Kybernetika 61 no. 6, 752-761, 2025

A stochastic version of Vidyasagar theorem on the stabilization of interconnected systems

Patrick FlorchingerDOI: 10.14736/kyb-2025-6-0752

Abstract:

The purpose of this paper is to provide sufficient conditions for the feedback asymptotic stabilization in probability for a class of affine in the control nonlinear stochastic differential systems. In fact, under the assumptions stated in this paper we prove the existence of a control Lyapunov function that according to the stochastic version of Artstein's theorem guarantees the asymptotic stability in probability by means of a state feedback law that is smooth except eventually at the equilibrium. This result generalizes the well-known theorem of Vidyasagar concerning the feedback stabilization problem for interconnected control systems.

Keywords:

control Lyapunov function, asymptotic stability in probability, smooth state feedback law

Classification:

60H10, 93C10, 93D05, 93D15, 93E15

References:

  1. F. Abedi and W. J. Leong: Stabilization of some composite stochastic control systems with nontrivial solutions. Europ- J. Control 38 (2017), 16-21.   DOI:10.1016/j.ejcon.2017.07.001
  2. F. Abedi, W. J. Leong and S. S. Chaharborj: A notion of stability in probability of stochastic nonlinear systems. Adv. Differ. Equations 2013 (2013), 363.   DOI:10.1186/1687-1847-2013-363
  3. Z. Artstein: Stabilization with relaxed controls. Nonlinear Analysis Theory Methods Appl. 7 (1983), 1163-1173.   DOI:10.1016/0362-546X(83)90049-4
  4. C.Boulanger: Stabilization of nonlinear stochastic systems using control Lyapunov function. In: Proc. 36th IEEE CDC, San Diego 1997.   CrossRef
  5. L. Daumail and P. Florchinger: A constructive extension of Artstein's theorem to the stochastic context. Stochast. Dynamics 2 (2002), 2, 251-263.   DOI:10.1142/s0219493702000418
  6. H. Deng, M. Krstić and R. Williams: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Automat. Control 46 (2001), 8, 1237-1253.   DOI:10.1109/9.940927
  7. P. Florchinger: A universal formula for the stabilization of control stochastic differential equations. Stochastic Analysis Appl. 11 (1993), 2, 155-162.   DOI:10.1080/07362999308809308
  8. P. Florchinger: Lyapunov-like techniques for stochastic stability. SIAM J. Control Optim. 33 (1995), 4, 1151-1169.   DOI:10.1137/S0363012993252309
  9. P. Florchinger: Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method. SIAM J. Control Optim. 35 (1997), 2, 500-511.   DOI:10.1137/S0363012995279961
  10. P. Florchinger: New results on universal formulas for the stabilization of stochastic differential systems. Stochast. Anal. Appl. 16 (1998), 2, 233-240.   DOI:10.1080/08111149808727770
  11. P. Florchinger: A stochastic Jurdjevic-Quinn theorem. SIAM J. Control Optim. 41 (2002), 1, 83-88.   DOI:10.1137/S0363012900370788
  12. P. Florchinger: Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers. Kybernetika 58 (2022), 4, 626-636.   DOI:10.14736/kyb-2022-4-0626
  13. Z. Y. Gao and N. U. Ahmed: Feedback stabilizability of nonlinear stochastic systems with state-dependent noise. Int.J. Control 45(1987), 2, 729-737.   DOI10.1080/00207178708933764
  14. H. Himmi and M. Oumoun: Design stabilizers for multi-input affine control stochastic systems via stochastic control Lyapunov functions. Int.J. Control 98 (2024), 2, 393-401.   DOI:10.1080/00207179.2024.2339767
  15. R. Z. Khasminskii: Stochastic Stability of Differential Equations. Sijthoff Noordhoff, Alphen aan den Rijn 1980.   CrossRef
  16. H. J. Kushner: Converse theorems for stochastic Liapunov functions. J. Control Optim. 5 (1967), 2, 228-233.   DOI10.1137/0305015
  17. M.Oumoun: Continuous stabilization of composite stochastic systems. IFAC-PapersOnLine 55 12 (2022) 713-716.   DOI:10.1016/j.ifacol.2022.07.396
  18. G. F. Silva, A. McFadyen and J. Ford: Scalable input-to-state stability of nonlinear interconnected systems. EEE Trans. Automat. Control 70 (2025), 3, 1824-1834.   DOI:10.1109/TAC.2024.3468069
  19. E. D. Sontag: A universal construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123.   DOI:10.1016/0167-6911(89)90028-5
  20. J. Tsinias: Asymptotic feedback stabilization: A sufficient condition for the existence of control Lyapunov functions. Systems Control Lett. 15 (1990), 441-448.   DOI:/10.1016/0167-6911(90)90069-7
  21. J. Tsinias: Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems. SIAM J. Control Optim. 29 (1991), 2, 457-473.   DOI:10.1137/0329025
  22. J. Tsinias: On the existence of control Lyapunov functions: Generalizations of Vidyasagar's theorem on nonlinear stabilization. SIAM J. Control Optim. 30 (1992), 4, 879-893.   DOI:10.1137/0330049
  23. J. Tsinias and N. Kalouptsidis: Output feedback stabilization. IEEE Trans. Automat. Control 35 (1990), 951-954.   DOI:10.1109/9.58511
  24. M. Vidyasagar: Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability. IEEE Trans. Automat. Control 25 (1980), 773-779.   DOI:10.1109/TAC.1980.1102422