Kybernetika 61 no. 6, 817-854, 2025

Extension methods for nullnorms on bounded lattices

M. Yeşilyurt and Ü. ErtuğrulDOI: 10.14736/kyb-2025-6-0817

Abstract:

After nullnorms were defined on bounded lattices by Kara\c{c}al et al. \cite{funda1}, construction methods for nullnorms on bounded lattices have been widely studied in which the existence of t-norms (t-conorms) on sublattices of the bounded lattice $L$ has generally been exploited. Extension methods of nullnorms are important as they also play a significant role for ordinal sum construction of nullnorms on bounded lattices. In this paper, we introduce extension construction methods for nullnorms on a bounded lattice $L$ by exploiting the existence of a nullnorm $V$ on a sublattice of $L$. Then, we demonstrate that our new construction methods are also different from the existing construction methods in the literature. Additionally, some illustrative examples are provided. Finally, we also give modified versions of our construction method by induction.

Keywords:

bounded lattice, nullnorm, extension method, sublattice

Classification:

03E72, 03B52

References:

  1. G. Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence 1967.   CrossRef
  2. T. Calvo, T. B. De Baets and J. Fodor: The functional equations of Frank and Alsina for uninorms and nullnorm. Fuzzy Sets Syst. 120 (2001), 385-394.   DOI:10.1016/S0165-0114(99)00125-6
  3. J. L. Castro: Fuzzy logic controllers are universal approximators. IEEE Trans. Systems Man Cybernet. 25 (1995), 4, 629-635.   DOI:10.1109/21.370193
  4. G. D. Çaylı and F. Karaçal: Idempotent nullnorms on bounded lattices. Inform. Sci. 425 (2018), 154-163.   DOI:10.1016/j.ins.2017.10.003
  5. G. D. Çaylı and F. Karaçal: Some remarks on idempotent nullnorms on bounded lattices. In: Aggregation Functions in Theory and in Practice, Springer International Publishing 2018, pp. 31-39.   CrossRef
  6. G. D. Çaylı and F. Karaçal: A survey on nullnorms on bounded lattices. In: 10th Conference of the European-Society-for-Fuzzy-Logic-and-Technology (EUSFLAT) / 16th International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets (IWIFSGN) 640, Warszawa 2017, pp. 431-442.   CrossRef
  7. G. D. Çaylı: Nullnorms on bounded lattices derived from t-norms and t-conorms. Inform. Sci. 512 (2020), 1134-1154.   DOI:10.1016/j.ins.2019.10.059
  8. G. D. Çaylı: Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020), 124746.   DOI:10.1016/j.amc.2019.124746
  9. G. D. Çaylı: Some results about nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 105-131.   DOI:10.1016/j.fss.2019.03.010
  10. G. D. Çaylı: Construction of nullnorms on some special classes of bounded lattices. Int. J. Approx. Reason. 134 (2021), 111-128.   DOI:10.1016/j.ijar.2021.04.005
  11. Y. Dan, B. Q. Hu and B. De Baets: Nullnorms on bounded lattices constructed by means of closure and interior operators. Fuzzy Sets Syst. 430 (2022), 142-156.   DOI:10.1016/j.fss.2021.08.021
  12. P. Drygaś: Isotonic operations with zero element in bounded lattices. In: Soft Computing Foundations and Theoretical Aspect, EXIT Warszawa 2004, pp. 181-190.   CrossRef
  13. Ü. Ertuğrul: Construction of nullnorms on bounded lattices and an equivalence relation on nullnorms. Fuzzy Sets Syst. 334 (2018), 94-109.   DOI:10.1016/j.fss.2017.07.020
  14. Ü. Ertuğrul and M. Yeşilyurt: Ordinal sums of triangular norms on bounded lattices. Inform. Sci. 517 (2020), 198-216.   DOI:10.1016/j.ins.2019.12.056
  15. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press 2009.   CrossRef
  16. F. Karaçal, M. A. İnce and R. Mesiar: Nullnorms on bounded lattices. Inform. Sci. 325 (2015), 227-236.   DOI:10.1016/j.ins.2015.06.052
  17. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  18. G. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic. New Jersey, Prentice Hall 4 (1995), 1-12.   CrossRef
  19. M. Mas, G. Mayor and J. Torrens: t-operators. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 7 (1999), 31-50.   DOI:10.1142/s0218488599000039
  20. G. Mayor and J. Torrens: On a class of operators for expert systems. Int. J. Intell. Systems 8 (1993), 771-778.   DOI:10.1002/int.4550080703
  21. X. Sun and H. Liu: Representation of nullnorms on bounded lattices. Inform. Sci. 539 (2020), 269-276.   DOI:10.1016/j.ins.2020.06.013
  22. J. Xie and W. Ji: New Constructions of nullnorms on bounded lattices. J. Appl. Math. Phys. 9 ( 2021), 1-10.   DOI:10.4236/jamp.2021.91001