Kybernetika 61 no. 5, 666-687, 2025

Explicit control law for a heat equation based on output tracking

Cuihua He, Ke Wang and Zhongcheng ZhouDOI: 10.14736/kyb-2025-5-0666

Abstract:

Boundary control to track the output reference of the heat equation is considered. A control input is implemented at one boundary while requiring the other boundary to track the output reference. By introducing the error system and backstepping transformation, the control law is designed. The undetermined coefficient method and two identities are used to obtain the analytical solution of the kernel function by complex mathematical calculation. This establishes an explicit control law and ensures that the error system can effectively achieve the desired closed-loop stability. Simulation results validate the proposed theoretical results.

Keywords:

backstepping, boundary control, output tracking

Classification:

93C20, 35K05, 93D15, 93D23

References:

  1. H. Ayadi and N. Mahfoudhi: Local exponential stabilization of a coupled ODE-Fisher's PDE system. Eur. J. Control 71 (2023), 100807.   DOI:10.1016/j.ejcon.2023.100807
  2. S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge University Press, Cambridge 2004.   CrossRef
  3. S. Chen, R. Vazquez and M. Krstic: Folding Backstepping Approach to Parabolic PDE Bilateral Boundary Control. IFAC PapersOnline 52 (2019), 2, 76-81.   DOI:10.1016/j.ifacol.2019.08.014
  4. J. M. Coron: Control and Nonlinearity. American Mathe-matical Society, 2017.   CrossRef
  5. G. A. de Andrade, R. Vazquez, I. Karafyllis and M. Krstic: Backstepping Control of a Hyperbolic PDE System With Zero Characteristic Speed States. IEEE Trans. Automat. Control 69 (2024), 10, 6988-6995.   DOI:10.1109/TAC.2024.3390850
  6. C. Demir, S. Koga and M. Krstic: Input Delay Compensation for Neuron Growth by PDE Backstepping. IFAC-PapersOnline 55 (2022), 36, 49-54.   DOI:10.1016/j.ifacol.2022.11.332
  7. S. Ecklebe and N. Gehring: Backstepping-based tracking control of the vertical gradient freeze crystal growth process. IFAC-PapersOnline 56 (2023), 2, 8171-8176.   DOI:10.1016/j.ifacol.2023.10.995
  8. L. C. Evans: Partial Differential Equations (Second Edition). American Mathematical Society, Providence 2010.   CrossRef
  9. N. Ghaderi, M. Keyanpour and H. Mojallali: Observer-based finite-time output feedback control of heat equation with Neumann boundary condition. J. Franklin Inst. 357 (2020), 9154-9173.   DOI:10.1016/j.jfranklin.2020.06.028
  10. C. L. Guo, C. K. Xie and Z. C. Zhou: Stabilization of Spatially Non-causal Reaction-diffusion Equation. Int. J. Robust Nonlin. 24 (2014), 1, 1-17.   DOI:10.1002/rnc.2864
  11. C. H. He, C. K. Xie and Z. Y. Zhen: Explicit control law of a coupled reaction-diffusion process. J. Franklin Inst. 354 (2017), 5, 2087-2101.   DOI:10.1016/j.jfranklin.2017.01.013
  12. M. Krstic and A. Smyshlyaev: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, Philadelphia 2008.   CrossRef
  13. Y. Lei, X. L. Liu and C. K. Xie: Stabilization of an ODE-PDE cascaded system by boundary control. J. Franklin Inst. 357 (2020), 14, 9248-9267.   DOI:10.1016/j.jfranklin.2020.07.007
  14. R. C. Li and F. F. JinLiu: Boundary output feedback stabilization for a cascaded wave PDE-ODE system with velocity recirculation and matched disturbance. Appl. Math. Comput. 444 (2023), 127827.   DOI:10.1016/j.amc.2022.12782
  15. X. M. Liao, Z. Liu, C. L. Philip Chen, Y. Zhang and Z. Z. Wu: Event-triggered adaptive neural control for uncertain nonstrict-feedback nonlinear systems with full-state constraints and unknown actuator failures. Neurocomputing 490 (2022), 269-282.   DOI:10.1016/j.neucom.2021.11.090
  16. X. L. Liu and C. K. Xie: Control law in analytic expression of a system coupled by reaction-diffusion equation. Neurocomputing 137 (2020), 3, 104643.   DOI:10.1016/j.sysconle.2020.104643
  17. Y. Qin, L. Cao, H. R. Ren, H. J. Liang and Y. N. Pan: Adaptive optimal backstepping control for strict-feedback nonlinear systems with time-varying partial output constraints. J. Franklin Inst. 361 (2024), 2, 776-795.   DOI:10.1016/j.jfranklin.2023.12.024
  18. A. Quarteroni, A. Manzoni and F. Negri: Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer, Cham 2004.   CrossRef
  19. J. H. Shi: Combinatorial Identity. Hefei: University of Science and Technology of China Press, 2001.   CrossRef
  20. Y. C. Si, C. K. Xie, Z. Y. Zhen and A. L. Zhao: Local stabilization of coupled nonlinear parabolic equations by boundary control. J. Franklin Inst. 355 (2018), 13, 5592-5612.   DOI:10.1016/j.jfranklin.2018.06.008
  21. J. Wang and M. Krstic: Event-triggered Backstepping Control of $2 \times 2$ Hyperbolic PDE-ODE Systems. IFAC-PapersOnLine 53 (2020), 2, 7551-7556.   DOI:10.1016/j.ifacol.2020.12.1350
  22. X. Xu, L. Liu, M. Krstic and G. Feng: Stabilization of chains of linear parabolic PDE-ODE cascades. Automatica 148 (2023), 148, 110763.   DOI:10.1016/j.automatica.2022.110763
  23. Z. Y. Zhen, C. K. Xie, Y. C. Si and C. H. He: Stabilization of the second order parabolic system by boundary control. Control Theory Appl. 35 (2019), 6, 859-867.   DOI:10.7641/CTA.2017.17047
  24. Z. C. Zhou and C. L. Guo: Stabilization of linear heat equation with a heat source at intermediate point by boundary control. Automatica 49 (2013), 2, 448- 456.   DOI:10.1016/j.automatica.2012.11.005