Kybernetika 61 no. 5, 647-665, 2025

Sequential games with turn selection process and fuzzy utility functions

Rubén Becerril-BorjaDOI: 10.14736/kyb-2025-5-0647

Abstract:

A particular group of models of sequential games is studied where the order of the turns is not known beforehand by the players, and where the utility functions for each player are fuzzy numbers. For these models, a series of results are proven to show the existence of equilibria under two criteria, and a brief application is described where it usually is not possible to give utilities a precise value, hence, where fuzzy numbers are adequate.

Keywords:

fuzzy numbers, sequential game, risk sensitive, turn selection process, fuzzy utility functions

Classification:

91A06, 91A10, 91A18, 91A50

References:

  1. R. Becerril-Borja and R. Montes-de-Oca: Sequential games with finite horizon and turn selection process: Finite strategy sets case. In: Proc. 5th the International Conference on Operations Research and Enterprise Systems (ICORES 2016) (2016), pp. 44-50.   DOI:10.5220/0005696400440050
  2. R. Becerril-Borja and R. Montes-de-Oca: A family of models for finite sequential games without a predetermined order of turns. In: Operations Research and Enterprise Systems: 5th International Conference ICORES 2016, Rome 2016, Revised Selected Papers, (B. Vitoriano and G. H. Parlier, eds.), pp. 35-51. Springer, Cham 2017.   DOI:10.1007/978-3-319-53982-9\_3
  3. R. Becerril-Borja and R. Montes-de-Oca: Incomplete information and risk sensitive analysis of sequential games without a predetermined order of turns. Kybernetika 57 (2021), 312-331.   DOI:10.14736/kyb-2021-2-0312
  4. O. K. Borj, N. Ramezani and T. M. R. Akbarzade: Using decision trees and a-cuts for solving matrix games with fuzzy payoffs. In: 2014 Iranian Conference on Intelligent Systems 2014, pp. 1-6.   DOI:10.1109/iraniancis.2014.6802591
  5. K. Carrero-Vera, H. Cruz-Suárez and R. Montes-de-Oca: Markov decision processes on finite spaces with fuzzy total rewards. Kybernetika 58 (2022), 180-199.   DOI:10.14736/kyb-2022-2-0180
  6. H. Cruz-Suárez, R. Montes-de-Oca and R. I. Ortega-Gutiérrez: An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 160-178.   DOI:10.14736/kyb-2023-1-0160
  7. D. Fudenberg and J. Tirole: Game Theory. The MIT Press, Boston 1991.   CrossRef
  8. D.-F. Li: A fast approach to compute fuzzy values of matrix games with payoffs of triangular fuzzy numbers. European J. Oper. Res. 223 (2012), 421-429.   DOI:10.1016/j.ejor.2012.06.020
  9. M. Maschler, E. Solan and S. Zamir: Game Theory. Cambridge University Press, Cambridge 2020.   DOI10.26226/morressier.60546d5e30a2e980041f1f70
  10. I. Nishizaki and M. Sakawa: Fuzzy and Multiobjective Games for Conflict Resolution. Physica-Verlag, Heidelberg, 2001.   CrossRef
  11. M. L. Puri and D. A. Ralescu: Fuzzy random variable. J. Math. Anal. Appl. 114 (1986), 409-422.   DOI:10.1016/0022-247X(86)90093-4
  12. S. Rezvani and M. Molani: Representation of trapezoidal fuzzy numbers with shape function. Ann. Fuzzy Math. Inform. 8 (2014), 89-112.   CrossRef
  13. S. Tadelis: Game Theory: An Introduction. Princeton University Press, Princeton 2013.   CrossRef
  14. L. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353.   DOI:10.1016/S0019-9958(65)90241-X