pv∥2 =
9

25
δ2, it follows that

2dTx dy ≤ 9

25
δ2.

Then

dTx dy ≤ 9

50
δ2.
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Thus, the first part of the lemma is proved.
Now, we have

dxdy =
1

4

(
(dx + dy)

2 − (dx − dy)
2
)
.

Furthermore, it is evident that

∥dx + dy∥2 = ∥dx − dy∥2 + 4dTx dy.

Since dTx dy ≥ 0, we conclude that

∥dx − dy∥ ≤ ∥dx + dy∥.

Thus, we get

∥dxdy∥∞ =
1

4

∥∥(dx + dy)
2 − (dx − dy)

2
∥∥
∞

≤ 1

4
max

(∥∥dx + dy∥2∞; ∥dx − dy
∥∥2
∞

)
≤ 1

4
max

(∥∥dx + dy∥2; ∥dx − dy
∥∥2)

≤ 1

4
∥dx + dy∥2 =

1

4
∥Pv∥2 =

1

4

(
9

25
δ2
)

=
9

100
δ2.

Next, for the final statement in the second part of the lemma, we have

∥dxdy∥2 = eT (dxdy)
2 =

1

16
eT
(
(dx + dy)

2 − (dx − dy)
2

)2

=
1

16

∥∥∥∥(dx + dy)
2 − (dx − dy)

2

∥∥∥∥2
≤ 1

16

(∥∥dx + dy∥4 + ∥dx − dy
∥∥4)

≤ 1

8
∥dx + dy∥4 =

1

8
∥Pv∥4 =

1

8

(
3

5
δ

)4

Hence, ∥dxdy∥ ≤

√
1

8

(
3

5

)4

δ4 =
1

2
√
2

(
3

5

)2

δ2 =
9

50
√
2
δ2.

This completes the proof. □
The following lemma ensures that the iterates generated by the algorithm after a full-

Newton step remain in the strictly feasible region of the LCP under a certain proximity
measure.

Lemma 4.2. let δ = δ(x, y, µ) < 10
3 , then (x+, y+) = (x+∆x, y +∆y) ∈ F 0(LCP ).

P r o o f . Let 0 ≤ α ≤ 1 and (x, y) ∈ F 0(LCP ). We define

x+(α) = x+ α∆x, y+(α) = y + α∆y.
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Thus,
x+(α)y+(α) = xy + α(x∆y + y∆x) + α2∆x∆y.

From equations (6) and (7), we get

x+(α)y+(α) = µv2 + αµvPv + α2µdxdy

= µ
(
(1− α)v2 + α

(
v2 + vPv + αdxdy

))
. (12)

Now, the inequality x+(α)y+(α) > 0 holds if

v2 + vPv + αdxdy > 0.

From equations (11) and (8) with δ < 10
3 , we have

v2 + vPv + αdxdy ≥ v2 + vPv − α∥dxdy∥∞e

≥ v2 + vPv − α
9δ2

100
e

= v2 + v
3

5

(
v−

7
3 − v

)
− α

9δ2

100
e

>
2

5
v2 +

3

5
v−

4
3 − e.

Clearly, x+(α)y+(α) > 0 holds if

2

5
v2 +

3

5
v−

4
3 − e ≥ 0.

Let F (t) = 2
5 t

2 + 3
5 t

− 4
3 − 1 for all t > 0. Then

F ′(t) =
4

5
t− 4

5
t−

7
3 , F ′′(t) =

4

5
+

28

15
t−

10
3 , ∀t > 0.

Since F is strictly convex, it has a unique minimum. Moreover, F ′(1) = 0, which implies
that F (t) reaches its minimum at t = 1. Since a strictly convex function cannot go below
its minimum, we conclude that

F (t) ≥ F (1) = 0 ∀t > 0.

Thus, we have
2

5
v2 +

3

5
v−

4
3 − e > 0.

Therefore, x+(α)y+(α) > 0 for all 0 ≤ α ≤ 1, meaning that x+(α) and y+(α) do not
change sign for any 0 ≤ α ≤ 1. Additionally, we have x+(0) = x > 0 and y+(0) = y > 0.
Then, x+(1) = x+ > 0 and y+(1) = y+ > 0, ensuring that x+ and y+ are strictly
feasible. □

Lemma 4.3. If δ = δ(x, y, µ) <
10

3
, then min(v+) ≥ 3

10

√
100

9
− δ2, where v+ =√

x+y+
µ

.
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P r o o f . We know from Lemma 4.2 that x+ > 0 and y+ > 0, thus v+ =

√
x+y+
µ

is

well-defined.
Setting α = 1 in (12) and using (8), we obtain

v2+ = v2 + vPv + dxdy =
2

5
v2 +

3

5
v−

4
3 + dxdy. (13)

According to the previous lemma, we know that if δ < 10
3 , then

2

5
v2 +

3

5
v−

4
3 − e > 0,

which implies that
v2+ ≥ e+ dxdy.

Using (11), we get

v2+ ≥ e+ dxdy

≥ (e− ∥dxdy∥∞e)

≥
(
1− 9

100
δ2
)
e

≥ 9

100

(
100

9
− δ2

)
e.

Thus, we conclude that

min(v+) ≥
3

10

√
100

9
− δ2.

This completes the proof of the lemma. □
We state the following lemma which will be used in the next part of the analysis.

Lemma 4.4. ([3], Lemma 5.2) Let f : [d,∞) −→ (0,∞) be a decreasing function
with d > 0, furthermore, let us consider the positive vector v of length n such that
min(v) > d. Then

∥f(v)(e− v2)∥ ≤ f
(
min(v)

)
∥e− v2∥ ≤ f(d)∥e− v2∥.

In the following lemma, we prove the local quadratic convergence of the full-Newton
step.

Lemma 4.5. Let (x, y) ∈ F 0(LCP ) and δ < 10
3 . Then

δ+ = δ(x+, y+, µ) ≤

(
3
10

)− 7
3

(
100
9 − δ2

)− 7
6

− 3
10

(
100
9 − δ2

) 1
2

9
100δ

2

(
2

5
+

9

50
√
2

)
δ2,

Moreover, if δ ≤ 1
4 , so δ+ ≤ δ2.
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P r o o f . From the definition of the proximity measure, we have

δ+ = ∥v−
7
3

+ − v+∥ =

∥∥∥∥v−
7
3

+ − v+

e− v2+
(e− v2+)

∥∥∥∥.
We define the function

f(t) =
t−

7
3 − t

1− t2
.

Next, we compute the derivative of f

f ′(t) =
− 7

3 t
− 10

3 + 13
3 t

− 4
3 − t2 − 1

(1− t2)2
.

Let us define the function

f1(t) = −7

3
t−

10
3 +

13

3
t−

4
3 − t2 − 1,

we calculate the first and the second derivatives of this function, we get

f ′1(t) =
70

9
t−

13
3 − 52

9
t−

7
3 − 2t,

and

f ′′1 (t) = −910

27
t−

16
3 +

364

27
t−

10
3 − 2.

We observe that f ′1(t) = 0 for t = 1, and f ′′1 (1) =
−600
27 < 0. Hence, t = 1 is a maximum

of f1(t), which implies that

f1(t) ≤ f1(1) = 0, ∀t > 0.

Thus, we conclude that

f ′(t) =
f1(t)

(1− t2)2
< 0, ∀t > 0, t ̸= 1.

Then, f is a decreasing function on (0,+∞). By applying Lemma 4.4, we can write

δ+ = ∥f(v+)(e− v2+)∥ ≤ f (min(v+)) ∥e− v2+∥,

where

f(min(v+)) ≤ f

(
3

10

√
100

9
− δ2

)
=

(
3
10

√
100
9 − δ2

)− 7
3

− 3
10

√
100
9 − δ2

1−
(

3
10

√
100
9 − δ2

)2

=

(
3
10

)− 7
3
(

100
9 − δ2

)− 7
6

− 3
10

(
100
9 − δ2

) 1
2

9
100δ

2
.
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Moreover, we have

∥e− v2+∥ = ∥e− (v2 + vPv + dxdy)∥
= ∥e− v2 − vPv − dxdy∥

≤ ∥e− 2

5
v2 − 3

5
v−

4
3 ∥+ ∥dxdy∥.

Since ∥∥e− 2

5
v2 − 3

5
v−

4
3

∥∥ =
∥∥φ(v).25

9
P 2
v

∥∥,
where

φ(v) =
e− 2

5v
2 − 3

5v
− 4

3

(v−
7
3 − v)2

=
5v

14
3 − 2v

20
3 − 3v

10
3

5(e− v
10
3 )2

.

Let’s consider the function φ(t) =
5t

14
3 − 2t

20
3 − 3t

10
3

5(1− t
10
3 )2

.

After some calculation, we obtain

φ′(t) =
1

3(1− t
10
3 )4

[
14t

11
3 − 8t

17
3 − 6t

7
3 − 6t

31
3 − 18t

27
3 − 8t3

]
< 0, ∀t > 0.

So, φ is continuous and strictly decreasing, also φ(0) = 0 and limt→+∞ φ(t) = − 2
5 . Then

−2

5
< φ(t) < 0, ∀t > 0.

Thus

0 < |φ(vi)| <
2

5
, ∀i = 1, n.

Additionally, we know that

∥Pv∥2 =
9

25
δ2, ∥φ(v)∥∞ <

2

5
and ∥P 2

v ∥ ≤ ∥Pv∥2.

Thus, we obtain

∥e− 2

5
v2 − 3

5
v−

4
3 ∥ ≤ ∥φ(v)∥∞.

25

9
∥Pv∥2 =

2

5
δ2.

Moreover, from (11) we have ∥dxdy∥ ≤ 9
50

√
2
δ2, so

∥e− v2+∥ ≤
(
2

5
+

9

50
√
2

)
δ2. (14)

This gives

δ+ ≤

(
3
10

)− 7
3

(
100
9 − δ2

)− 7
6

− 3
10

(
100
9 − δ2

) 1
2

9
100δ

2

(
2

5
+

9

50
√
2

)
δ2.
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Finally, let us define the function h(δ) = f

(
3
10

√
100
9 − δ2

)
for δ < 1

4 , since h is a

increasing function, we conclude that h(δ) < h( 14 ) = f

(
3
10

√
100
9 − 1

16

)
= f(

√
1591
40 ) ≃

1, 8042. Then, we get

δ+ ≤ f

(√
1591

40

)(
2

5
+

9

50
√
2

)
δ2 ≤ δ2.

Thus, we have completed the proof. □
The following lemma shows the impact of a full-Newton step on the new duality gap.

Lemma 4.6. Let δ = δ(xy, µ). Then, the duality gap satisfies

(x+)
T y+ ≤ µ(n+ 2δ2).

In addition, if δ ≤ 1
4 , Then

(x+)
T y+ ≤ 2µn.

P r o o f . From (13), we know that

v2+ = v2 + vPv + dxdy =
2

5
v2 +

3

5
v−

4
3 + dxdy.

Thus,

x+y+ = µ
(
v2 + vPv + dxdy

)
= µ

e+ 25

9
P 2
v ·

2
5v

2 + 3
5v

− 4
3 − e(

v−
7
3 − v

)2 + dxdy


≤ µ

(
e+

25

9
P 2
v + dxdy

)
,

this last inequality holds because

0 <
2
5v

2
i +

3
5v

− 4
3

i − e(
v
− 7

3
i − vi

)2 = −φ(vi) <
2

5
< 1, ∀i.

Using the previously inequality and (10), we get

(x+)
T y+ = eT (x+y+) ≤ µ

(
n+

25

9
∥Pv∥2 +

9

50
δ2
)

≤ µ
(
n+ 2δ2

)
.

Finally, if δ < 1
4 , then δ

2 < 1. Therefore,

(x+)
T y+ ≤ µ(n+ 2) ≤ 2µn,

because n+ 2 ≤ 2n, ∀n ≥ 2, which completes the proof. □
The next lemma shows the influence of full-Newton step on the proximity measure.



46 L. MENNICHE, B. ZAOUI AND D. BENTERKI

Lemma 4.7. Let (x, y) ∈ F 0(LCP ) such that δ := δ(xy, µ) < 10
3 and µ+ = (1 − θ)µ,

where 0 < θ < 1. Then

δ(v++) := δ(x+, y+;µ+) ≤
(1− θ)

5
3

(
3
10

√
100
9 − δ2

)− 7
3

− 3
10

√
100
9 − δ2

(1− θ)
3
2 − (1− θ)

1
2 − 9

100 (1− θ)
1
2 δ2

[(
2

5
+

9

50
√
2

)
δ2+θ

√
n

]
.

Moreover, if δ < 1
4 and θ = 1

9
√
n
, n ≥ 1, then δ(x+y+;µ+) <

1
4 .

P r o o f . Let

v++ =

√
x+y+
µ+

=

√
x+y+

(1− θ)µ
=

1√
(1− θ)

v+. (15)

From the definition of the proximity measure, we have

δ(v++) = δ(x+, y+, µ+) = ∥v−
7
3

++ − v++∥ =

∥∥∥∥v−
7
3

++ − v++

(e− v2++)
(e− v2++)

∥∥∥∥. (16)

Let us compute the two expression of previous norm. From (15), we get

v
− 7

3
++ − v++ =

(
1

(1− θ)
1
2

v+

)− 7
3

−
(

1

(1− θ)
1
2

v+

)
.

=
1

(1− θ)
1
2

[
(1− θ)

5
3 v

− 7
3

+ − v+

]
, (17)

also

e− v2++ =
(1− θ)e− v2+

1− θ
. (18)

Substituting (17) and (18) into (16), we get

δ(v++) =

∥∥∥∥ 1√
(1− θ)

[
(1− θ)

5
3 v

− 7
3

+ − v+

(1− θ)e− v2+

][
(1− θ)e− v2+

]∥∥∥∥.
Define the function

g(t) =
(1− θ)

5
3 t−

7
3 − t

(1− θ)− t2
, ∀t > 0.

Since g′(t) < 0 for all t > 0, the function g is decreasing. Using Lemmas 4.3 and 4.4, we
deduce

δ(v++) <
1√

(1− θ)
g(min(v+)∥(1− θ)e− v2+∥

<
1√

(1− θ)

(1− θ)
5
3

(
3
10

√
100
9 − δ2

)− 7
3

− 3
10

√
100
9 − δ2

(1− θ)−
(

3
10

√
100
9 − δ2

)2 ∥(1− θ)e− v2+∥. (19)
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Furthermore, by using (14), we get

∥(1− θ)e− v2+∥ ≤ ∥e− v2+∥+ ∥θe∥

≤
(
2

5
+

9

50
√
2

)
δ2 + θ

√
n. (20)

Substituting (20) into (19), we obtain

δ(v++) <

(1− θ)
5
3

(
3
10

√
100
9 − δ2

)− 7
3

− 3
10

√
100
9 − δ2

(1− θ)
3
2 − (1− θ)

1
2 − 9

100 (1− θ)
1
2 δ2

[(
2

5
+

9

50
√
2

)
δ2 + θ

√
n

]
.

Now, suppose that δ < 1
4 and θ = 1

9
√
n
, we have(

2

5
+

9

50
√
2

)
δ2 + θ

√
n =

(
2

5
+

9

50
√
2

)
δ2 +

1

9
<

(
2

5
+

9

50
√
2

)
1

16
+

1

9
.

Let us define the following function

f2(δ) =

(1− θ)
5
3

(
3
10

√
100
9 − δ2

)− 7
3

− 3
10

√
100
9 − δ2

(1− θ)
3
2 − (1− θ)

1
2 − 9

100 (1− θ)
1
2 δ2

.

The function f2 is increasing for each δ < 1
4 , because

f2(t) =
1√

(1− θ)
g(h1(t)),

since h1(t) =
3

10

√
100
9 − t2 and g(t) =

(1− θ)
5
3 t−

7
3 − t

(1− θ)− t2
are both decreasing. So

f2(δ) < f2

(
1

4

)
,

where

f2

(
1

4

)
=

(1− θ)
5
3

(√1591

40

)− 7
3 −

√
1591

40

(1− θ)
3
2 − 1609

1600
(1− θ)

1
2

.

If n ≥ 1, then 0 < θ ≤ 1
9 . Consider the function

f3(θ) =
(1− θ)

5
3

(√
1591
40

)− 7
3 −

√
1591
40

(1− θ)
3
2 − 1609

1600 (1− θ)
1
2

, ∀0 < θ ≤ 1

9

Since f3(θ) is increasing, we obtain

f3(θ) ≤ f3

(
1

9

)
=

(
8
9

) 5
3
(√

1591
40

)− 7
3 −

√
1591
40(

8
9

) 3
2 − 1609

1600
2
√
2

3

.
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Finally, we get

δ(v++) ≤
[( 8

9

) 5
3
(√

1591
40

)− 7
3 −

√
1591
40(

8
9

) 3
2 − 1609

1600
2
√
2

3

][(
2

5
+

9

50
√
2

)
1

16
+

1

9

]
≃ 0, 2225 <

1

4
.

This completes the proof. □
The following lemma establishes an upper bound on the number of iterations required

for the algorithm.

Lemma 4.8. Suppose that the pair (x0, y0) ∈ F 0(LCP ) such as δ(x0, y0, µ0) <
1

4
, for

a fixed µ0 > 0. Moreover, let (xk, yk) be the point obtained after k iterations. The
inequality (xk)T yk ≤ ϵ is satisfied when

k ≥ 1

θ
log

(
2nµ0

ϵ

)
.

P r o o f . After k iterations, we have µk = (1− θ)kµ0, Lemma 4.6 implies that

(xk)T yk ≤ 2µkn ≤ (1− θ)k2nµ0.

Hence, the inequality (xk)T yk ≤ ϵ holds if

(1− θ)k2nµ0 ≤ ϵ.

Taking logarithm, we get

k log(1− θ) ≤ log ϵ− log 2nµ0.

As − log(1− θ) ≥ θ, ∀ 0 < θ < 1, then the above inequality holds if

kθ ≥ log 2nµ0 − log ϵ = log
2nµ0

ϵ
.

Hence the result. □

Theorem 4.9. Using the default θ = 1
9
√
n
, n ≥ 1, τ = 1

4 and µ0 = 1
2 . Then the obtained

algorithm requires at most O(
√
n log n

ϵ ) iterations for getting the ϵ-approximate solution
for LCP.

P r o o f . Using θ = 1
9
√
n
, µ0 = 1

2 in the previously lemma, the result holds. □

5. NUMERICAL EXPERIMENTS

In this section, we present comparative numerical tests between our proposed algorithm
1 with its parameter θth = 1

9
√
n
and the algorithm of Grimes and Achache [7], which uses

θth = 1
35

√
2n

. Both algorithms are tested under the same accuracy parameter ϵ = 10−4.

For the numerical experiments, we use two examples with fixed sizes and one example
with a variable size of monotone LCPs. The tests are implemented using MATLAB
R2009b. We refer to the algorithm of Grimes and Achache as ”M1” and to our algorithm
1 as ”M2”. The results compare the number of iterations, ”Iter,” required to find an
ϵ-approximate solution and the computation time, ”T(s),” measured in seconds.
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Example 5.1. Let us consider the following monotone LCP .

M =


6 6 4 3 2
8 21 14 10 12
4 14 13 5 9
4 10 5 6 5
3 12 8 4 10

 , q =


−20.5
−64.5
−44.5
−29.5
−36.5

 .

The starting points for the algorithms are as follows

x0 = (1, 1, 1, 1, 1)T , y0 = (0.5, 0.5, 0.5, 0.5, 0.5)T .

An obtained solution was given as follows

x∗ = (0.6364, 2.3222, 0.5847, 0.0001, 0.2046)T

y∗ = (0, 0, 0, 0.2149, 0.00001)T .

The numerical results of this example are summarized in Table 1

Tab. 1. Comparative results for Example 5.1

M1 M2

Iter T(s) Iter T(s)

1116 0.084491 199 0.022823

Example 5.2.

M =



1 0 −0.5 0 1 3 0
0 0.5 0 0 2 1 −1

−0.5 0 1 0.5 1 2 −4
0 0 0.5 0.5 1 −1 0
−1 −2 −1 −1 0 0 0
−3 −1 −2 1 0 0 0
0 1 4 0 0 0 0


, q =



−1
3
1

−1
5
6
1.5


.

We consider the following initial point

x0 = (0.98, 0.14, 0.31, 1.84, 0.32, 0.12, 0.17)T , y0 =Mx0 + q.

An obtained solution was given as follows

x∗ = (1, 0, 0, 2, 0, 0, 0)T ,

y∗ = (0, 3, 1.5, 0, 2, 5, 1.5)T .

The numerical results of this example are summarized in Table 2
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Tab. 2. Comparative results for Example 5.2

M1 M2

Iter T(s) Iter T(s)

1366 0.115969 244 0.024603

Example 5.3. (with variable dimension)

M =


1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
... · · ·

...
2 6 10 · · · 4n− 3

 , q = −Me+ e.

The starting points are x0 = y0 = e.
The obtained results of this example for different sizes of n were summarized in Table 3.

Tab. 3. Comparative results for Example 5.3

n M1 M2

Iter T(s) Iter T(s)

10 1797 0.1968 322 0.0374
25 3070 1.0811 554 0.3104
50 4587 6.2128 829 0.9149
100 6832 43.8086 1237 5.6703
500 17065 5515.8748 3097 1001.9191

Remark 5.4. The obtained results via our algorithm 1 (M2) show its efficiency com-
pared to the algorithm of Grimes and Achache (M1). This efficiency is measured by a
smaller number of iterations and reduced computation time registered in M2.
The efficiency of our approach M2 becomes increasingly evident as the dimension of the
problem grows, as illustrated in Table 3.

5.1. Improvement of the algorithm

Since the parameter θ used in both algorithms is dependent on the dimension of the
problem n (in the denominator), it decreases as n grows, leading to slower convergence.
To improve this, we propose comparing the two algorithmsM1 andM2 with fixed values
of θ chosen from the set {0.1, 0.3, 0.5, 0.7, 0.9}.
The results of the previously examples 5.1, 5.2 and 5.3 are summarized in Table 4.
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Tab. 4. Comparative results for fixed value of θ

Example n θ
M1 M2

Iter T(s) Iter T(s)

Example 5.1 05

0.1 97 0.030379 97 0.011122
0.3 29 0.006749 29 0.006653
0.5 21 0.005521 16 0.005566
0.7 21 0.005659 15 0.005104
0.9 21 0.005345 15 0.005162

Example 5.2 07

0.1 100 0.136678 100 0.124180
0.3 30 0.016931 30 0.015831
0.5 21 0.006876 16 0.006114
0.7 21 0.006335 12 0.005090
0.9 21 0.006245 12 0.004569

Example 5.3

50

0.1 125 0.213962 125 0.197624
0.3 38 0.080153 37 0.079202
0.5 27 0.070043 20 0.051982
0.7 26 0.046911 15 0.036607
0.9 26 0.045135 15 0.035956

100

0.1 132 0.931735 132 0.935253
0.3 40 0.283016 39 0.287833
0.5 28 0.201628 21 0.162714
0.7 28 0.195372 16 0.119690
0.9 28 0.188696 16 0.113299

500

0.1 147 58.121058 147 59.896615
0.3 44 18.294447 44 17.869089
0.5 31 11.676487 23 9.082781
0.7 31 11.545788 18 7.269387
0.9 31 11.473889 17 6.654589

1000

0.1 154 374.00098 154 371.581444
0.3 46 111.844714 46 112.215909
0.5 33 81.198650 24 58.907683
0.7 32 80.103787 19 47.175033
0.9 32 78.317369 18 44.956709

Remark 5.5. Using fixed values of θ, the results show clear improvements compared
to the theoretical θth for both algorithms. When θ increases, the computation time and
the number of iterations decrease. In addition, our approach gives better results than
the approach of Grimes and Achache [7] and these advantages become more noticeable
as θ and the problem size grow.

Now, to confirm our previous observations, we will solve some problems from the
quadprog test collection (https://CRAN.R-project.org/package=quadprog) using dif-

https://CRAN.R-project.org/ package=quadprog
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ferent values of θ. The obtained results are summarized in Table 5.

Tab. 5. Comparative results for some quadprog problems

Problem θ
M1 M2

Iter T(s) Iter T(s)

Zecevic 2

θth 707 0.0548 126 0.0123
0.1 69 0.0087 69 0.0058
0.3 21 0.0049 21 0.0047
0.5 15 0.0046 11 0.0042
0.7 15 0.0042 9 0.0031
0.9 15 0.0040 8 0.0028

Tame

θth 379 0.0376 68 0.0082
0.1 43 0.0065 43 0.0061
0.3 14 0.0046 13 0.0042
0.5 10 0.0039 7 0.0030
0.7 9 0.0036 6 0.0029
0.9 9 0.0033 5 0.0025

Genhs 28

θth 1512 0.2511 272 0.0531
0.1 69 0.0163 69 0.0156
0.3 21 0.0093 21 0.0087
0.5 16 0.0061 12 0.0054
0.7 16 0.0057 10 0.0051
0.9 16 0.0055 10 0.0047

6. CONCLUSION

In this paper, we have introduced an efficient feasible full-Newton step interior point
algorithm to solve monotone linear complementarity problems. We have demonstrated
that the resulting algorithm solves the problems in polynomial time, ensuring both
efficiency and robustness. Furthermore, numerical experiments highlight the superior
performance of our approach. Additionally, the implementation of our approach, with
fixed values of the update parameter θ, results in a significant reduction in both number
of iterations and computation time.

In the future, we will extend this approach to more generalized problems, such as
semidefinite linear complementarity problems.
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