Kybernetika 61 no. 5, 688-711, 2025

Optimality conditions for interval-valued vector equilibrium problems

Ashish Kumar Prasad, Julie Khatri and Izhar AhmadDOI: 10.14736/kyb-2025-5-0688

Abstract:

In the article, one formulates Fritz John type and Karush--Kuhn--Tucker type necessary conditions for an interval-valued vector equilibrium problem having a locally LU-efficient solution, where convexificators demonstrate the solutions that are regular. Sufficient conditions for a locally weak LU-efficient solution have been entrenched by imposing appropriate assumptions along with generalized convexity. Some applications are presented for a constrained interval-valued vector variational inequality and a constrained interval-valued vector optimization problem.

Keywords:

interval-valued vector equilibrium problem, locally LU-efficient solution, optimality, convexificators

Classification:

49J52, 91B50, 90C46

References:

  1. A. K. Bhurjee and G. Panda: Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 52 (2015), 156-167.   DOI:10.1007/s12597-014-0175-4
  2. A. K. Bhurjee and G. Panda: Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243 (2016), 335-348.   CrossRef
  3. F. H. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York 1983.   CrossRef
  4. V. F. Demyanov: Convexification and Concavification of a Positively Homogeneous Function by the Same Family of Linear Functions. Report 3,208,802. Universita di Pisa, 1994.   CrossRef
  5. F. Giannessi, G. Mastroeni and L. Pellegrini: On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation. In: Vector Variational Inequalities and Vector Equilibria (F. Giannessi, ed.). Nonconvex Optim. Appl. 38 (2000), 153-215.   CrossRef
  6. X. H. Gong: Optimality conditions for efficient solution to the vector equilibrium problems with constraints. Taiwanese J. Math. 16 (2012), 1453-1473.   DOI:10.11650/twjm/1500406743
  7. X. H. Gong: Optimality conditions for vector equilibrium problems. J. Math. Anal. Appl. 342 (2008), 1455-1466.   DOI:10.1016/j.jmaa.2008.01.026
  8. X. H. Gong: Scalarization and optimality conditions for vector equilibrium problems. Nonlinear Analysis: Theory, Methods Appl. 73 (2010), 3598-3612.   DOI:10.1016/j.na.2010.07.041
  9. A. D. Ioffe: Necessary and sufficient conditions for a local minimum. 1: a reduction theorem and first order conditions. SIAM J. Control Optim. 17 (1979), 245-250.   DOI:10.1137/0317019
  10. A. Jayswal, I. Stancu-Minasian and I. Ahmad: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput.218 (2011), 4119-4127.   DOI:10.1016/j.amc.2011.09.041
  11. A. Jayswal, I. Stancu-Minasian and J. Banerjee: Optimality conditions and duality for interval-valued optimization problems using convexificators. Rendiconti del Circolo Matematico di Palermo 65 (2016), 17-32.   DOI:10.14482/sun.32.1.8474
  12. V. Jeyakumar and D. T. Luc: Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101 (1999), 599-621.   DOI:10.1023/A:1021790120780
  13. V. Jeyakumar and D. T. Luc: Approximate Jacobian matrices for nonsmooth continuous maps and C$^1$-optimization. SIAM J. Control Optim. 36 (1998), 1815-1832.   DOI:10.1137/S0363012996311745
  14. D. V. Luu: Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications. J. Optim. Theory Appl. 171 (2016), 643-665.   DOI:10.1007/s10957-015-0815-8
  15. D. V. Luu: Necessary and sufficient conditions for efficiency via convexificators. J. Optim. Theory Appl. 160 (2014), 510-526.   DOI:10.1007/s10957-013-0377-6
  16. D. V. Luu: Convexificators and necessary conditions for efficiency. Optimization 63 (2014), 321-335.   DOI:10.1080/02331934.2011.648636
  17. D. V. Luu and D. D. Hang: On optimality conditions for vector variational inequalities. J. Math. Anal. Appl. 412 (2014), 792-804.   DOI:10.1016/j.jmaa.2013.11.011
  18. D. V. Luu and D. D. Hang: Efficient solutions and optimality conditions for vector equilibrium problems. Math. Methods Oper. Res. 79 (2014), 163-177.   DOI:10.1007/s00186-013-0457-2
  19. B. S. Mordukhovich and Y. Shao: On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2 (1995) 211-228.   CrossRef
  20. J. Morgan and M. Romaniello: Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities. J. Optim. Theory Appl. 130 (2006), 309-316.   DOI:10.1007/s10957-006-9104-x
  21. D. E. Ward and G. M. Lee: On relations between vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 113 (2002), 583-596.   DOI:10.1023/A:1015364905959
  22. H. C. Wu: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008), 299-316.   DOI:10.1016/j.jmaa.2007.05.023