Kybernetika 61 no. 5, 595-609, 2025

On the number of iterations in the Alternating Method for integer matrices in max-algebra

Bojana StojčetovićDOI: 10.14736/kyb-2025-5-0595

Abstract:

The Alternating Method in max-algebra is an efficient approach for solving two-sided max-linear systems of the form $A \otimes x=B \otimes y$, where $A$, $B$ are matrices and $x$, $y$ are vectors of compatible sizes. This iterative procedure typically begins with a randomly chosen initial vector. In the case when matrices $A$ and $B$ are integer matrices and one is finite while the other has at least one finite element in each row and in each column, and provided that the initial vector is also an integer vector, an upper bound on the number of iterations can be determined. This paper proposes starting the Alternating Method with a vector selected based on the matrix elements of $\tilde{A}=(-A^\top) \otimes A$, where $A$ is a finite matrix of the given system, instead of using a randomly selected vector. This choice of initial vector aims to minimize the number of iterations in the Alternating Method. We have proved that, with the proposed choice of initial vector, the number of iterations is bounded above by the expression containing the maximum element of matrix $\tilde{A}$. From this statement, we derive additional conclusions regarding this bound. Finally, we compare the number of iterations in the Alternating Method when it starts from a randomly chosen vector versus when it starts from the vector we propose in this study.

Keywords:

max-algebra, Alternating Method, two-sided systems, integer matrices

Classification:

15A80, 15A24

References:

  1. M. Akian, R. Bapat and S. Gaubert: Max-plus algebra. In: Handbook of linear algebra, Chapter 25 (L. Hogben, R. Brualdi, A. Greenbaum, and R. Mathias, eds.), Chapman and Hall, 2007.   DOI:10.1201/9781420010572
  2. A. Aminu, S. Olowo, I. Sulaiman, N. Abu Bakar and M. Mamat: On application of max-plus algebra to synchronized discrete event system. Math. Statist. 9 (2021), 2, 81-92.   DOI:10.13189/ms.2021.090201
  3. A. Aminu and P. Butkovič: Comparison of methods for solving two-sided systems in max-algebra. University of Birmingham, preprint 2008/8.   www.academia.edu/73728997
  4. F. Baccelli, G. Cohen, G. Olsder and J. Quadrat: Synchronization and linearity: An algebra for discrete event systems. J. Oper. Res. Soc. 45 (1994), 118-119.   DOI:10.2307/2583959
  5. P. Butkovič: Max-linear Systems: Theory and Algorithms. Springer Verlag, London 2010.   DOI:10.1007/978-1-84996-299-5
  6. P. Butkovič: On certain properties of the systems of linear extremal equations. Ekon. Mat. Obzor 14 (1978), 72-78.   https://web.mat.bham.ac.uk/P.Butkovic/Pubs.html
  7. P. Butkovič: Solution of systems of linear extremal equations. Ekon. Mat. Obzor 17 (1981), 402-416.   https://web.mat.bham.ac.uk/P.Butkovic/Pubs.html
  8. P. Butkovič and G. Hegedus: An elimination method for finding all solutions of the system of linear equations over an extremal algebra. Ekon. Mat. Obzor 20 (1984), 203-215.   https://web.mat.bham.ac.uk/P.Butkovic/Pubs.html
  9. P. Butkovič: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl. 367 (2003), 313-335.   DOI:10.1016/S0024-3795(02)00655-9
  10. P. Butkovič: A strongly polynomial algorithm for solving two-sided linear systems in max-algebra. Discrete Appl. Math. 154 (2006), 437-446.   DOI:10.1016/j.dam.2005.09.008
  11. B A. Carre: An algebra for network routing problems. J. Institute of Mathematics and Its Applications 7 (1971), 273-294.   DOI:10.1093/imamat/7.3.273
  12. G. Cohen, S. Gaubert, E. Mancinelli, J. P. Quadrat and E. Rofman: On traffc light control of regular towns. Math. Notae, Boletin del Instituto de Matematica "Beppo Levi", Ano XLIII, (2005), 51-62.   https://inria.hal.science/inria-00072311
  13. R. A. Cuninghame-Green and P. Butkovič: The equation $A\otimes x = B \otimes y$ over $(\max, +)$. Theoret. Comput. Sci. 293 (2003), 3-12.   DOI:10.1016/S0304-3975(02)00228-1
  14. R. A. Cuninghame-Green: Projections in minimax algebra. Math. Program. 10 (1976), 1, 111-123.   DOI:10.1007/BF01580656
  15. R. A. Cuninghame-Green: Minimax Algebra. Lecture Notes Econom. Math. Systems 166, Springer, Berlin 1979.   DOI:10.1007/978-3-642-48708-8
  16. R. A. Cuninghame-Green: Minimax algebra and applications. Advances Imaging Electron Physics 90 (1994), 1-121.   DOI:10.1016/S1076-5670(08)70083-1
  17. R. A. Cuninghame-Green: Process synchronisation in a steelworks - a problem of feasibility. In: Proc. 2nd Int. Conf. on Operational Research (Banbury and Maitland, eds.), English University Press (1960), pp. 323-328.   CrossRef
  18. R. A. Cuninghame-Green: Describing industrial processes with interference and approximating their steady-state behaviour. Oper. Res. Quarterly 13 (1962), 95-100.   DOI:10.2307/3007584
  19. S. Gaubert: Methods and Applications of $(\max,+)$ Linear Algebra. Research Report RR3088, INRIA 1997.   DOI:10.1007/BFb0023465
  20. S. Gaubert: Nonlinear Perron-Frobenius theory and discrete event systems. Actes du colloque Modelisation de Systmes Ractifs (MSR'05) JESA 39 (2005), 175-190.   DOI:10.3166/jesa.39.175-190
  21. B. Giffler: Scheduling general production systems using schedule algebra. Naval Res. Logist. Quarterly 10 (1963), 237-255.   DOI:10.1002/nav.3800100119
  22. M. Gondran and M. Minoux: Valeurs propres et vecteur propres dans les dioides et leur interpretation en theorie des graphes. Bulletin de la Direction des Etudes et Recherches Serie C Mathematiques et Informatiques 2 (1977), 25-41.   CrossRef
  23. B. Heidergott, G. J. Olsder and J. van der Woude: Max-plus at work, Modelling and Analysis of Synchronized Systems: A course on Max-Plus Algebra and Its Applications. Princeton University Press, New Jersey 2006.   DOI:10.1515/9781400865239
  24. D. Jones: On two-sided Max-Linear equations. Discr. Appl. Math. 254 (2019), 146-160.   DOI:10.1016/j.dam.2018.06.011
  25. N. Krivulin and S. Sergeev: Minimizing maximum lateness in two-stage projects by tropical optimization. Kybernetika 58 (2022), 5, 816-841.   DOI:10.14736/kyb-2022-5-0816
  26. P. Li: On sparsity of approximate solutions to max-plus linear systems. Kybernetika 60 (2024), 3, 412-425.   DOI:10.14736/kyb-2024-3-0412
  27. S. Sergeev: Alternating Method for homogeneous systems of equations over max-algebra. School of Mathematics pre-print, University of Birmingham, 18 (2009).   https://api.semanticscholar.org/CorpusID:1966959
  28. B. Stojčetović: Max-algebraic systems of equations - from basic to higher level. In: The Fourth International Conference on Education in Mathematics, Physics and Related Science, Skopje 2023.   CrossRef
  29. B. Stojčetović, J. Ignjatović and M. Ćirić: Pseudo skew-symmetric matrices over max-plus algebras. Accepted for publication in Filomat.   CrossRef
  30. N. N. Vorobyov: Extremal algebra of positive matrices. Elektronische Informationsverarbeitung und Kybernetik 3 (1967), 39-71 (in Russian).   CrossRef
  31. K. Zimmermann: Extremalni algebra. Vyzkumna publikace Ekonomicko-matematicke laboratore pri Ekonomickem ustavu CSAV 46, Praha 1976. (in Czech).   CrossRef