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HONEYCOMB GRAPHS FOR PARAMETRIC
IDENTIFICATION OF CORRELATION CLASSES
IN MULTIDIMENSIONAL DATASETS

Adam Dudáš and Tomáš Peregŕın

In the process of gaining knowledge from large sets of data, one of the most significant
methods from the area of descriptive statistics − correlation analysis − is applied to determine
direct functional relationships between pairs of attributes. Even though the results of correlation
analysis are measured through a crisp correlation coefficient, whose values belong to the [−1, 1]
interval, human interpretation of these values is conventionally vague and uses linguistic classes
of correlation to describe the strength of relationships between attribute pairs. However, this
interpretative vagueness − and the correlation classes themselves − are not commonly employed
in the decision-making processes. Therefore, this work focuses on the design and implementa-
tion of so-called Honeycomb Graphs − a visualization method for parametric identification of
correlation classes in multidimensional datasets based on graphical models. After implementing
the proposed visualization technique, two case studies on benchmark datasets are conducted,
and the model is evaluated from both qualitative and quantitative points of view. The results
of these studies highlight interactive exploration of correlation analysis while adhering to qual-
itative and quantitative standards of scientific visualizations and high utilization potential of
the method in feature selection tasks, making it a valuable tool for predictive analysis and data
exploration.
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1. INTRODUCTION

Correlation analysis is a statistical process for identifying prediction potential in multi-
dimensional datasets, which is used in several analytical approaches and scenarios, such
as the definition of basic relationships in data in the context of descriptive data analysis,
the identification of attribute pairs worthy of visualization in the exploratory analysis
of the data, or the selection of features for predictive data analysis [6, 20].

The prediction potential identified in the correlation analysis is determined by the
direction and strength of the functional relationship between the values of an attribute
pair in a dataset. These properties of the relationship of interest are measured by one
of two general types of correlation coefficient − linear measures (such as the Pearson
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correlation coefficient) or nonlinear monotone metrics (such as the rank correlation co-
efficients) [21].

Even though the correlation coefficient acquires crisp values from [−1, 1] interval, the
human interpretation of the values is − somewhat − fuzzy or uncertain, eg. the value
of the correlation coefficient equal to 0.79 does not differ significantly from that of value
0.8 even though these values can be perceived as parametrically different when a crisp
correlation filter value is set. Therefore, analysts commonly use linguistically-coded
classification of the correlation coefficient values, such as strong correlation or marginal
correlation for specified correlation coefficient value intervals [5]. Such correlation classes
are then commonly utilized in various data analysis tasks −, mainly feature selection and
dimensionality reduction problems, where the large multidimensional space is pruned
by the selection of attributes between which the relationships are strongest or most
interesting; or anomaly detection tasks, in which correlation classes define the standard
behaviour of the data and the measurements deviating from this behaviour are labelled
as anomalies [23].

1.1. Objective of the work

In the scope of the presented study, the focus is put on the design, implementation, and
experimental evaluation of a novel visualization technique for parametric identification of
correlation classes in multidimensional datasets called Honeycomb graphs. Specifically,
the proposed visualization method consists of an interconnected graphical model formed
from clusters of vertices organized around a user-defined attribute of interest. This
attribute represents the main property of the entities modelled in the data for which the
prediction potential is measured.

The novelty of the work presented in this study can be summarized into the following
points:

• The design of the novel method for visualization of correlation classes and signifi-
cant relationships in and between these classes.

• The implementation of the proposed visualization model in the Python language
with the use of freely available packages, such as matplotlib, networkx, seaborn,
and so on.

• The case studies of correlation class identification on two openly available bench-
marking datasets from the area of chemical analysis of wine samples and electrical
engineering related to home appliances.

• The qualitative and quantitative evaluation of the proposed visualization model,
based on the standardized criteria used in the area of visual computing, and com-
parative analysis conducted between the proposed model and conventionally used
classification and visualization technniques in the studied area.

The body of this article is structured as follows − the rest of the first section of the
work offers a brief description of the previous and related work conducted in the area
of visualization of correlation analysis results. In Section 2, the background to correla-
tion analysis, correlation coefficients, correlation classes, and conventional visualization
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models, which is necessary for the proposed work, is presented. Section 3 focuses on the
design of the proposed visualization model of Honeycomb graphs and the basic properties
resulting from this design. In Section 4, the case studies of the proposed visualization
technique on the Wine quality and Appliance Energy datasets, and the evaluation of the
model are conducted, and finally, Section 5 concludes the work and offers several future
work areas.

1.2. Related work

Since the work proposed in this study focuses on the use of visual and graphical models
in the correlation analysis processes, mainly concerning correlation classes in multidi-
mensional datasets, in the following section, a brief overview of our own work and the
work of other authors in the related areas is presented.

In the studies [9] and [10], we presented the utilization of graphical models in cor-
relation, predictive, and regression analysis based on the pseudo-transitivity of the cor-
relation coefficient. These works concern the design, implementation and experimental
verification of three novel graphical models − correlation graphs, correlation chains, and
(deconstructed) correlation cycles. All of these visualizations can be used to identify
fitting regression sequences, which can, in turn, lower the error rate of regression tasks
conducted on multidimensional datasets significantly when compared to conventional
regression models.

Other than our own work, in [17] use visualization concepts in the examination of the
effect of uncertainty representation on correlation judgment in bivariate visualizations.
In this work, the authors propose the so-called Line+Cone model, which is used for
simplification of belief elicitation and captures users’ uncertainty more effectively when
compared with Bayesian cognitive modelling. The article concludes with two main find-
ings of interest − the proposed method reduces complexity and effectively captures users’
uncertainty about bivariate relationships, and the utilization of uncertainty visualization
makes users more confident in their judgments.

The study [16] presents applied correlation analysis and visualization research in
the examination of radon concentrations, environmental factors, and seismic activity
in Romania. The authors of the study utilize correlation analysis techniques and smart
visualization models to enhance the identification and interpretation of patterns in radon
emissions related to seismic activity in the selected area. These models point to two
main aspects of interest in the studied problem. Firstly, even though the correlation
between radon emissions and environmental factors is strong, their direct relationship
with seismic activity is marginal. Secondly, the work highlights the need for visualization
and advanced analytics for better interpretation of data analysis results.

Several research projects and studies focus on the specific area of correlation analysis
concerned with correlation classes, which are significant from the point of view of the
work presented in this article.

In [13], the authors present a methodology containing constraints which need to be
satisfied for the bivariate linear regression to be applied correctly. This objective is
directly related to the need for the determination of the correct calculus of the bivariate
linear correlation coefficient and the correlation class of this coefficient’s value for the
purposes of the evaluation of the proposed methodology.
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The authors of [19] focus on the optimization of Multi-Agent Deep Deterministic
Policy Gradient, the effectiveness of which is strongly dependent on local information
selection by distance selection method, type selection method and correlation class prox-
imity method. The optimization is then applied in the context of food chain scenarios,
where significant improvements are described − specifically, the utilization of the corre-
lation class proximity selection method improves the algorithm’s training efficiency and
training time consumption.

On the other hand, in [12] the authors propose a new rule for Bayesian updating of
classes of precise priors (probability distributions) called the quantile-filtered Bayesian
update rule. With the use of this update rule, authors construct a correlation class of
precise priors that maintain prescribed precise marginals while allowing for an arbitrary
correlation structure, enabling greater flexibility in modelling dependencies between at-
tributes.

2. CORRELATION ANALYSIS AND VISUALIZATION

As noted in the introductory section of this work, correlation analysis is a method of
descriptive statistics focused on the identification of predictive potential between the
values of two attributes in a common dataset [1]. This predictive potential, measured
through the correlation coefficient, defines the strength and direction of the functional
relationship between the selected attribute pair [15]. Specifically, the sign of the corre-
lation coefficient value determines the direction of the relationship, and the value itself
denotes its strength.

In general, there are two basic types of correlation coefficients categorized on the
basis of the type of functional relationship they measure − linear coefficients and non-
linear monotone coefficients. Regardless of its type, the correlation coefficient acquires
the values from the [−1, 1] interval, where the closer the values of the coefficient are to
the extremes of this interval, the stronger the relationship between the selected pair of
attributes [18].

The most commonly used correlation coefficient is the Pearson correlation coefficient
(conventionally denoted by r), which measures the strength and direction of the linear
functional relationship between attributes A and B as follows [24]:

r(A,B) =

∑n
i=1(Ai − µ(A))(Bi − µ(B))√∑n

i=1(Ai − µ(A))2
√∑n

i=1(Bi − µ(B))2
(1)

where Ai and Bi denote the ith measurement of the attributes A and B, µ(A) and
µ(B) are mean values of the attributes A and B, and n denotes the overall number of
measurements of the two studied attributes in the dataset.

However, the limitation of the Pearson correlation coefficient to the measurement
of strictly linear relationships is − from the point of view of the analysis of data −
quite significant. This led to the use of the so-called rank correlation coefficient, which
abstracts from the use of values of the attribute pair and, instead, works with the
ranking of these values, which ensures the possibility of determining the strength and
direction of nonlinear monotone relationships between said attribute pairs. The first of
such measures is the Spearman correlation coefficient (ρ) computed as [1]:



Honeycomb graphs 793

ρ(A,B) = 1− 6
∑

d2i
n(n2 − 1)

(2)

where di is the difference between rankings of the ith values of the studied attributes A
and B, and n is the number of measurements of the attributes in the dataset.

Similarly to the Pearson correlation coefficient, the Spearman correlation coefficient
has its limitations, mainly the tendency to deviate in the correlation measurement caused
by repeated values in an attribute. This issue is solved using the Kendall correlation
coefficient (τ), which utilizes combinations of rankings of all values in attributes A and
B in the following way [15]:

τ(A,B) =
nc − nd

n(n−1)
2

(3)

where nc is the number of so-called concordant pairs of rankings for attributes A and B
− pairs of rankings where the relative order of rank(A) and rank(B) is the same, the
nd denotes the number of discordant pairs of rankings for the attribute − meaning the
opposite situation to concordance, and n is the number of measurements of the values
in the dataset.

2.1. Visualization in the context of correlation analysis

Since any type of correlation coefficient measures the prediction potential stored in a
pair of attributes, it is evident that one value of such a coefficient is not able to measure
the correlation in the whole dataset consisting of more than two attributes. This leads to
the need for a type of summarization technique used in the description of the prediction
potential for all possible pairs of attributes in a dataset − correlation matrix (denoted as
C). Since the rows and columns of a correlation matrix are indexed by the quantitative
attributes of the studied dataset, for a dataset of n attributes, such a correlation matrix
is of size n × n. Each element of the C contains the value of the selected correlation
coefficient measured between the attributes which cross-index the matrix element itself.

Therefore, the correlation matrix of a dataset composed of n attributes can be gen-
eralized as [10]:

attr1 attr2 attr3 . . . attrn
attr1 corr(attr1, attr1) corr(attr1, attr2) corr(attr1, attr3) . . . corr(attr1, attrn)
attr2 corr(attr2, attr1) corr(attr2, attr2) corr(attr2, attr3) . . . corr(attr2, attrn)
attr3 corr(attr3, attr1) corr(attr3, attr2) corr(attr3, attr3) . . . corr(attr3, attrn)
...

...
...

...
. . .

...
attrn corr(attrn, attr1) corr(attrn, attr2) corr(attrn, attr3) . . . corr(attrn, attrn)

Such a correlation matrix has the following natural properties − the main diagonal of
the matrix contains the correlation coefficient measured between an attribute and itself,
therefore this correlation is always equal to 1; since the order of attributes in a studied
pair is irrelevant, the upper and lower triangle of the matrix are equivalent.
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Fig. 1. An example of a correlation heatmap based on the

generalized correlation matrix.

One can easily imagine a scenario in which a dataset of high dimensions is studied with
the use of the mentioned correlation analysis approaches. Such datasets tend to produce
large, unreadable correlation matrices, which are hard to navigate through − even simple
task, such as manual identification of the largest value of correlation in the dataset, is
not trivial in these matrices. This motivated the visualization of correlation matrices
via correlation heatmaps [10] − a visual model, which codes individual elements of the
matrix to the color spectrum, while the correlation coefficient value in the matrix element
determines the specific color selected for the coloring of the element (see Figure 1).

Even though, when compared to the correlation matrix summarization, the corre-
lation heatmap is a much clearer representation of the prediction potential in large
datasets, this model still produces dense visualizations, which can be hard to read in
specific cases, eg. in datasets with similar correlation values, the colors of individual
map elements merge together.

On the other hand, a set of graphical models used for visualization of correlation
analysis results was proposed in the works [9, 10]. In general, these models can be titled
correlation structures or correlation graphs − visualization constructs strongly based
on graph theory ideas, where the nodes of the correlation graph represent individual
attributes of the studied dataset, and the edges connecting these nodes are weighted by
the value of the correlation coefficient between a pair of attributes (nodes). Since such
a visualization would produce a similarly dense representation as correlation heatmaps,
the correlation graphs are commonly pruned using some type of acceptability border for
the lowest value of correlation included in the graph. Figure 2 presents an example of
such a pruned correlation graph based on the previously presented correlation matrix
and heatmap.

Both − the correlation heatmap and correlation graph − visualizations are relevant
from the point of view of the presented study, which proposes a novel visualization
approach in the context of correlation analysis based on these models. However, instead
of visualizing the correlation coefficient values themselves, the proposed model focuses
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Fig. 2. An example of a correlation graph based on the generalized

correlation matrix.

on the visualization of classes of correlation and relationships in and between them.

2.2. Correlation classes

In any human-computer interaction, a certain human fuzzy interpretation of exact val-
ues presented by an algorithm is common and natural. When considering correlation
analysis, the [−1, 1] interval of correlation coefficient value is conventionally divided into
sub-intervals, which can be titled correlation classes [12, 19]. The most basic of such
correlation coefficient value divisions is the following [22]:

corrclass(A,B) =

{
significant, if |corr(A,B)| ∈ [0.8, 1],

insignificant, if |corr(A,B)| ∈ [0, 0.8)

In this correlation classification, the analysts consider only two possible classes of
correlation between a pair of attributes A and B − significant correlation between these
attributes, in such a case when the absolute value of the correlation coefficient is higher
than 0.8, or insignificant correlation in other cases.

However, such a determination of correlation classes is quite limiting and lacks any
kind of nuance, which leads to a more detailed classification presented in [13]. The
authors of the work consider the division of the correlation coefficient interval into five
classes − neutral, weak, moderate, strong, and very strong correlation − as follows:

corrclass(A,B) =



neutral, if |corr(A,B)| ∈ [0, 0.2),

weak, if |corr(A,B)| ∈ [0.2, 0.4),

moderate, if |corr(A,B)| ∈ [0.4, 0.6),

strong, if |corr(A,B)| ∈ [0.6, 0.8),

very strong, if |corr(A,B)| ∈ [0.8, 1].

Other than these strict, static definitions of the correlation classes, several dynamic
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approaches based on the basic central tendency measures were proposed. The two-tier
correlation coefficient value classification is proposed in [11] as:

corrclass(A,B) =

{
significant, if |corr(A,B)| ≥ µ(|corr(C)|)+max(|corr(C)|)

2 ,

insignificant, otherwise,

where µ(|corr(C)|) is the mean value of the correlation coefficient in the datasets de-
scribed by the correlation matrix C, and max(|corr(C)|) is the highest value of the
correlation matrix (not taking into account the main diagonal).

Similar dynamic classification can be developed on the basis of a combination of any
commonly used central tendency measures, eg. three-tier classification of correlation
coefficient values based on tertiles (T1− T3):

corrclass(A,B) =


low, if |corr(A,B)| ∈ [0, T1),

medium, if |corr(A,B)| ∈ [T1, T2),

strong, if |corr(A,B)| ∈ [T2, T3].

3. HONEYCOMB GRAPHS FOR CORRELATION ANALYSIS

Based on the information stated in the previous section, this part of the work presents
the design of the Honeycomb graphs − a novel visualization model for the graphical
representation of correlation classes, their internal relationships, and relationships be-
tween classes in multidimensional datasets. As already stated, the proposed model is
deemed parametric visualization, the mentioned parameter being the so-called attribute
of interest (attri) − an attribute of the studied dataset, which is the main objective of
the conducted data analysis (eg. the values of which need to be predicted).

A honeycomb graph is a graphical model of correlation analysis consisting of three
main components:

• Cells − The most basic component of a Honeycomb graph is a cell, by the use of
which, the individual attributes of the studied dataset are visualized. In the pro-
posed version of the model, there are three considered types of cells distinguished
based on their shape − triangular, tetragonal, and hexagonal cells (see Figure 3).

Fig. 3. Cell types considered for the proposed Honeycomb graph

visualization − (a) triangular cell, (b) tetragonal cell, (c) hexagonal

cell.



Honeycomb graphs 797

The shape of individual cells is determined by the number of attributes, which bear
prediction potential to the attribute of interest of the same class (the value of the
correlation coefficient), and these cells are constructed into the titular honeycombs.

• Honeycombs − A honeycomb is a star graph, which consists of a set of n ∈ [1, 6]
cells connected to a cell containing an attribute of interest at its centre. Figure 4

presents three basic honeycomb types − triangular honeycomb, where n = 3;
tetragonal honeycomb, with n = 4, and hexagonal honeycomb, where n = 6.

Fig. 4. Honeycomb types considered for the proposed visualization −
(a) pure triangular honeycomb, (b) pure tetragonal honeycomb, (c)

pure hexagonal honeycomb.

Similar to the shape of cells, the number of cells is determined by the number of
attributes in individual correlation classes. Honeycomb dimensions were selected
to balance two competing objectives − to visualize as many inter-correlated at-
tributes as possible, and to preserve visual clarity (label legibility, unambiguous
edge weights and separation between cells). A six-cell limit of hexagonal honey-
combs provides a symmetric, space-efficient packing that maximizes attributes per
honeycomb without overlapping or crowding. When a correlation class contains
more than six attributes, the class is represented using multiple honeycombs of the
same scale and interconnected with inter-honeycomb edges, which keeps individual
honeycombs easy to read and facilitates comparison across the class.

• Edges − The last components of the Honeycomb graph are edges − connections
between cells of one or more honeycombs, which are weighted by the value of the
correlation coefficient measured between attributes in the pair of cells.

Therefore, the process of constructing a Honeycomb graph consists of the following
phases:

Phase 1: Correlation class preparation. In the first step of the proposed pro-
cedure, the value of the correlation coefficient is measured between the user-defined
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attribute of interest and all other attributes in the dataset. The values of the corre-
lation coefficients are, then, classified into correlation classes based on the following
pre-defined static borders:

corrlevel(A,B) =


low, if |corr(A,B)| ∈ [0, 0.5),

medium, if |corr(A,B)| ∈ [0.5, 0.8),

strong, if |corr(A,B)| ∈ [0.8, 1].

for a dataset of 19 or fewer attributes. Or

corrlevel(A,B) =



low, if |corr(A,B)| ∈ [0, 0.2),

marginal, if |corr(A,B)| ∈ [0.2, 0.4),

medium, if |corr(A,B)| ∈ [0.4, 0.6),

significant, if |corr(A,B)| ∈ [0.6, 0.8),

strong, if |corr(A,B)| ∈ [0.8, 1].

for a dataset of 20 or more attributes.

This division into two correlation class systems is motivated by the convention of
identifying an odd number of classes in systems − most typically three or five. Since
the largest − hexagonal − honeycombs considered in this work contain an attribute of
interest and 6 other attributes, this determines that for visualization of a dataset of
19 attributes, three full hexagonal honeycombs are needed (6 for each honeycomb plus
the attribute of interest). Naturally, if the number of attributes is lower than 19, the
honeycombs are either incomplete or they change their shape as noted in phase 2.

Phase 2: Honeycomb construction. After the identification of attributes in the
dataset and their assignment into defined correlation classes, the honeycombs themselves
are constructed. Each honeycomb consists of a cell containing an attribute of interest at
its centre, and a set of one to six attributes, which bear the correlation coefficient value
of the same class measured between the set of attributes and the defined attribute of
interest. Therefore, each honeycomb consists of a set of cells, which are connected to the
attribute of interest with edges weighted by the correlation coefficient value measured
between the attribute of interest and the other attribute. In this way, each honeycomb
defines either the whole or part of a correlation class in the studied dataset and the
values of individual correlation coefficients are identified by the edge values.

The type of honeycomb used for the visualization of the (part of) correlation class
is defined by the number of attributes in the class (see Figure 4, where the correlation
values between cells of the honeycombs are neglected for the purposes of the schema
readability):

• triangular honeycombs for classes of up to 3 attributes,

• tetragonal honeycombs for correlation classes containing up to 4 attributes,

• hexagonal honeycombs for classes containing up to 6 attributes.
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Naturally, a correlation class of a dataset can contain such a number of attributes
that there is no possibility of the construction of full triangular, tetragonal, or hexag-
onal honeycombs. This leads to the so-called incomplete honeycombs, eg. a hexagonal
honeycomb with only five cells connected to the attribute of interest.

On the other hand, the possibility of a correlation class containing more than six
attributes (the highest value for the considered honeycombs) is also common. In such
a case, one class can be visualized using a set of honeycombs, which can be of mixed
types and completeness.

Phase 3: Relationship identification. Other than edges that connect the attribute
cells to the cell of the attribute of interest, the honeycomb graphs contain two other types
of edges denoting relationships between attributes of the dataset.

The first type of such a relationship is determined by the inter-honeycomb edges,
which visualize the strongest relationships between attributes of two adjacent correla-
tion classes, eg. the strongest correlation coefficient values between a set of attributes
with marginal and medium correlation measured between the attributes and the defined
attribute of interest.

The other type of relationships visualized in the proposed models are the intra-
honeycomb edges, which connect pairs of attributes in the same honeycomb between
which there is the highest correlation coefficient value. Both of these relationships are
visualized using a dashed line in Figure 5, while the correlation values between cells of
honeycombs and attri cell are neglected for the purposes of the schema readability.

Fig. 5. An example of the use of inter-honeycomb and

intra-honeycomb edges.

The flowchart of the proposed process is presented schematically in Figure 6. In
this way, the presented method constructs a parametric visual assignment of attribute
sets into individual correlation classes, while highlighting the strongest relationships be-
tween and in the classes themselves. Such visualization can be utilized in the task of
feature (attribute) selection, where the analysts can, on the basis of the visualization,
intelligently decide which attributes are used in the decision-making process and which
are not, eg. one can only use the attributes of strong correlation classes. Additionally,
since the visualization contains information regarding relationships between classes and
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attributes in the classes, analysts can use these relationships in order to complete the
value sets for the prediction models. For example, in Figure 5 there is a strong rela-
tionship between attr15 and attr16, and both of these attributes influence the values of
the attribute of interest to some degree. In such a case, where the values of attr15 are
unknown or missing, the value of attr16 can be used in a regression task to compute this
missing value, hence, allowing more precise prediction of the value of the attribute of
interest.

Fig. 6. Flowchart of the proposed process from reading of the input

data to the honeycomb visualization.

The following are some of the basic properties of Honeycomb graphs, which are pro-
posed in the design of the method itself:

• Maximization of pureness of individual honeycombs − in the context of a honey-
comb graph, no honeycomb consists of more than one type of cell. Therefore, in
the proposed method, only pure triangular, tetragonal, or hexagonal honeycombs
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are utilized. However, as mentioned above, these honeycombs can be complete or
incomplete, meaning a honeycomb can contain the maximum allowed number of
cells, but is not required to.

• Selection of proper color mapping − each cell of each honeycomb is color coded
based on the strength of the correlation coefficient measured between the attribute,
which indexes the cell and the attribute of interest. This color is automatically
selected from the colormap presented in Figure 7.

Fig. 7. Color map for coding of correlation coefficient values in the

proposed visualization model.

As can be seen, the colormap constructed for the model utilized the same colors in
both correlational directions. This is due to the fact that from the point of view of
correlation classes, the absolute value of correlation is always examined. Therefore,
the color of the cell signifies the level of measured correlation or anticorrelation.

• Automatic construction of legend − the last of the described properties of the pro-
posed visualization model focuses on the automatic construction of the attribute
abbreviation legend. Such a legend is necessary for the overall readability of Hon-
eycomb graphs constructed on datasets with attributes labelled with long strings,
which can overflow the assigned shapes and dimensions of cells. The abbreviations
of attribute titles are created as a set of unique symbols constructed from the be-
ginning symbols of attribute titles, and the legend presents pairs of abbreviations
and full attribute titles.

4. CASE STUDIES OF CORRELATION CLASS IDENTIFICATION AND
VISUALIZATION

The proposed visualization model is implemented in the Python programming language
with the use of pandas and numpy packages for the processing and analysis of input data,
networkx, shapely, and matplotlib packages for the construction of graphical elements
of the visualization, and seaborn package for the stylization of the visualization.

In the following section, the experimental verification of the Honeycomb graph ap-
proach is studied on two datasets from the area of chemical analysis and electrical
engineering:

• Wine quality dataset [7] − the dataset consists of 4 898 chemical property mea-
surements of red and white variants of the Portuguese wine. Each of these mea-
surements is described by 11 chemical properties of the wine, such as various forms
of wine acidity, levels of residual sugars, chlorides, sulphates, pH and so on [8].



802 A. DUDÁŠ AND T. PEREGRÍN

• Appliance energy dataset [2] − this dataset consists of measurements of internal
temperature and humidity conditions of a specific building done by a wireless sen-
sor network, which are combined with weather information and data on electricity
consumption in the building. These values are contained in 19 735 measurements
and 28 attributes [3].

Fig. 8. Honeycomb graph of the Wine quality dataset with pH as

the attribute of interest.

After the utilization of the datasets in the presented case studies, the proposed vi-
sualization model is evaluated from two points of view − the qualitative aspects of the
evaluation are based on the Qualitative Result Inspection (QRI) and Visual Data Analy-
sis and Reasoning (VDAR) approaches [14], while the quantitative elements are focused
on generalizability, precision and realism of the visual data representation [4]. Addi-
tionally, comparative analysis between the Honeycomb graph method and conventional
methods of visualization and correlation class identification is conducted.
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4.1. Honeycomb graphs of the Wine dataset

The visualization of the Wine quality dataset presents two specific scenarios of analysis
using Honeycomb graphs.

Figure 8 contains a Spearman-type honeycomb graph for the dataset while using pH
as the attribute of interest. As can be seen, in this case, the visualization consists of
two honeycombs − both of hexagonal type. These honeycombs represent one correlation
class of the dataset, specifically low correlation (denoted by the abbreviated title of the
correlation class [L]). Naturally, the amount, type and correlation class of honeycombs
varies based on the strength of correlation coefficient values between attributes and
attributes of interest.

Regarding the relationships between identified classes, one can observe the relation-
ship between density and resSugar attributes (ρ(density, resSugar) = 0.53), which
interconnects the two honeycombs of the low correlation class. The inter-honeycomb
relationships show significant correlation values between chlorides and density of value
0.59, and totalSulfDioxide and freeSulfDioxide, where

ρ(totalSulfDioxide, freeSulfDioxide) = 0.74.

On the other hand, Figure 9 presents an alternative visualization of the same dataset,
with the attribute of interest set to density of the measured wine sample. Unlike the
visualization in Figure 8, one can note three honeycombs of two types, two tetragonal
and one triangular, representing three correlation classes − low correlation class ([L]),
medium correlation class ([ME]), and marginal correlation class ([MA]).

4.2. Honeycomb graphs of the appliance energy dataset

Since the Appliance energy dataset is composed of 28 attributes, its correlational struc-
ture − and, therefore, the visualization − is more complex. Figure 10 shows the Honey-
comb graph model of the dataset with RH 1 (relative humidity 1) for the attribute of
interest.

The number of honeycombs in the presented visualization is of note − the graph is
composed of seven honeycombs describing five correlation classes (two low correlation
honeycombs ([L]), two marginal honeycombs ([MA]), and one honeycomb of each for the
medium ([ME]), significant ([SI]), and strong ([ST]) correlation classes).

When compared to the previous case study, one can see that the Appliance Energy
dataset contains both complete and incomplete honeycombs and several interesting inter-
and intra-honeycomb relationships.

The visualization model, as proposed and implemented, contains two elements of
interactivity:

• scaling − necessitating zooming in and out of the graph and its components,

• and listing − meaning interactive scrolling of the zoomed-in image.

Therefore, the label positioning of correlation coefficient values on edges is dynam-
ically adjusted as needed. In this way, the label crossing presented in Figure 10 is
minimized (see Figure 11 for an example of this phenomenon).
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Fig. 9. Honeycomb graph of the Wine quality dataset with density

concentration as the attribute of interest.
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Fig. 10. Honeycomb graph of the Appliance energy dataset with

RH1 as the attribute of interest (raw program output slightly

adjusted for better readability).

4.3. Evaluation of the proposed visualization approach

As noted in the introduction of this section, for the evaluation of the presented visual-
ization method, two qualitative and one quantitative criterion are considered. From the
qualitative point of view, the following aspects are relevant [14]:

• Qualitative Result Inspection (QRI) − the main objective of this evaluation tech-
nique is focused on the quality of the fulfilment of the visualization’s purposes.
In this case, the purpose of the visualization is the representation of correlation
classes and relationships in and between them in the form of a Honeycomb graph.
As presented in the case studies, the implemented algorithm parametrically divides
attributes of the studied dataset into statically defined classes, visualizes them in
the form of honeycombs according to the pre-determined visualization criteria, and
interconnects the cells of these honeycombs with inter- or intra-honeycomb rela-
tionships (edges). Since the visualization presented the data in such a way that
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Fig. 11. Zoomed in part of the Honeycomb graph of the Appliance

Energy dataset.

the classes of correlation and relationships between them are easily interpretable,
the QRI of the model can be considered successful.

• Visual Data Analysis and Reasoning (VDAR) − this method focuses on the eval-
uation of the proposed visualization based on its quality in the solution of the
problem, the visualization model is designed for. In the case of Honeycomb graphs,
three interconnected problems are of importance:

– Correlation analysis − the aspect of highest significance studied in the pre-
sented model is a parametric identification of correlation classes in multi-
dimensional datasets, the strongest relationships between these classes and
within them. As can be seen in Figures 8 – 10, this objective is reached using
the grouping of the attributes into honeycombs, while using edges to highlight
the inter- and intra-honeycomb relationships of highest strength (the highest
value of correlation coefficient).

– Feature selection − based on the parametric classification of attributes of a
studied dataset into correlation classes, analysts are able to select attribute
sets with the strongest direct predictive potential related to the attribute of
interest − attributes classified into [ST] or [SI] classes/honeycombs. In this
way, the inputs for predictive analysis models can be tuned so the quality
of model decision-making is not lowered by irrelevant − not correlated −
attributes. Other than direct relationships, Honeycomb graphs visualize in-
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teresting indirect relationships in a dataset via intra-honeycomb edges. These
edges can be used in order to find predictive sequences of note, which can be
used in regression analysis [10].

– Regression analysis − as stated above, the correlation values measured in
a dataset have a direct influence on regression models constructed on them.
Therefore, using correlation classes identified via Honeycomb graphs, analysts
can prune datasets and use only strongly correlated attributes as inputs for
such models, thus producing lower error rates when compared to the regres-
sion models without the use of feature selection.

The second evaluation focuses on the quantifiable components of the proposed visu-
alization method based on the work presented in [4]. These qualitative components can
be the generalizability of the model, precision of the method, or realism of the visual
data representation.

From the point of view of the model’s generalizability − the behaviour of the method
with various datasets and input parameters − Tables 1 and 2 are presented.

In Table 1, the number of correlation classes (#classes) and the number of honey-
combs in the Honeycomb graph (#honeycombs) are quantified for selected attributes
of interest of both studied datasets. As can be seen, there are specific cases where the
amount of classes is equal to the amount of honeycombs, but also cases where there
are fewer classes than honeycombs. One such instance is the utilization of pH as the
attribute of interest in the Wine dataset, where only a low correlation class is identified,
but since the dataset contains more than six attributes, the model, as proposed, uses
two hexagonal honeycombs for the visualization (see Figure 8). Similarly, there are only
two correlation classes identified in the Appliance Energy dataset when using lights as
the attribute of interest, yet these two classes are divided into five honeycombs.

Naturally, with the growing number of classes, the number of honeycombs also grows,
while the lowest possible ratio of classes to honeycombs is 1 : 1.

Dataset Attribute of interest # classes # honeycombs

Wine

fixedAcidity 3 3
freeSulfDioxide 3 5

density 3 3
pH 1 2

Appliance Energy

appliances 2 5
lights 2 5
T1 5 8

RH 1 5 7

Tab. 1. Quantification of Honeycomb graph components based on

selected attributes of interest.

The descriptive summarization of the number of classes and honeycombs in visualiza-
tions created over the two studied datasets is presented in Table 2. The table contains
minimal (min), mode (mode), and maximal (max) values for the number of correlation
classes and honeycombs in both datasets.
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Property
Dataset

Wine Appliance Energy

number of attributes 11 28
min(#classes) 1 2
mode(#classes) 3 5
max(#classes) 4 5
min(#honeycombs) 2 5
mode(#honeycombs) 3 5
max(#honeycombs) 5 8

Tab. 2. Descriptive summarization of the number of classes and

honeycombs in visualizations of Wine and Appliance Energy datasets.

Regarding the other two quantitative elements of the method − the precision of the
proposed model is generally high, with only a minor issue related to the slight overlap
of certain elements in the visualization (some edges and their labels). However, overall,
the data is well-separated into distinct classes. Additionally, the visual representation
of the data is realistic, providing an insightful view of the parametric classification of
attributes into correlation classes and the relationships between these classes. This
enhances interpretability and supports a more intuitive understanding of the dataset’s
structure.

The feature selection process using Honeycomb graphs offers several advantages.
Firstly, in the honeycombs, the identification of the most relevant attributes from the
point of view of predictive analysis is trivial and user-friendly. If the values of the at-
tributes with the strongest relationship to the attribute of interest are not explicitly
known, it is possible to infer them transitively by leveraging strongly related attributes
via inter- or intra-honeycomb relationships. Secondly, attributes that share strong in-
terdependencies can be considered interchangeable in a predictive context. This means
that certain attributes can be used in the same way without losing predictive power,
allowing for greater flexibility in model construction and interpretation.

4.4. Comparative analysis of the Honeycomb graphs and conventional
methods

As a last part of the evaluation of the proposed approach, the comparative analysis be-
tween the conventional methods and Honeycomb graphs is conducted. This comparison
is done from two points of view:

• the comparison between the visualization of correlation classes in the studied
datasets using correlation heatmaps, correlation graphs, and Honeycomb graphs,

• the comparison between the conventional classification of correlation coefficient
values presented in Section 2.2 and the proposed method.

Since the proposed model is unique in its application as a correlation class visualiza-
tion method, the first part of the presented comparative analysis focuses on the visual-
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ization in the context of correlation analysis. Figures 12 and 13 present the correlation
matrix and graph of the Wine Quality dataset, respectively, while the conventional visu-
alization of correlation analysis in the Appliance Energy dataset is presented in Figures
14 and 15.

As can be seen, both of the used methods focus on general visualization of relation-
ships in the dataset − the heatmap presents the summarization of correlation coefficient
measurements of the dataset, while the graph focuses on pseudo-transitivity of these
relationships and possible identification of predictive sequences, which can be utilized in
regression tasks. On the other hand, the model of Honeycomb graphs aims towards the
visualization of correlation classes and relationships in and between them. Naturally,
the heatmap-based and graph-based visualization can be used to extract classification of
correlation coefficient values (eg. by filtering the heatmap and selecting only the cells of
a similar color), but these approaches require additional computations or user activity
to do so.

Fig. 12. Correlation matrix of Spearman type for the Wine quality

dataset.
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Fig. 13. Correlation graph of Spearman type for the Wine quality

dataset.

The second aspect of the proposed visualization model consists of the identification
of correlation classes in data. Tables 3 and 4.4 present the assignment of attributes from
the considered datasets to correlation classes on the basis of the correlation coefficient
computed between the attribute of interest and all other attributes. For comparison,
two attributes of interest were selected for each dataset − density and resSugar for the
Wine Quality dataset, and Tdewpoint and T out for the Appliance Energy dataset.

The tables highlight several notable features of the basic correlation-class identifica-
tions. Under the static approach, some classes are frequently empty and therefore re-
dundant (for example, the strong and very strong classes in the Wine Quality dataset).
By contrast, the dynamic approach − which partitions correlation-coefficient values into
tertiles − produces classes that are roughly equal in size, i. e., each contains a similar
number of attributes.

Applying the Honeycomb graph model yields classifications broadly consistent with
the other methods, but with two important differences. Compared to the static ap-
proach, the Honeycomb model does not produce empty classes and thus avoids hon-
eycombs that would contain only the attribute of interest. Compared to the dynamic
method, class sizes under the Honeycomb model can vary, which aligns with the nat-
ural distribution of correlation coefficient values. A key advantage of the proposed
Honeycomb model is its explicit identification of the strongest inter- and intra-class
relationships via honeycomb edges, together with a distinctive visualization capability
that, while applicable to any classification scheme, is currently unique to Honeycomb
graphs.

The main disadvantage of the proposed method when compared to the conventionally
utilized correlation classifications is the models computational complexity caused by the
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construction and visualization of the honeycombs themselves and by the determination
of the strongest connecting relationships. Estimated computational complexity of the
approach for the Spearman rank correlation coefficient and dataset consisting of n at-
tributes and m measurements of each attribute is 0(n4), while static five-class model
ranks approximately O(n ×m) and O(n × m × log m) for the dynamic tertile-based
model.

Fig. 14. Correlation matrix of Spearman type for the Appliance

Energy dataset.

5. CONCLUSION

In this study, we focus on the design, implementation, and experimental evaluation of a
novel visualization technique called Honeycomb graphs for the parametric identification
of correlation classes in multidimensional datasets. The proposed method involves an
interconnected graphical model consisting of clusters of vertices organized around a
user-defined attribute of interest and can be utilized in feature selection problems or as
a regression analysis optimization tool.
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Dataset
Attribute of

interest
Class Attributes

Wine Quality

density

neutral
freeSulfDioxide, pH, totalSulfDioxide,

citrAcid

weak
volAcidity, sulphates, quality,

fixAcidity
moderate resSugar, chlorides, alcohol
strong −

very strong −

resSugar

neutral
quality, fixAcidity, chlorides,

volAcidity, citrAcid,sulphates, pH
weak alcohol, freeSulfDioxide

moderate totalSulfDioxide, density
strong −

very strong −

Appliance Energy

Tdewpoint

neutral
rv2, rv1, Visibility, RH out, lights,

Appliances, RH 5, Windspeed
weak RH 6, Press mm hg, T8, T7

moderate
RH 3, T4, RH 8, T9, RH 2,

RH 9, T1, T5, T2, T3
strong RH 4, RH 1, RH 7, T6

very strong T out

T out

neutral
rv2, rv1,Visibility, RH 5, lights,
RH 8, RH 3, RH 2, Press mm hg

weak
Appliances, RH 9, Windspeed,

RH 7, RH 4, RH 1
moderate RH out, T8, T7, RH 6
strong T5, T4, T9, T1, T3, T2

very strong Tdewpoint, T6

Tab. 3. Static five-level model of correlation class identification in

Wine and Appliance Energy datasets.
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Dataset
Attribute of

interest
Class Attributes

Wine Quality

density
1. tertile

freeSulfDioxide, pH, totalSulfDioxide,
citrAcid

2. tertile volAcidity, sulphates, quality
3. tertile fixAcidity, resSugar, chlorides, alcohol

resSugar
1. tertile

quality, fixAcidity, chlorides,
volAcidity

2. tertile citrAcid, sulphates, pH

3. tertile
alcohol, freeSulfDioxide,
totalSulfDioxide, density

Appliance Energy

Tdewpoint
1. tertile

rv1, rv2, Visibility, RH out, lights,
Appliances, RH 5, Windspeed, RH 6

2. tertile
Press mm hg, T8, T7, RH 3, T4,

RH 8, T9, RH 2, RH 9

3. tertile
T1, T5, T2, T3, RH 4,
RH 1, RH 7, T6, T out

T out
1. tertile

rv1, rv2, Visibility, RH 5, lights,
RH 8, RH 3, RH 2, Press mm hg

2. tertile
Appliances, RH 9, Windspeed,
RH 7, RH 4, RH 1, RH out,

T8, T7

3. tertile
RH 6, T5, T4, T9, T1,
T3, T2, Tdewpoint, T6

Tab. 4. Dynamic three-level model of correlation class identification

in Wine and Appliance Energy datasets.



814 A. DUDÁŠ AND T. PEREGRÍN

Fig. 15. Correlation graph of Spearman type for the Appliance

Energy dataset.

As the results of case studies presented in this work, the model’s ability to identify cor-
relation structures and relationships between attributes through Honeycomb graphs was
examined. The model supports interactive exploration of correlation analysis and clas-
sification while adhering to qualitative and quantitative aspects of visualization design
− mainly focused on the effectiveness of the method in representing data relationships
with high precision and realism. Additionally, the approach has high potential in fea-
ture selection tasks by identifying key attributes and their interdependencies, making it
a valuable tool for predictive analysis and data exploration.

From the implementation of the proposed model, several novel areas of potential
future work arose:

• Interactivity of the visualization − in the future approaches to the problem, in-
teractive features that allow users to move and adjust the honeycombs and their
individual cells should be implemented for better interpretability of the visualiza-
tion, and for the higher efficiency of the decision-making done on the basis of the
model.

• Dynamic definition of correlation classes − enabling the dynamic definition and
redefinition of correlation classes based on the input data should allow to construc-
tion of dataset-specific visualizations, which would lead to more precise knowledge
mining.

• Embedded regression modelling − integrating regression models directly into the
visualization to predict, estimate, and analyze data trends in and between the
correlation classes would make the visualization more practical and self-contained.
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