Kybernetika 61 no. 6, 741-751, 2025

A note on the cooperative two-type SIR processes on Galton-Watson trees

Ruibo Ma, Tai Heng Liu, Baghdadi Othmane and Dong YaoDOI: 10.14736/kyb-2025-6-0741

Abstract:

In the standard SIR model on a graph, infected vertices infect their neighbors at rate $\alpha$ and recover at rate $\mu$. We consider a two-type SIR process where each individual in the graph can be infected with two types of diseases, $A$ and $B$. Moreover, the two diseases interact in a cooperative way so that an individual that has been infected with one type of disease can acquire the other at a higher rate. We prove that if the underlying graph is a Galton--Watson tree and initially the root is infected with both $A$ and $B$, while all others are susceptible, then the two-type SIR model has the same critical value for the survival probability as the classic single-type model.

Keywords:

SIR model, Galton-Watson trees, cooperative interactions

Classification:

60J27, 92D30

References:

  1. W. Cai, L. Chen, F. Ghanbarnejad and P. Grassberger: Avalanche outbreaks emerging in cooperative contagions. Nat. Phys. 11 (2015), 936-940.   DOI:10.1038/nphys3457
  2. L. Chen, F. Ghanbarnejad, W. Cai and P. Grassberger: Outbreaks of coinfections: The critical role of cooperativity. Europhys. Lett. 104 (2013), 50001.   DOI:10.1209/0295-5075/104/50001
  3. R. Durrett: Probability: Theory and Examples. (Fifth Edition.) Cambridge University Press 49, 2019.   CrossRef
  4. R. Durrett and N. Lanchier: Coexistence in host-pathogen systems. Stochast. Process. Appl. 118 (2008), 1004-1021.   DOI:10.1016/j.spa.2007.07.008
  5. R. Durrett and D. Yao: The symbiotic contact process. Electron. J. Probab. 25 (2020), 4, 21.   DOI:10.1214/19-ejp402
  6. P. Grassberger, L. Chen, F. Ghanbarnejad and W. Cai: Phase transitions in cooperative coinfections: Simulation results for networks and lattices. Phys. Rev. E 93 (2016), 042316.   DOI:10.1103/PhysRevD.93.039907
  7. N. Lanchier and C. Neuhauser: Stochastic spatial models of host-pathogen and host-mutualist interactions I. Ann. Appl. Probab. 16 (2006), 448-474.   DOI:10.1214/105051605000000782
  8. N. Lanchier and C. Neuhauser: Stochastic spatial models of host-pathogen and host-mutualist interactions II. Stoch. Models 26 (2010), 399-430.   DOI:10.1080/15326349.2010.498317
  9. N. Lanchier and Y. Zhang: Some rigorous results for the stacked contact process. ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), 193-222.   DOI:10.30757/ALEA.v13-08
  10. R. Ma: Complete convergence theorem for a two-level contact process. ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), 943-955.   DOI:10.30757/ALEA.v19-37
  11. T. Mountford, P. L. B. Pantoja and D. Valesin: The asymmetric multitype contact process. Stochast. Process. Appl. 129 (2019), 2783-2820.   DOI:10.1016/j.spa.2018.08.006
  12. C. Neuhauser: Ergodic theorems for the multitype contact process. Probab. Theory Related Fields 91 (1992), 467-506.   DOI:10.1007/BF01192067
  13. J. P. Stover: A stochastic comparison result for the multitype contact process with unequal death rates. Statist. Probab. Lett. 162 (2020), 108763.   DOI:10.1016/j.spl.2020.108763
  14. F. Zarei, S. Moghimi-Araghi and F. Ghanbarnejad: Exact solution of generalized cooperative susceptible-infected-removed (SIR) dynamics. Phys. Rev. E 100 (2019), 012307.   DOI:10.1103/physreve.100.012307