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NEW GRAVITATIONAL ALGORITHMS FOR THE
DETECTION OF OVERLAPPING AND DISJOINT
COMMUNITIES IN WEIGHTED COMPLEX NETWORKS

Nermin Kartli, Pelin Çetin, and Selin Ayhan

The excessive increase in the amount of data caused a rise in the number of vertices and edges
in the graph models. This gave rise to the concept of complex networks. Complex networks
are present in almost every area of life, in social networks, natural sciences, drug discovery, etc.
Detection of overlapping or disjoint communities in complex networks is an important problem.
In this study, we propose two new algorithms to detect overlapping and disjoint communities in
weighted complex networks. We assume that the weights represent how close the vertices are
to each other in some sense. First, we calculate the similarity of the vertices to each other using
the universal gravitational law, then place similar vertices in overlapping communities. Then,
for each vertex in multiple communities, we calculate the attraction force of each community
where this vertex is located. We leave the vertex in the community that attracts the vertex
more and delete it from the others. The results of experiments conducted on complex networks
consisting of real and artificial data show the efficiency of the proposed algorithms.

Keywords: weighted complex networks, community detection, overlapping community,
disjoint community
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1. INTRODUCTION

An increasing number of studies are being published on complex networks, that is,
mathematical graphs. Recently, researchers have begun to refer to graphs of enormous
size as complex networks. One reason for this is that the research topic in these large
graphs is different from classical graph theory problems. In complex networks, the aim is
often to reveal hidden relationships and cluster according to a certain criterion. Complex
networks can be encountered in many areas, such as social networks, drug discovery,
natural language processing, etc. For example, a social media manager needs to be
able to divide users into certain groups, expand the social network, suggest new friends
or new jobs to the user, and send the same ads to similar people. These groups that
we want to find in complex networks are called communities. There have been serious
attempts to define the concept of community mathematically. Unfortunately, none of
these definitions reflect real-life problems. Moreover, almost all of these definitions do not
properly represent the concept of community in the verbal sense, even for some simple
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graphs of small size. Various definitions of community are discussed in [3]. The lack of
a precise mathematical definition of a community does not diminish the importance of
searching for it, because in almost every field, it can be necessary to divide a complex
network into communities, even when making decisions [36], calculating risks [1], and
sorting [2, 39, 48].

Community detection problems can occur in all areas of life [4, 6, 7, 8, 12, 14, 17,
19, 20, 21, 22, 38, 43, 47, 53]. For this reason, this problem is addressed from different
perspectives, and many studies are published every year. Since we cannot mention all
of these studies, we will refer the works that are close to the approach we propose in
this study. Nallusamy and Easwarakumar [35] propose a new community detection al-
gorithm in a weighted undirected network. The algorithm determines which edges of the
considered community should be replaced using the persistence loss parameter. Chin
and Ratnavelu [13] present an improved version of the label propagation algorithm for
community detection. He et al. [18] present a new method for calculating the analyt-
ical p-value, which indicates the statistical significance of an individual’s belonging to
a community in weighted networks. Hajibabaei et al. [16] propose a probabilistic gen-
erative model that estimates latent parameters and infers community structures based
on the existence probabilities of weighted connections between edges. A multi-objective
optimization approach is proposed for the problem of community detection in weighted
networks by Samandari Masooleh et al. [44]. In this context, the authors adapt the
whale optimization algorithm to work in parallel processing environments with discrete
variable multi-criteria optimization problems. In the proposed method, the locations of
individuals are discretized using a transfer function to transform continuous variables
into discrete variables; the algorithm’s initialization phase is restructured to prevent un-
realistic relationships between variables; and the update phase is modified to ensure that
the outputs are integers. A novel method for identifying clique structures in weighted
complex networks is proposed by Goswami and Das [15]. In this method, each clique is
assigned a density value, and two distinct interaction density thresholds are defined at
both the individual and group levels to eliminate random or low-importance interactions
during the clique formation process. Weighted maximum cliques of different sizes are
used as fundamental building blocks, and a weighted version of the Jaccard similarity
metric is developed to detect overlapping communities. This new metric is called the
’weighted Jaccard index.’ A new algorithm based on a deep and sparse autoencoder is
proposed Li et al. [27] by for community detection. In this study, firstly, a path weight
matrix is generated by analyzing the second-degree neighborhood relationships of the
nodes in the network. This matrix is combined with the weighted connection paths of
each node to better represent the similarities between the nodes and their second-degree
neighbors, resulting in a similarity matrix. Then, the deep sparse autoencoder devel-
oped with the unsupervised deep learning approach is used to produce a feature matrix
that more comprehensively represents the structural properties of the network. This
low-dimensional feature matrix is subjected to clustering with the K-means algorithm
to reveal the community structure of the network. Kumar et al. [24] propose an im-
proved neighbourhood Proximity-based Community Detection algorithm using Weighted
Centrality for extracting overlapping community structures in undirected weighted net-
works. Kumar [25] designs a depth-first search-based algorithm for community detec-
tion in the weighted networks using the neighbourhood proximity measure. Prokop et
al. [41] present a new algorithm for overlapping communities in weighted networks.



New gravitational algorithms for the detection of overlapping and disjoint communities 511

This algorithm detects hierarchical structures in overlapping networks. The authors use
the interdependence between internal and external quality measures to evaluate the de-
tected communities. Ma et al. [31] propose an algorithm based on the dissimilarity of
nodes. Mohammed and Gunduc [33] propose a Transition Probability Matrix based on
anonymous random walks as a new method for extracting the features of nodes in the
graph. Suja et al. [49] propose a new optimization algorithm for overlapping community
detection. Wang et al. [50] present a novel approach based on integrating spatial resis-
tance and adjacency into the speaker-listener label propagation algorithm for uncovering
overlapping communities in geospatial networks.

In this study, we define similarity based on the universal gravitational law and de-
velop algorithms that can find overlapping and disjoint communities in weighted graphs
based on this definition. The idea of using the gravitational force is used in many studies
from different perspectives. Yang et al. [52] propose an algorithm based on the universal
gravitation law to find overlapping community detections in unweighted networks, but in
this algorithm, the force between nodes is calculated in a different way than in our study.
Shen and Ma [45] improve the well-known label propagation algorithm for community
detection in unweighted complex networks. The improvement is based on the law of
gravity. Zalik and Zalik [55] formulate community detection in unweighted complex net-
works as an optimization problem facilitated by node attraction. The authors assume
that each node is attracted by its neighbors. They propose an evolutionary community
detection algorithm that uses modularity Q as a fitness function. Zhou et al. [56] pro-
pose a similarity based on the concepts of direct and indirect attraction force and design
an algorithm based on the proposed attraction-force similarity. Sheng et al. [46] present
a new community detection algorithm based on internode attraction. This algorithm
starts from some nodes of the unweighted complex network and uses the gravitational
relationship between nodes. Yu et al. [54] propose an approach called one-dimensional
“gravity” (1DA) method for community detection in unweighted networks. The 1DA
method uses the number of edges to measure ’gravity’. One of the works that proposes
to use the gravity force is the study of Pattanayak et al. [40]. In this study, the authors
present an innovative community detection algorithm that probabilistically estimates
the size of communities using local structural information from randomly selected start-
ing nodes. Subsequently, a gravity-based approach is applied to uncover communities
around these nodes. The resulting local communities are integrated in a merging step
to reveal the overall community structure of the entire network. Arasteh et al. [5] also
introduce an algorithm for community detection inspired by the Gravitational law in
an unweighted complex network. Lu and Dong [30] present a hierarchical gravity-based
community detection algorithm to structure the supply chain network. The main idea of
the algorithm is to characterize the overlapping conditions among communities by inves-
tigating the global gravity influence of focal firms. Li et al. propose [28] three improved
label propagation algorithms based on the universal gravitation and give two methods
(number of triangles and random walk algorithm with restart) that change the distance
in the traditional physical sense to reduce the time complexity of our algorithms. The
resulting attraction between nodes is used as the weight of the edge to propagate labels.
Wu et al. [51] extract information about the network structure of a graph by intro-
ducing a new transition probability matrix based on Markov chains, which constructs
a new graph. The authors then perform modularity optimization on the constructed
one instead of the original one to detect disjoint communities. To detect overlapping
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communities, they first initialize a cluster with a vital node as the attraction source,
and then expand the cluster according to the graph attraction based on the transition
probability. Chi et al. [11] propose a method for detecting overlapping communities in
unweighted social networks. The method first creates initial communities by determin-
ing those that include the maximum local degree in the network. Then, if the attraction
force between a community and a node in its vicinity exceeds a certain threshold value,
this node is included in the relevant community. This process is repeated iteratively
until the community structure is fixed. Nodes that have not yet been assigned to any
community are considered overlapping nodes if they are attracted by more than one
community above the threshold value. The membership degree of an overlapping node
in any community is calculated by the ratio of the attraction force exerted by that com-
munity on the relevant node to the sum of all community attractions to which the node
is exposed.

In this study, we consider weighted complex networks. We assume that the weight
between two vertices indicates how close these vertices are to each other. For example,
in a social media dataset, the closer a person A and person B are to each other, the less
weight the edge connecting the vertices will have. In other words, we can say that the
weights indicate the distance between two vertices. This condition regarding weights
may not be met in some datasets; for example, in recommendation system problems, we
can say that the more points a user gives to an item, the closer he/she feel to that item.
In complex networks where the condition is met, we first apply the universal gravitation
law and update the weights on the edges according to the attraction force exerted by the
vertices at the edge ends. For each vertex, we take the degree of this vertex as its mass.
Then we apply the modified Cetin and Emrah Amrahov algorithm [10] to the complex
network we obtained. As a result of the algorithm, we find overlapping communities.
Then, for each vertex in more than one community, we calculate the total attraction
force from the vertices in these communities. We leave the vertex in the community that
is more attracted by the community and delete it from the others. With this, we find
disjoint communities. Since we obtain these communities differently, we find different
communities from the Cetin and Emrah Amrahov study [9].

Recently, Khawaja et al. [23] proposed a common-neighbor-based overlapping com-
munity detection algorithm, building upon the work of Cetin and Emrah Amrahov, and
Liu et al. [29]. Our differences from this work are as follows:

— We use our proposed gravitational similarity to calculate how close two vertices
are to each other.

— We examine weighted graphs and therefore propose the weighted common neigh-
bors criterion.

— We propose 2 algorithms to find both overlapping and disjoint communities.

2. PRELIMINARIES

2.1. Some definitions from the graph theory

Definition 2.1. Let G = (V,E) be a simple undirected graph. If uv ∈ E for a vertex
u ∈ V , then v is called a neighbor of u. The set of all neighbors of a vertex u is denoted
by N(u).
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Definition 2.2. The degree of a vertex u is defined as the number of its neighbors and
is denoted by degree(u), i. e., degree(u) = |N(u)|.

2.2. Cetin and Emrah Amrahov’s overlapping community detection
algorithm

Recently, Cetin and Emrah Amrahov developed a similar neighborhood-based algorithm
to find overlapping communities in unweighted complex networks [10]. This algorithm
is designed in 3 stages. In the first stage, each vertex is considered its neighbor, and
the cosine similarity of neighboring vertices is calculated and assigned as the weight to
the edge connecting these vertices. If |V | = n, then to calculate cosine similarity, an
n-dimensional vector is assigned to each vertex as follows: For example, if a vertex u is
adjacent to a vertex vi, the ith coordinate of this vector is written as 1, otherwise 0. It
is also assumed that each vertex is adjacent to itself. In the second stage, each vertex
is initially assigned to a community consisting only of itself, and the edges are sorted
in decreasing order of weight. Then, the edges are considered one by one in this order,
and one end of the edge is added to one of the communities of the other according to
a specific criterion called common neighbors. The criterion CN(u, v), called common
neighbors, is defined by the following formula:

CN(u, v) = max
Cv∈C

|Cv ∩ nu|. (1)

Here, C is the set of communities formed up to the step under consideration, Cv is a
community of the vertex v, and nu is the set of all neighbors of the vertex u, including
itself.

At this stage, if the vertices u and v for the edge (u, v) belong to singleton communities
{u} and {v}, these communities are merged into a community {u, v}, and {u} and {v} are
removed from the community list. For edge (u, v), if the vertices u and v already belong
to the same community, no action is taken, and the next edge is considered. Otherwise,
CN(u, v) is calculated to determine Cv∗, and CN(v, u) is calculated to determine Cu∗,
both maximize formula (1). If CN(u, v∗) > CN(v, u∗), the vertex u is added to the
community Cv∗. If CN(u, v∗) < CN(v, u∗), the vertex v is added to the community Cu∗.
In cases where multiple communities maximize formula (1), the first such community is
selected. If CN(u, v∗) = CN(v, u∗), the degrees of vertices u and v are compared. If
the degrees are different, the vertex with the lower degree is added to the community of
the vertex with the higher degree. If the degrees are equal, the vertex v is added to the
community Cu∗.

The third stage of the algorithm is the merging of the communities found. If more
than half of the elements of one of the two communities considered are also elements of
the other, or if one of the communities has only 2 elements and one of these elements be-
longs to the community of the other, these communities are merged into one community.
The pseudo-code of the algorithm is given in Algorithm 1.

2.3. Evaluation metrics

To assess the quality of overlapping community detection results, we employ a set of
widely used evaluation metrics, encompassing both topology-based and information-
theoretic measures. These metrics enable a comprehensive evaluation ranging from
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Algorithm 1: detectCommunities(G).

Input : G = (V,E) is an unweighted simple graph
Output : C is the list of communities

/* Stage 1: Initialization */
1 for each (u, v) ∈ E do

// calculate the similarity for each pair of adjacent vertices

2 w(u, v)← |Nu ∩Nv|/
√
|Nu||Nv|

3 end
4 C ← ϕ
5 for each v ∈ V do

// add a single vertex’s community to the communities list
6 C ← C ∪ {v}
7 end
8 sort edges (u, v) ∈ E according to w(u, v) in descending order

/* Stage 2: Generating communities */
9 for each edge (u, v) ∈ E do

// if the vertices u and v have communities consisting only of themselves
10 if Cu = {{u}} and Cv = {{v}} then

// add {u, v} to the community set and remove {u} and {v}
11 C ← C ∪ {u, v} − {u} − {v}
12 end
13 else if there are communities Cu ∈ C and Cv ∈ C such that v /∈ Cu and u /∈ Cv then
14 CN(u, v)← maxCv∈C |Cv ∩ nu|
15 C∗

v ← argmax CN(u, v)
16 CN(v, u)← maxCu∈C |Cu ∩ nv|
17 C∗

u ← argmax CN(v, u)
18 if CN(u, v) > CN(v, u) or (CN(u, v)← CN(v, u) and deg(u) < deg(v)) then
19 C ← C − C∗

v
20 C∗

v ← C∗
v ∪ {u}

21 C ← C ∪ C∗
v

22 if {u} ∈ C then
23 C ← C − {u}
24 end

25 end
26 else
27 C ← C − C∗

u
28 C∗

u ← C∗
u ∪ {v}

29 C ← C ∪ C∗
u

30 if {v} ∈ C then
31 C ← C − {v}
32 end

33 end

34 end

35 end

/* Stage 3: Merging communities */
// C = {C1, C2, ...Ck}

36 k ← length(C)
37 sort the set C in according to the numbers of elements in the communities Ci in descending order
38 l← 1
39 for i = 2 to k do
40 for j = l downto 1 do
41 if |Ci ∩ Cj | > |Ci| /2 or (|Ci| = 2 and |Ci ∩ Cj | = 1) then
42 C ← C − Cj − Ci

43 Ci ← Ci ∪ Cj

44 C ← C ∪ Ci

45 end

46 end
47 renumber communities in list C with indices less than or equal to i and assign the number of the

renumbered communities to l
48 end

49 return C
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structural cohesion to alignment with ground-truth communities. In our experiments, we
utilize the implementations of Overlapping Normalized Mutual Information (ONMILFK),
Omega Index, and average F1-score as provided by the CDlib library.

2.3.1. Fuzzy overlapping modularity (Qoc)

In this study, we evaluated the structural quality of overlapping communities using a
fuzzy modularity measure used by Chi, Qu, and Fu [11]. This measure, denoted as Qoc,
extends classical modularity to overlapping community structures by incorporating the
degree of shared membership between node pairs across communities. Qoc metric is
defined as:

Qoc =
1

2m

∑
i,j∈V

[
Aij −

didj
2m

]
·max
c∈C

(
min(µc(i), µc(j))

1/2
)
.

Here, Aij denotes the edge weight between the nodes i and j, while di is the weighted
degree of the node i, and m is the total edge weight in the network. The function
µc(i) ∈ [0, 1] represents the fuzzy membership strength of node i in the community c,
allowing partial affiliation with multiple communities.

Since community input is in the form of node sets, where each node can belong to
multiple communities without specified degree of membership, we automatically generate
fuzzy memberships by distributing the affiliation of each node uniformly between its
communities. That is, if a node belongs to k communities, its membership in each is set
to µ = 1

k .
This formulation allows the metric to assign greater weight to node pairs that are more

strongly coaffiliated in shared communities, making it more sensitive to both network
structure and overlapping topology.

2.3.2. Overlapping normalized mutual information (ONMILFK)

Overlapping Normalized Mutual Information (ONMILFK) is a generalization of the clas-
sical Normalized Mutual Information (NMI) metric, designed to evaluate the similarity
between overlapping community structures. Proposed by Lancichinetti et al. [26], it
extends mutual information to settings where nodes can belong to multiple communities
simultaneously.

Unlike traditional NMI, which assumes disjoint partitions, ONMILFK accommodates
multi-membership by considering the distribution of community assignments across
nodes. Quantifies the reduction in uncertainty of one partition given the knowledge
of the other, thereby capturing the mutual dependence between the two.

A score of 1 indicates identical community assignments, while a score of 0 suggests no
informational overlap. This metric is particularly suitable for evaluating the alignment
between detected overlapping communities and a reference point of ground truth.

A binary vector is defined for each node. For example, for X:

xi = (xi1, xi2, . . . , xiK), here xik ∈ {0, 1}.

Similarly, for Y :
yi = (yi1, yi2, . . . , yiL), yil ∈ {0, 1}.
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These vectors indicate which communities each node belongs to.
Mutual information, based on information theory, is used to compare community

structures.

I(X;Y ) =
∑
x,y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
.

Here:

• P (x): The probability that a node has a ground-truth vector x.

• P (y): The probability that a node has a ground-truth vector y.

• P (x, y): The probability that a node has both the vectors x and y.

These probabilities are estimated on the basis of the distribution of nodes.
Entropy is calculated as follows:

H(X) = −
∑
x

P (x) logP (x), H(Y ) = −
∑
y

P (y) logP (y).

As a result, the Overlapping Normalized Mutual Information metric is defined
as follows:

ONMI(X,Y ) =
I(X;Y )

max(H(X), H(Y ))
.

• ONMI ∈ [0, 1].

• ONMI = 1 means that the structures are exactly the same.

• ONMI = 0 means that the structures are completely different.

• It can be applied to both overlapping and disjoint communities.

2.3.3. F-score

The F-score is a classical metric from information retrieval, combining precision and
recall into a single measure. In the context of community detection, it evaluates the
correctness of node assignments relative to the ground truth. It is computed as:

F1 = 2× Precision× Recall

Precision + Recall

where precision is the fraction of correctly predicted nodes among those assigned to
a community, and recall is the fraction of ground-truth community members correctly
identified. It computes the optimal one-to-one matches between the communities of the
two partitions and reports the mean F-score across all matches. This approach is robust
to both overlapping and non-overlapping, complete or partial community structures [42].
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2.3.4. Omega index

The Omega Index is a pair-counting metric that quantifies the similarity between two
overlapping community partitions by comparing how many communities each pair of
nodes shares in both partitions. It extends the Adjusted Rand Index to overlapping
clusters by adjusting for chance agreement.

Given two partitions A and B on n nodes, the Omega Index is calculated as:

Ω =
Observed agreement− Expected agreement

Maximum agreement− Expected agreement

where the observed agreement counts node pairs sharing the same number of commu-
nities in both partitions, and the expected agreement models the agreement by chance.
Formally,

Observed agreement =
∑
i<j

I(sAij = sBij)

with sAij and sBij denoting the number of shared communities between nodes i and j in
partitions A and B, respectively, and I the indicator function.

A higher Omega Index indicates greater similarity between the overlapping commu-
nity structures. This metric was introduced by Murray et al. [34] for evaluating clustering
similarity in overlapping settings.

3. PROPOSED ALGORITHMS

3.1. Proposed overlapping community detection algorithm

In this subsection, we propose a new gravitational law-based algorithm to detect over-
lapping communities in complex weighted networks. Our proposed algorithm uses some
of the same steps as the recently proposed algorithm by Cetin and Emrah Amrahov
[10] to find overlapping communities in unweighted complex networks. Unlike Cetin and
Emrah Amrahov’s algorithm, the input of our proposed algorithm is a weighted graph;
we use gravitational similarity instead of cosine similarity, and we propose to use another
function instead of the CN(u, v) function. We also modify our algorithm in the next
subsection and propose a new algorithm that can also find disjoint communities.

The first idea that comes to mind to adapt the first stage of Algorithm 1 to weighted
complex networks is straightforward. Let us remove lines 1-3 of Algorithm 1 and use
the given weights instead. Since the weights represent distances in our example, we
use ascending order to sort the edges. The modified version of the first stage is given
below. We implemented the remaining parts consistently and referred to this version as
Algorithm 1. Let us call the algorithm obtained by changing the first stage of Algorithm
1 as in Algorithm 2, as Algorithm 1A. With a simple example, let us show that it is not
a good algorithm.
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Algorithm 2: Modified version of the first stage of detectCommunities(G).

Input : G = (V,E) is a weighted simple graph
Output : C is the list of communities

/* Stage 1: Initialization */
1 C ← ϕ
2 for each v ∈ V do

// add a single vertex’s community to the communities list
3 C ← C ∪ {v}
4 end
5 sort edges (u, v) ∈ E according to w(u, v) in ascending order

Example 3.1. The input graph is given in Figure 1. Let us assume that this graph
corresponds to social media. The weights indicate the closeness of two vertices to each
other. The lower the weight between two vertices, the closer these two vertices are to
each other.

Fig. 1. Input Weighted Graph.

Thus, after the first 2 stages of Algorithm 1A, the following 4 communities are ob-
tained:

C1 = {A,B,C,D,E,G}

C2 = {C,F}

C3 = {E,H}

C4 = {F,G}.

After the third stage of Algorithm 1A, a single community is formed for this graph
that includes all the vertices of the graph. In other words, if we use the given weights
directly, the entire graph forms a community.

3.1.1. Gravitational similarity

Consider a gravitational force between the vertices of the graph, similar to Newton’s
universal law of gravitation. Let us assume that the mass of a vertex m(u) is its degree,
and the distance r between the vertices is the weight of the edge connecting these
vertices. A vertex generally contains within a collection the vertex’s neighbors (all or
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Step (u,v) w(u,v) CN(u,v) CN(v,u) Vertex
with
higher
degree

Communities

0 {A},{B},{C},{D},{E},{F},{G},{H}
1 EH 1.2 {A},{B},{C},{D},{F},{G},{E,H}
2 FG 1.5 {A},{B},{C},{D},{E,H},{F,G}
3 CF 1.6 1 1 eq. {A},{B},{C,F},{D},{E,H},{F,G}
4 AE 2 1 1 eq. {A,E},{B},{C,F},{D},{E,H},{F,G}
5 AD 2.2 1 1 A {A,D,E},{B},{C,F},{E,H},{F,G}
6 AC 2.5 1 2 {A,C,D,E},{B},{C,F},{E,H},{F,G}
7 CE 3 {A,C,D,E},{B},{C,F},{E,H},{F,G}
8 EG 3.5 1 1 E {A,C,D,E,G},{B},{C,F},{E,H},{F,G}
9 AB 10 1 1 A {A,B,C,D,E,G},{C,F},{E,H},{F,G}

Tab. 1. Applying the first and the second stages of Algorithm 1A to

Example 3.1 with given weights.

some of them) or the neighbors of its neighbors. The degree of a vertex is equal to the
number of its neighbors, as defined above. When considering two adjacent vertices, it is
natural to expect the vertex with the higher degree to attract the vertex with the lower
degree to its own collection, just as in the gravitational law, the more massive object
attracts the less massive object. Therefore, in our proposed method, it is natural to
define the degree of a node as its mass. Thus, the gravitation force between adjacent
vertices u and v is calculated by the following formula:

F (u, v) = γ
deg(u)deg(v)

w(u, v)2
. (2)

Here γ is the gravitational constant. Since the result of the algorithm we propose in
this study is independent of the value of this constant, we take γ = 1 throughout the
paper.

Algorithm 3: Modified version of the first stage of detectOverlappingCommu-
nities(G) with gravitational forces.

Input : G = (V,E) is a weighted simple graph and w(u, v) are the weights
Output : C is the list of communities

/* Stage 1: Initialization */
1 for each (u, v) ∈ E do

// calculate the gravitational weights for each edge

2 F (u, v)← deg(u)deg(v)/w(u, v)2

3 end
4 C ← ϕ
5 for each v ∈ V do

// add a single vertex’s community to the communities list
6 C ← C ∪ {v}
7 end
8 sort edges (u, v) ∈ E according to F (u, v) in descending order
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We calculate the gravitational force between vertices u and v for all (u, v) in the given
complex network, using the formula 2 and replacing the weight of this edge with the
found value.

Now, we change the first stage of Algorithm 1 to Algorithm 3. We applied the
remaining stages consistently. Let’s call the obtained algorithm Algorithm 1B. Applying
Algorithm 1B, we show in Table 2 step by step.

Step (u,v) F(u,v) CN(u.v) CN(v,u) Vertex
with
higher
degree

Communities

0 {A},{B},{C},{D},{E},{F},{G},{H}
1 AE 4 {B},{C},{D},{F},{G},{H},{A,E}
2 EH 2.78 {B},{C},{D},{F},{G},{H},{A,E,H}
3 CF 2.34 1 1 C {B},{D},{G},{A,E,H},{C,F}
4 AC 1.92 1 2 {B},{D},{G},{A,C,E,H},{C,F}
5 FG 1.77 1 1 equal {B},{D},{A,C,E,H},{C,F,G}
6 CE 1.33 {B},{D},{A,C,E,H},{C,F,G}
7 AD 0.83 1 1 A {B},{A,C,D,E,H},{C,F,G}
8 EG 0.73 2 1 {B},{A,C,D,E,H},{C,E,F,G}
9 AB 0.04 1 1 A {A,B,C,D,E,H},{C,E,F,G}

Tab. 2. Applying first and second stages of Algorithm 1B to

Example 3.1 with gravitational weights.

After applying the first and second stages of Algorithm 1B we obtain 2 overlapping
communities below:

C1 = {A,B,C,D,E,H}

C2 = {C,E, F,G}.

The number of elements C2 in common with C1 is 2, which is not more than half
of the number of elements in C2, so there is no merge. As a result, the algorithm
finds the communities C1 = {A,B,C,D,E,H} and C2 = {C,E, F,G}. We show these
communities in Fig 2.

3.1.2. Common neighbors weighted

Let us now discuss the formula 1. This criterion was proposed for unweighted complex
networks in [10]. Since all edges are equivalent in weight for unweighted complex net-
works, it makes sense to use the formula 1, but the situation is different for weighted
complex networks. We propose to use the function CNW (u, v), which we will define
below, instead of the function CN(u, v) in Algorithm 1B. The name of the function
CNW (u, v) is an abbreviation of “Common Neighbors Weighted”.

For a community Cv, if the intersection of this community with the set nu is nonempty,
then the vertex u is connected to some vertices in the set Cv. We define gravitational
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Fig. 2. Overlapping Communities after Applying Algorithm 1B to

Example 3.1 with gravitational weights.

weight Fu(Cv) as the function that returns the sum of the gravitational forces between
u and x, when the vertex x varies in the set Cv ∩ nu.

Fu(Cv) =
∑

x∈Cv∩nu

F (u, x). (3)

Let C denote the set of all existing communities in the current step. We define the
function CNW (u, v) that returns the maximum gravitational weight Fu(Cv) among all
Cv ∈ C:

CNW(u, v) = max
Cv∈C

Fu(Cv). (4)

We propose to use the function CNW (u, v) as the criterion in the second stage of
Algorithm 1. Consequently, we obtain a new algorithm to find overlapping communities
in complex networks whose weights imply the closeness of the vertices to each other.
The pseudocode of this proposed algorithm is given in Algorithm 4.

The following example demonstrates the difference between using CN(u, v)
or CNW (u, v) as criteria.

Example 3.2. The input graph is given in Figure 3. Let us assume that this graph
corresponds to social media. Weights indicate the closeness of two vertices to each
other. The lower the weight between two vertices, the closer these two vertices are to
each other.

Solution 1 (Detection of overlapping communities using Algorithm 1B in Example 3.2
with gravitational weights) The step-by-step application of the first and second stages of
Algorithm 1B is shown in Table 3.
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Algorithm 4: gravitationalOverlappingCommunityDetection(G,w).

Input : G = (V,E) is a weighted simple graph and w(u, v) are the weights
Output : C is the list of communities

/* Stage 1: Initialization */
1 for each (u, v) ∈ E do

// calculate the gravitational weights for each edge

2 F (u, v)← deg(u)deg(v)/w(u, v)2

3 end
4 C ← ϕ
5 for each v ∈ V do

// add a single vertex’s community to the communities list
6 C ← C ∪ {v}
7 end
8 sort edges (u, v) ∈ E according to F (u, v) in descending order

/* Stage 2: Generating communities */
9 for each edge (u, v) ∈ E do

// if the vertices u and v have communities consisting only of themselves
10 if Cu = {{u}} and Cv = {{v}} then

// add {u, v} to the community set and remove {u} and {v}
11 C ← C ∪ {u, v} − {u} − {v}
12 end
13 else if there are communities Cu ∈ C and Cv ∈ C such that v /∈ Cu and u /∈ Cv then
14 CNW(u, v)← maxCv∈C Fu(Cv)
15 C∗

v ← argmax CNW(u, v)
16 CNW(v, u)← maxCu∈C Fv(Cu)
17 C∗

u ← argmax CNW(v, u)
18 if CNW(u, v) > CNW(v, u) or (CNW(u, v) = CNW(v, u) and deg(u) < deg(v)) then
19 C ← C − C∗

v
20 C∗

v ← C∗
v ∪ {u}

21 C ← C ∪ C∗
v

22 if {u} ∈ C then
23 C ← C − {u}
24 end

25 end
26 else
27 C ← C − C∗

u
28 C∗

u ← C∗
u ∪ {v}

29 C ← C ∪ C∗
u

30 if {v} ∈ C then
31 C ← C − {v}
32 end

33 end

34 end

35 end

/* Stage 3: Merging communities */
// C = {C1, C2, ...Ck}

36 k ← length(C)
37 sort the set C in according to the numbers of elements in the communities Ci in descending order
38 l← 1
39 for i = 2 to k do
40 for j = l downto 1 do
41 if |Ci ∩ Cj | > |Ci| /2 or (|Ci| = 2 and |Ci ∩ Cj | = 1) then
42 C ← C − Cj − Ci

43 Ci ← Ci ∪ Cj

44 C ← C ∪ Ci

45 end

46 end
47 renumber communities in list C with indices less than or equal to i and assign the number of the

renumbered communities to l
48 end

49 return C
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Fig. 3. Input Weighted Graph.

S
t
e
p

(u,v) F
(u,v)

CN
(u,v)

CN
(v,u)

Vertex
with
higher
de-
gree

Communities

0 {A},{B},{C},{D},{E},{F},{G},{H},{I},{J},{K}
1 BC 20 {A},{D},{E},{F},{G},{H},{I},{J},{K},{B,C}
2 DK 9 {A},{E},{F},{G},{H},{I},{J},{B,C},{D,K}
3 EH 8 {A},{F},{G},{I},{J},{B,C},{D,K},{E,H}
4 FG 6.25 {A},{I},{J},{B,C},{D,K},{E,H},{F,G}
5 EI 4 1 1 eq. {A},{J},{B,C},{D,K},{E,H,I},{F,G}
6 IJ 4 1 1 eq. {A},{B,C},{D,K},{E,H,I,J},{F,G}
7 AB 3.75 1 1 B {A,B,C},{D,K},{E,H,I,J},{F,G}
8 BI 2.22 2 1 {A,B,C},{D,K},{B,E,H,I,J},{F,G}
9 CF 2.22 2 2 F {A,B,C},{D,K},{B,E,H,I,J},{C,F,G}
10 GK 1.67 2 1 {A,B,C},{D,K,G},{B,E,H,I,J},{C,F,G}
11 BF 1.56 2 3 {A,B,C},{D,K,G},{B,E,F,H,I,J},{C,F,G}
12 CD 1.33 2 2 C {A,B,C},{D,K,G},{B,E,F,H,I,J},{C,D,F,G}
13 DG 0.94 {A,B,C},{D,K,G},{B,E,F,H,I,J},{C,D,F,G}
14 BE 0.8 {A,B,C},{D,K,G},{B,E,F,H,I,J},{C,D,F,G}
15 JK 0.75 2 1 {A,B,C},{J,D,G,K},{B,E,F,H,I,J},{C,D,F,G}
16 CG 0.56 {A,B,C},{J,D,G,K},{B,E,F,H,I,J},{C,D,F,G}
17 FI 0.56 {A,B,C},{J,D,G,K},{B,E,F,H,I,J},{C,D,F,G}
18 AE 0.33 3 2 {A,B,C},{J,D,G,K},{A,B,E,F,H,I,J},{C,D,F,G}
19 FJ 0.31 {A,B,C},{J,D,G,K},{A,B,E,F,H,I,J},{C,D,F,G}
20 GJ 0.25 {A,B,C},{J,D,G,K},{A,B,E,F,H,I,J},{C,D,F,G}
21 AH 0.24 {A,B,C},{J,D,G,K},{A,B,E,F,H,I,J},{C,D,F,G}

Tab. 3. Application of the first and the second stages of Algorithm

1B to Example 3.2 with gravitational weights.
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After applying the first 2 stages of the algorithm, we obtain 4 communities:

C1 = {A,B,E, F,H, I, J}

C2 = {D,G, J,K}
C3 = {C,D, F,G}
C4 = {A,B,C}.

After the third, merging stage of the algorithm, we have 3 communities:

C1 = {A,B,C,E, F,H, I, J}

C2 = {J,D,G,K}
C3 = {C,D, F,G}.

The communities found are shown in Figure 4.

Fig. 4. Application of Algorithm 1B to Example 3.2 with

gravitational weights.

Solution 2 (Detection of overlapping communities using Algorithm 4 in Example 3.2
with gravitational weights) The step-by-step application of the first and second stages of
Algorithm 4 is shown in Table 4.

After applying the first 2 stages of Algorithm 4, we obtain 4 communities:

C1 = {A,B,C,E, F,H, I}

C2 = {C,D, F,G, J,K}
C3 = {B,E,H, I, J}

C4 = {F,G}.
After the third, merging stage of Algorithm 4, the following 2 communities are found:

C1 = {A,B,C,E, F,G,H, I, J}

C2 = {C,D, F,G, J,K}.
We show these communities in Figure 5.



New gravitational algorithms for the detection of overlapping and disjoint communities 525

S
t
e
p

(u,v) F
(uv)

CNW
(uv)

CNW
(vu)

Communities

0 {A},{B},{C},{D},{E},{F},{G},{H},{I},{J},{K}
1 BC 20 {A},{D},{E},{F},{G},{H},{I},{J},{K},{B,C}
2 DK 9 {A},{E},{F},{G},{H},{I},{J},{B,C},{K,D}
3 EH 8 {A},{F},{G},{I},{J},{B,C},{K,D},{E,H}
4 FG 6.25 {A},{I},{J},{B,C},{K,D},{E,H},{F,G}
5 EI 4 4 4 {A},{J},{B,C},{K,D},{I,E,H},{F,G}
6 IJ 4 4 4 {A},{B,C},{K,D},{I,J,E,H},{F,G}
7 AB 3.75 3.75 3.75 {A,B,C},{K,D},{I,J,E,H},{F,G}
8 BI 2.22 3.02 2.22 {A,B,C},{K,D},{B,E,H,I,J},{F,G}
9 CF 2.22 2.78 3.79 {A,B,C,F},{K,D},{B,E,H,I,J},{F,G}
10 GK 1.67 2.60 1.67 {A,B,C,F},{K,D,G},{B,E,H,I,J},{F,G}
11 BF 1.56 {A,B,C,F},{K,D,G},{B,E,H,I,J},{F,G}
12 CD 1.33 1.89 1.33 {A,B,C,F},{C,K,D,G},{B,E,H,I,J},{F,G}
13 DG 0.94 {A,B,C,F},{C,K,D,G},{B,E,H,I,J},{F,G}
14 BE 0.80 {A,B,C,F},{C,K,D,G},{B,E,H,I,J},{F,G}
15 JK 0.75 1.00 0.75 {A,B,C,F},{C,D,G,J,K},{B,E,H,I,J},{F,G}
16 CG 0.56 {A,B,C,F},{C,D,G,J,K},{B,E,H,I,J},{F,G}
17 FI 0.56 2.43 2.78 {A,B,C,F,I},{C,D,G,J,K},{B,E,H,I,J},{F,G}
18 AE 0.33 4.32 5.13 {A,B,C,E,F,I},{C,D,G,J,K},{B,E,H,I,J},{F,G}
19 FJ 0.31 8.79 4.31 {A,B,C,E,F,I},{C,D,F,G,J,K},{B,E,H,I,J},{F,G}
20 GJ 0.25 {A,B,C,E,F,I},{C,D,F,G,J,K},{B,E,H,I,J},{F,G}
21 AH 0.24 4.32 8.24 {A,B,C,E,F,H,I},{C,D,F,G,J,K},{B,E,H,I,J},{F,G}

Tab. 4. Application of the first and the second stages of Algorithm 4

to Example 3.2 with gravitational weights.

Fig. 5. Overlapping Communities after Applying Algorithm 4 to

Example 3.2 with gravitational weights.
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3.2. Proposed disjoint community detection algorithm

In this subsection, we explain our proposed disjoint community detection algorithm. The
main idea of our proposed algorithm is as follows: First, we find overlapping communities
with the help of Algorithm 4. Then, we consider the vertices that are in more than one
community one by one. For example, let vertex u be in k communities, namely u ∈ C1,
u ∈ C2,..., u ∈ Ck. We calculate the gravity force by which u is included in each
community. For each i, we find the sum of the gravitational weights of the edges formed
by the vertex u and the vertices in the community Ci. For whichever community this
sum is the largest, we keep the vertex u in that community and delete it from all other
communities. If there is more than one community where the maximum sum is obtained,
we randomly choose one of these communities to hold the vertex u.

Let us explain the proposed algorithm on the Example 3.2. After applying Algorithm
4, we obtain two overlapping communities:

C1 = {A,B,C,E, F,G,H, I, J}

C2 = {C,D, F,G, J,K}.

Both communities have vertices C,F,G, J . The force holding the vertex C in the
community C1 is the sum F (CB) + F (CF ) + F (CG). The force holding this vertex
in the community C2 is the sum F (CD) + F (CF ) + F (CG). Since vertices F and G
belong to both communities, it is sufficient to compare F (CB) with F (CD). As can be
seen from Table 4, F (CB) = 20 > F (CD) = 1.33. Therefore, we delete vertex C from
community C2 and leave it in community C1. The gravity force on the vertex F by the
vertices in C1 is equal to the sum F (FB) + F (FC) + F (FG) + F (FI) + F (FJ). The
gravity force on this vertex by the vertices in C2 is equal to F (FC) + F (FG) + F (FJ).
This means that the vertex F is expelled from C2. Proceeding similarly, we delete the
vertex G from C1, and the vertex J from C2. As a result, we obtain the following disjoint
communities:

C1 = {A,B,C,E, F,H, I, J}

C2 = {D,G,K}.

We show these disjoint communities in Figure 6.

To write the pseudocode of the proposed algorithm, let us denote by Cu the commu-
nity to which a vertex u belongs. We define the gravitational force acting on the vertex
u by the vertices in the community Cu as follows:

F (Cu) =
∑
v∈Cu

F (uv). (5)

The pseudo-code of the proposed algorithm to find disjoint communities is given in
Algorithm 5.
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Fig. 6. Disjoint Communities after Applying Algorithm 5 to

Example 3.2 with gravitational weights.

Algorithm 5: detectDisjointCommunities(G,w).

Input : G = (V,E) is a weighted simple graph and w(u, v) are the weights
Output : C is the list of disjoint communities

/* Stage 1: Finding of overlapping communities */
1 C ← Algorithm 4(G,w)

/* Stage 2: Generating disjoint communities */
2 for each vertex u ∈ V do

// We count the number of communities that the vertex u is included in and assign it to
the variable s.

3 s← |{Cu : Cu ∈ C}|
4 if s > 1 then
5 Fu ← maxCu∈C F (Cu)
6 C∗

u = argmax Fu

7 Delete vertex u from all Cu communities except C∗
u

8 end

9 end

10 return C

4. EXPERIMENTAL RESULTS

We present the experimental evaluation of our proposed community detection algorithms
on diverse network structures. Algorithm 4 refers to the overlapping community detec-
tion method, while Algorithm 5 corresponds to the disjoint variant.

Our experiments cover both synthetic and real-world networks (summarized in Ta-
ble 5), focusing on three key aspects: structural quality, detection accuracy, and com-
putational efficiency. The real-world datasets include Dolphins [57], Karate [58], Pol-
books [59], Facebook [60], and Netscience [61], which vary in size and topology. Among
these, the Netscience dataset is particularly notable for its weighted structure. As a
co-authorship network, its edge weights represent tie strength based on the number of
joint publications between authors [37]. This is particularly important because our al-
gorithms directly utilize edge weights to model gravitational attraction between nodes,
making weighted networks like Netscience especially suitable for revealing meaningful



528 N. KARTLI, P. CETIN AND SELIN AYHAN

Network Name Number of Nodes Number of Edges

Dolphins 62 159
Karate 34 78
Polbooks 105 441
Facebook 4039 88234
Netscience 1589 2742

Tab. 5. Network properties of well-known datasets that are used in

the experiments.

community structures.
To further evaluate the robustness and generalization ability of our method, we con-

duct experiments on synthetic LFR benchmark networks generated using the parameter
settings listed in Table 6. In these networks, N denotes the number of nodes, and E
represents the total number of edges. The parameter k specifies the average node degree,
while maxk defines the maximum allowable degree. The edge weight mixing parameter
muw determines the proportion of each node’s strength that connects to nodes out-
side its community, thereby influencing inter-community connectivity. The parameter
on defines the number of overlapping nodes, while om defines how many communities
each overlapping node belongs to. For disjoint community detection experiments, we set
on = 0 and om = 0, effectively eliminating node membership in multiple communities.

These parameter settings result in synthetic networks with clearly defined but over-
lapping community structures, allowing for rigorous evaluation of the algorithm’s effec-
tiveness under both moderate and large-scale conditions.

Network Name N E k maxk muw on om
Network 1,2,3 500 2500 10 30 0.05 30 2
Network 4,5,6 1000 5000 10 30 0.1 30 2

Tab. 6. Network properties of LFR benchmark datasets used in

overlapping community detection experiments.

4.1. Evaluation of overlapping community detection algorithm

Table 7 shows that our algorithm performs well on several real-world networks. Netscience
achieves the highest Qoc score of 0.90. This reflects the algorithm’s ability to capture
complex, weighted community structures. Similarly, the Facebook dataset exhibits a
solid Qoc score of 0.55, reflecting meaningful community organization in a large-scale
social network.

Our algorithm also performs well on other metrics. Where ground-truth labels exist,
NMILFK , Omega, and F-score show strong agreement. The Dolphins network reaches
an F-score of 0.92, underscoring accurate community assignments. Collectively, these
metrics highlight the robustness and reliability of our overlapping community detection
algorithm across diverse network topologies and sizes. Note that for some datasets,
such as Facebook and Netscience, ground-truth community labels are not available.
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Network
Name

Detected
Communities

Runtime (s) Qoc NMILFK Omega F-Score

Dolphins 2 0.001 0.31 0.58 0.66 0.92
Karate 2 0.001 0.11 0.29 0.15 0.69
Polbooks 2 0.003 0.43 0.51 0.63 0.68
Facebook 5 9.361 0.55 NA NA NA
Netscience 430 0.274 0.90 NA NA NA

Tab. 7. Results of the overlapping community detection algorithm

on well-known datasets.

Therefore, evaluation metrics dependent on these labels (NMI, Omega, and F-Score)
are marked as NA.

The results on synthetic overlapping networks are presented in Table 8. For smaller
networks (Networks 1, 2, and 3), the algorithm shows strong alignment with ground-
truth communities across multiple metrics, including high Qoc, NMI, Omega index, and
F-Score. This demonstrates its effectiveness in detecting overlapping structures within
networks of moderate size and overlap. In larger, more complex networks (Networks
4, 5, and 6), Qoc scores decline slightly. However, the algorithm remains accurate
and stable. This shows good adaptability to increased complexity. Moreover, runtime
increases moderately with network size but remains computationally efficient, supporting
scalability.

Network
Name

True
Communities

Detected
Communities

Runtime (s) Qoc NMILFK Omega F-Score

Network 1 36 40 0.061 0.71 0.79 0.64 0.83
Network 2 33 40 0.062 0.71 0.76 0.71 0.84
Network 3 29 33 0.065 0.70 0.70 0.61 0.77
Network 4 71 125 0.272 0.64 0.62 0.57 0.83
Network 5 74 106 0.255 0.65 0.60 0.55 0.79
Network 6 66 101 0.250 0.66 0.62 0.55 0.79

Tab. 8. Results of the overlapping community detection algorithm

on LFR benchmark datasets.

In summary, Algorithm 4 consistently agrees with ground-truth communities across
various network sizes and overlapping configurations, confirming its robustness and scal-
ability.

We emphasize again that our proposed algorithm works better in weighted graphs,
where the meaning of the weights is the closeness of the vertices to each other. We
can see this in Table 7 on the Netscience dataset. To apply the algorithm, all weights
were set equal to 1 in unweighted graphs. We also tried the following: We applied the
algorithm by assigning random weights to the edges in unweighted graphs as follows:
Let the degree of the vertex with the highest degree in the graph be max degree. Each
edge is assigned a random integer in the range [1,max degree+5]. In this case, we found
30 overlapping communities on the Facebook set with the metric value Qoc = 0.66.

In Table 9, we compare our proposed algorithm with the algorithms of Cetin and
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Algorithm
Detected

Communities
Qoc

Cetin and Emrah Amrahov [10] 81 0.71
Chi et al. [11] 364 0.64
Proposed 430 0.90

Tab. 9. Comparison of the overlapping community detection

algorithms on the Netscience dataset.

Emrah Amrahov [10] and Chi et al. [11] on the Netscience dataset. We chose the
Netscience dataset for comparison since it is weighted complex network.

4.2. Evaluation of disjoint community detection algorithm

Disjoint community detection performance is evaluated on both real-world and syn-
thetic networks. As shown in Table 10, the highest modularity score is observed in the
Netscience network (Qoc = 0.87). Smaller networks such as Karate and Dolphins exhibit
lower modularity scores, likely due to simpler structures.

The Facebook network, being substantially larger, requires more runtime but still
achieves moderate modularity, indicating identifiable community structure. The Pol-
books and Dolphins networks also show moderate to high scores across evaluation met-
rics, while Karate’s lower scores suggest less clearly defined communities.

Network
Name

Detected
Communities

Runtime (s) Qoc NMILFK Omega F-Score

Dolphins 2 0.001 0.37 0.70 0.81 0.94
Karate 2 0.001 0.12 0.29 0.15 0.61
Polbooks 2 0.003 0.46 0.53 0.70 0.68
Facebook 5 9.698 0.55 NA NA NA
Netscience 430 0.291 0.87 NA NA NA

Tab. 10. Results of the disjoint community detection algorithm on

well-known datasets.

The disjoint community detection results on synthetic LFR networks are summarized
in Table 11. For smaller networks, the algorithm achieves high Qoc, NMI, and F-Score
values, indicating robust and accurate detection of well-separated communities. In larger
networks, although modularity and other metrics show a slight decline, the algorithm
maintains solid accuracy and consistent performance, demonstrating effective adaptation
to increased network size and complexity.

Comparing these results with those of the overlapping community detection (Table 8),
the disjoint algorithm generally performs better on networks with clearly separated,
non-overlapping communities, reflected by higher Qoc and F-Score in smaller networks.
Conversely, the overlapping detection method excels in networks featuring significant
node overlap, capturing more nuanced community structures despite sometimes achiev-
ing slightly lower Qoc.

Our findings confirm that the proposed algorithms are robust and versatile. The
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Network
Name

True
Communities

Detected
Communities

Runtime (s) Qoc NMILFK Omega F-Score

Network 1 29 32 0.111 0.86 0.89 0.93 0.97
Network 2 35 38 0.069 0.84 0.86 0.90 0.94
Network 3 28 34 0.067 0.76 0.78 0.85 0.91
Network 4 64 86 0.308 0.76 0.73 0.87 0.90
Network 5 73 92 0.276 0.74 0.73 0.82 0.88
Network 6 66 81 0.262 0.80 0.82 0.91 0.93

Tab. 11. Evaluation of disjoint communities in LFR benchmark

networks.

disjoint method performs best on networks with clearly separated communities. This is
evidenced by higher Qoc and F-Score values in smaller, well-defined networks. Mean-
while, the overlapping method better captures complex community structures where
nodes belong to multiple communities. It achieves higher scores in metrics sensitive
to overlapping membership, such as NMI and Omega index, although sometimes with
slightly lower Qoc values. Both algorithms are computationally efficient and scale well
across various network sizes and complexities. This makes them suitable for diverse
applications depending on network characteristics.

All experiments were conducted on a system equipped with a 12th Gen Intel(R)
Core(TM) i7-12700H CPU @ 2.30GHz, 16 GB RAM, running Windows 11 Home (64-
bit).

5. CONCLUSION

In this study, we proposed two novel algorithms for detecting overlapping and disjoint
communities in weighted complex networks. We model edge weights as distances between
nodes and represent vertex similarity based on the universal law of gravitation, where
each node’s degree corresponds to its mass.

The overlap community detection algorithm uses a similarity-based approach adapted
from a modified version of the Cetin and Emrah Amrahov method [10], forming com-
munities by grouping nodes with strong mutual gravitational attraction. For disjoint
community detection, nodes with multiple memberships are identified and assigned ex-
clusively to the community exerting the strongest net gravitational pull, thereby remov-
ing them from other communities.

Extensive experiments on both real-world and synthetic networks validate the effec-
tiveness and scalability of our methods. The algorithms consistently achieve high mod-
ularity and accuracy across diverse network topologies, demonstrating their suitability
for complex, weighted networks with overlapping or disjoint community structures.
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The code and data used in the experiments presented in this study are freely available
on the following link:

https://github.com/pelinercan89/GravitationalCommunityDetection

https://github.com/pelinercan89/GravitationalCommunityDetection
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[8] P. Cetin and Ö. Tanriöver: Priority rule for resource constrained project planning problem
with predetermined work package durations. J. Faculty of Engineering and Architecture
of Gazi University 35 (2020), 3, 1537–1549. DOI:10.17341/gazimmfd.545873

[9] P. Cetin and S. E. Amrahov: A new network-based community detection algorithm for
disjoint communities. Turkish J. Electr. Engrg. Comput. Sci. 30 (2022), 6, Article 13.
DOI:10.55730/1300-0632.3933

[10] P. Cetin and S. Emrah Amrahov: A new overlapping community detection algorithm
based on similarity of neighbors in complex networks. Kybernetika 58 (2022), 2, 277–300.
DOI: 10.14736/kyb-2022-2-0277

[11] K. Chi, H. Qu, and Z. Fu: A novel approach for overlapping community detec-
tion in social networks based on the attraction. J. Comput. Sci. 85 (2025), 102508.
DOI:10.1016/j.jocs.2024.102508

[12] S. Dhanasekar, J. J. Rani, and M. Annamalai: Transportation problem for interval-valued
trapezoidal intuitionistic fuzzy numbers. Int. J. Fuzzy Logic Intell. Systems 22 (2022), 2,
155–168. DOI:10.5391/IJFIS.2022.22.2.155

[13] J. H. Chin and K. Ratnavelu: Community detection using constrained label propagation al-
gorithm with nodes exemption. Computing ( 104) (2022), 339—358. DOI:10.1007/s00607-
021-00966-2

DOI: 10.14736/kyb-2024-6-0779
https://doi.org/10.1016/j.future.2024.03.049
https://doi.org/10.1109/IDAP.2018.8620850
https://doi.org/10.1007/s12065-019-00299-2
https://doi.org/10.1007/s12652-021-03374-8
https://doi.org/10.1007/s43069-025-00469-2
https://doi.org/10.1007/s12597-025-00948-4
https://doi.org/10.17341/gazimmfd.545873
https://doi.org/10.55730/1300-0632.3933
https://doi.org/10.14736/kyb-2022-2-0277
https://doi.org/10.1016/j.jocs.2024.102508
https://doi.org/10.5391/IJFIS.2022.22.2.155
https://doi.org/10.1007/s00607-021-00966-2
https://doi.org/10.1007/s00607-021-00966-2


New gravitational algorithms for the detection of overlapping and disjoint communities 533

[14] A. Ghareeb, O. Nooruldeen, C.A. Arslan, and J.K. Choi: Synergistic optimization of
predictive models for water quality analysis in treatment plants using machine learning
and evolutionary algorithms. Evolut. Intell. 18 (2025), 2, 1–24. DOI:10.1007/s12065-025-
01022-0

[15] S. Goswami and A.K. Das: Determining maximum cliques for community detection in
weighted sparse networks. Knowl. Inf. Syst. 64 (2022), 289—324. DOI:10.1007/s10115-
021-01631-y

[16] H. Hajibabaei, V. Seydi, and A. Koochari: Community detection in weighted net-
works using probabilistic generative model. J. Intell. Inf. Syst. 60 (2023), 119—136.
DOI:10.1007/s10844-022-00740-6

[17] E. Hazrati Nejad, S. Yigit-Sert, and S. Emrah Amrahov: An effective global path planning
algorithm with teaching-learning-based optimization. Kybernetika 60 (2024), 3, 293–316.
DOI: 10.14736/kyb-2024-3-0293

[18] Z. He, W. Chen, X. Wei, and Y. Liu: Mining statistically significant communities from
weighted networks. IEEE Trans. Knowledge Data Engrg. 35 (2022), 6, 6073–6084. DOI:
10.1109/TKDE.2022.3176816

[19] N. Kartli: Hybrid algorithms for fixed charge transportation problem. Kybernetika 61
(2025), 2, 141–167. DOI: 10.14736/kyb-2025-2-0141

[20] N. Kartli, E. Bostanci, and M. S. Guzel: A new algorithm for optimal solution of fixed
charge transportation problem. Kybernetika 59 (2023), 1, 45–63. DOI: 10.14736/kyb-2023-
1-0045

[21] N. Kartli, E. Bostanci, and M. S. Guzel: Heuristic algorithm for an optimal solution of fully
fuzzy transportation problem. Computing 106 (2024), 10, 3195–3227. DOI:10.1007/s00607-
024-01319-5

[22] A. Khastan, B.H. Jimenez, and A.B. Moreno: On the new solution to inter-
val linear fractional programming problems. Evolut. Intell. 17 (2024), 5, 4001–4005.
DOI:10.1007/s12065-024-00968-x

[23] F.R. Khawaja, Z. Zhang, and A. Ullah: Common-neighbor based overlapping community
detection in complex networks. Soc. Netw. Anal. Min. 15 (2025), Article number 61.
DOI:10.1007/s13278-025-01480-5

[24] A. Kumar, P. Kumar, and R. Dohare: Revisiting neighbourhood proximity based algorithm
for overlapping community detection in weighted networks. Soc. Netw. Anal. Min. 14
(2024), 105. DOI:10.1007/s13278-024-01257-2

[25] P. Kumar: A depth-first search approach to detect the community structure of weighted
networks using the neighbourhood proximity measure. Int. J. Data Sci. Anal. (2024).
DOI:10.1007/s41060-024-00631-9

[26] A. Lancichinetti, S. Fortunato, and J. Kertész: Detecting the overlapping and hierar-
chical community structure in complex networks. New J. Physics 11 (2009), 3, 033015.
DOI:10.1088/1367-2630/11/3/033015

[27] S. Li, L. Jiang, X. Wu, W. Han, D. Zhao, and Z. Wang: A weighted network community
detection algorithm based on deep learning. Appl. Math. Comput. 401 (2021), 126012.
DOI:10.1016/j.amc.2021.126012

[28] W. Li, J. Wang, and J. Cai: New label propagation algorithms based on the law of
universal gravitation for community detection. Physica A: Statistical Mechanics and its
Applications 627 (2023) 129140. DOI:10.1016/j.physa.2023.129140

https://doi.org/10.1007/s12065-025-01022-0
https://doi.org/10.1007/s12065-025-01022-0
https://doi.org/10.1007/s10115-021-01631-y
https://doi.org/10.1007/s10115-021-01631-y
https://doi.org/10.1007/s10844-022-00740-6
https://doi.org/10.14736/kyb-2024-3-0293
https://doi.org/10.1109/TKDE.2022.3176816
https://doi.org/10.1109/TKDE.2022.3176816
https://doi.org/10.14736/kyb-2025-2-0141
https://doi.org/10.14736/kyb-2023-1-0045
https://doi.org/10.14736/kyb-2023-1-0045
https://doi.org/10.1007/s00607-024-01319-5
https://doi.org/10.1007/s00607-024-01319-5
https://doi.org/10.1007/s12065-024-00968-x
https://doi.org/10.1007/s13278-025-01480-5
https://doi.org/10.1007/s13278-024-01257-2
https://doi.org/10.1007/s41060-024-00631-9
https://doi.org/10.1088/1367-2630/11/3/033015
https://doi.org/10.1016/j.amc.2021.126012
https://doi.org/10.1016/j.physa.2023.129140


534 N. KARTLI, P. CETIN AND SELIN AYHAN

[29] H. Liu, Z. Li, and N. Wang: Overlapping community detection algorithm based on sim-
ilarity of node relationship. Soft Comput 27 (2023), 19, 13689—13700. 10.1007/s00500-
023-08067-2

[30] Z. Lu and Z.A. Dong: Gravitation-based hierarchical community detection algorithm
for structuring supply chain network. Int. J. Comput. Intel. Syst. 16 (2023), 110.
DOI:10.1007/s44196-023-00290-x

[31] J. Ma, L. Zhou, and J. Zuo: Adaptive community detection based on node dissimilarity.
Int. J. Modern Physics C 2550066. DOI:10.1142/S0129183125500664

[32] A. McDaid, D. Greene, and N. Hurley: Normalized mutual information to evalu-
ate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515 (2011).
DOI:10.48550/arXiv.1110.2515

[33] S.N. Mohammed and S. Gunduc: TPM: Transition Probability Matrix–Graph Structural
Feature based Embedding. Kybernetika 59 (2023), 2, 234–253. DOI: 10.14736/kyb-2023-
2-0234

[34] G. Murray, G. Carenini, and R. Ng: Using the Omega Index for evaluating abstractive
community detection. In: Proc. Workshop on Evaluation Metrics and System Comparison
for Automatic Summarization, Association for Computational Linguistics, 2012. pp. 10–18.

[35] K. Nallusamy and K. S. Easwarakumar: PERMDEC: community deception in weighted
networks using permanence. Computing 106 (2024), 353—370. DOI:10.1007/s00607-023-
01223-4

[36] E. Nasibov, M. Demir, and A. Vahaplar: A fuzzy logic apparel size decision method-
ology for online marketing. Int. J. Clothing Sci. Technol. 31 (2019), 2, 299–315.
DOI:10.1108/IJCST-06-2018-0077

[37] M.E. J. Newman: Finding community structure in networks using the eigenvectors of
matrices. Phys. Rev. E, 74 (2006), 3, 036104. https://doi.org/10.1103/PhysRevE.74.
036104

[38] B. Ozhan and B. Tugrul: Analysis of Turkish cuisine flavors network. Int. J. Food Sci.
Technol. 59 (2024), 2, 908–915. DOI:10.1111/ijfs.16849

[39] S. Pandey and A. Gupta: Lazy merge sort: An improvement over merge sort. In: 2024 In-
ternational Conference on Electrical Electronics and Computing Technologies (ICEECT),
Greater Noida 2024, pp. 1–6. DOI:10.1109/ICEECT61758.2024.10738877

[40] HS. Pattanayak, H.K. Verma, and A. L. Sangal: Gravitational community detec-
tion by predicting diameter. Discrete Math. Algorithms Appl. 14 (2022), 4, 2150145.
DOI:10.1142/S1793830921501457

[41] P. Prokop, P. Drazdilova, and J. Platos: Overlapping community detection in
weighted networks via hierarchical clustering. Plos one 19 (2024, 10, e0312596.
DOI:10.1371/journal.pone.0312596

[42] G. Rossetti, L. Pappalardo, and S. Rinzivillo: A novel approach to evaluate community
detection algorithms on ground truth. In: Complex Networks VII (2016), 133–144.

[43] S. Sandhiya and A. Dhanapal: Solving neutrosophic multi-dimensional fixed
charge transportation problem. Contempor. Math. 5 (2024), 3, 3601–3624.
DOI:10.37256/cm.5320244927

[44] L. Samandari Masooleh, J. E. Arbogast, W.D. Seider, U. Oktem, and M. Soroush: An
efficient algorithm for community detection in complex weighted networks. AIChE J. 67
(2021), 7, e17205. DOI:10.1002/aic.17205

https://doi.org/10.1007/s00500-023-08067-2
https://doi.org/10.1007/s00500-023-08067-2
https://doi.org/10.1007/s44196-023-00290-x
https://doi.org/10.1142/S0129183125500664
https://doi.org/10.48550/arXiv.1110.2515
https://doi.org/10.14736/kyb-2023-2-0234
https://doi.org/10.14736/kyb-2023-2-0234
https://doi.org/10.1007/s00607-023-01223-4
https://doi.org/10.1007/s00607-023-01223-4
https://doi.org/10.1108/IJCST-06-2018-0077
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1111/ijfs.16849
https://doi.org/10.1109/ICEECT61758.2024.10738877
https://doi.org/10.1142/S1793830921501457
https://doi.org/10.1371/journal.pone.0312596
https://doi.org/10.37256/cm.5320244927
https://doi.org/10.1002/aic.17205


New gravitational algorithms for the detection of overlapping and disjoint communities 535

[45] M. Shen and Z. Ma: A novel node gravitation-based label propagation algorithm
for community detection. Int. J. Modern Physics C 30 (2019), 6, 1950049. DOI:
10.1142/S0129183119500499

[46] J. Sheng, C. Liu, L. Chen, B. Wang, and J. Zhang: Research on community detec-
tion in complex networks based on internode attraction. Entropy 22 (2020), 12, 1383.
DOI:10.3390/e22121383

[47] Shivani, D. Chauhan, and D. Rani: A feasibility restoration particle swarm optimizer
with chaotic maps for two-stage fixed-charge transportation problems. Swarm Evolution.
Comput. 91 (2024), 101776. DOI:10.1016/j.swevo.2024.101776.

[48] M. Subramaniam, T. Tripathi, and O. Chandraumakantham: Cluster Sort: A Novel
Hybrid Approach to Efficient In-Place Sorting Using Data Clustering. IEEE Access 13
(2025), 74359–74374. DOI:10.1109/ACCESS.2025.3564380

[49] C.K. Suja, C.V. Harinarayanan, and A. Arivalagan: Novel objective-based coot puzzle
optimisation for overlapping community expansion in complex networks. Int. J. Network.
Virtual Organis. 31 (2024), 4, 281–305. DOI:10.1504/IJNVO.2024.144079

[50] Y. Wang, J. Chen, J. Bai, X. Lin, S. Liang, and Y. Zhang: Spatial-SLPA: un-
covering overlapping communities in geospatial networks via the spatially constrained
speaker-listener label propagation algorithm. In: International Conference on Smart
Transportation and City Engineering (STCE 2024), SPIE, 13575 (2025), pp. 1247–1259).
DOI:10.1117/12.3061956

[51] X. Wu, D. Teng, H. Zhang, J. Hu, Y. Quan, Q. Miao, and P.G. Sun: Graph reconstruc-
tion and attraction method for community detection. Appl. Intell. 55 (2025), 5, 1–17.
DOI:10.1007/s10489-024-05858-4

[52] C. Yang, M. Li, and Y. Wang: Overlapping community detection algorithm based on
the law of universal gravitation. In: MATEC Web of Conferences 22 (2015), 01056 EDP
Sciences. DOI:10.1051/matecconf/20152201056

[53] H.B. Yıldırım, K. Kullu, and S. E. Amrahov: A graph model and a three-stage algorithm
to aid the physically disabled with navigation. Univers. Access Inform. Soc. 23 (2024), 2,
901–911. DOI: 10.1007/s10209-023-00981-4

[54] Y.Y. Yu, C.Y. Xu, and K.F. Cao: An effective community detection method based on
one-dimensional “attraction” in network science. Int. J. Modern Physics C 31 (2020), 5,
2050071. DOI:10.1142/S0129183120500710
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