
KYBERNET IKA — VOLUME 6 1 (2 0 2 5) , NUMBER 4 , PAGES 4 9 2 – 5 0 8

IBK-MEANS: AN ITERATIVE BATCH
K-MEANS ALGORITHM FOR BIG DATA CLUSTERING

Rasim Alguliyev, Ramiz Aliguliyev, Adil M. Bagirov, and Mustafa Aliyev

Information technologies such as social media, mobile computing, and the realization of the
industrial Internet of Things (IoT) produce huge amounts of data every day. The development
of powerful tools for knowledge-discovery is imperative to deal with such a volume of data.
Clustering methods are among the most important knowledge-discovery techniques. The growth
in computational power and algorithmic developments allow us to efficiently and accurately
solve clustering problems in large datasets. However, these developments are insufficient to deal
with clustering problems in big datasets. This is because these datasets cannot be processed as a
whole due to hardware and computational restrictions. In this paper an iterative batch k-means
(ibk-means) algorithm is proposed that yields good clustering results with low computation
costs on big datasets. It is designed to cluster datasets using batch data. The efficiency and
accuracy of the proposed algorithm are investigated depending on the size of batches, the
number of attributes and clusters. The algorithm is compared with the classic k-means and
mini batch k-means algorithms using computational results on several real-world datasets, all
of which are available from the UCI Machine Learning Repository. The smallest dataset has
500000 data points and 2 attributes and the largest one contains 43930257 data points and
16 attributes. Results demonstrated that the ibk-means algorithm outperforms both the k-
means and mini batch k-means algorithms in the sense of both efficiency and accuracy and
it is applicable for the clustering of big datasets. The proposed algorithm provides real time
clustering and may have direct applications in expert and intelligent systems. Furthermore,
results from this paper will have a clear impact in the sense of designing more accurate and
efficient clustering algorithms for big datasets taking into account available computer resources.

Keywords: big data, cluster analysis, k-means algorithm, batch clustering, mini batch
k-means

Classification: 68T09, 90B99

1. INTRODUCTION

With the explosive growth in the number of devices connected to the Internet of Things
(IoT) and rapid development of diversified data sources, such as scientific experiments,
and online social networks, the volume of data increases at an exponential rate [22,34].
Significant problems arise during the collection, analysis, and visualization of such data.
The current techniques and technologies are not always able to handle storage and

DOI: 10.14736/kyb-2025-4-0492

http://doi.org/10.14736/kyb-2025-4-0492

An iterative batch algorithm for big data clustering 493

efficient processing of such an amount of data. The development of efficient and accurate
tools for knowledge discovery is imperative to deal with such a volume of data, which is
the subject of big data analytics.

Big data has become a strategic asset for organizations, industries, businesses, and for
the security of a nation. It is one of the most promising frontiers for innovative research
and development in computer science, industry, and business [21,49]. The number of IoT
devices has increased several times since 2016 [2] and the the global big data analytics
market is growing significantly [49]. The popularity of IoT has made big data analytics
challenging [42].

There is no exact definition of big data; however, it is accepted that this type of data
has the following characteristics [22]:

• Volume: really big (although the size depends on the resources available for
processing them).

• Variety: poorly structured and heterogeneous.

• Velocity: processing should be very fast (and the results are often needed quickly
if it is about online services).

It is assumed that big data cannot be stored in the RAM of a computer. For example,
datasets containing 10≥12 objects cannot be stored in most current computers. Further-
more, a dataset containing 1012 objects with 10 attributes, stored in short integer (4
bytes) format, would require 40 TB of storage. Storage and analysis of big data will
continue to be a problem [33,49].

Big data analytics is a series of approaches, tools, and methods for processing struc-
tured and unstructured data of huge volumes and significant diversity to obtain human-
readable results that are effective under conditions of continuous growth, distribution
over numerous nodes of the computer network. The goal of big data analytics is to ex-
tract knowledge from the huge volume of data by using data mining techniques to make
predictions, identify recent trends, find hidden information, and make decisions. Thus,
under big data, we do not understand any specific amount of data, or even the data
itself, but the methods for processing them. For discovering valuable knowledge from a
huge volume of data, we need either to improve existing techniques and technologies or
to develop new methods and technologies to analyze big data [2, 22].

In this paper, a new algorithm is introduced for clustering big datasets using batch
data, which is effective in the limited memory space and computational resources. The
proposed algorithm is based on the k-means algorithm and can be considered as a new
version of k-means for big datasets. It offers a new approach for clustering large datasets.
In this algorithm, the batch size can be adjusted according to hardware limitations.
The algorithm is called an iterative batch k-means algorithm (ibk-means). Numerical
experiments on very large datasets demonstrate that the ibk-means algorithm is more
efficient than the classic k-means and mini-batch k-means algorithms. Note that this
work is an extended version of the paper [4].

The main contributions of this paper are as follows:

• The new ibk-means algorithm for big data clustering is developed.

494 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

• The performance of the proposed algorithm is compared with that of the classic
k-means [40] and mini-batch k-means (mbk-means) [47] algorithms using seven
real-world datasets from [24]. The smallest dataset has 500,000 data points with
2 attributes, and the largest one has 43,930,257 data points and 16 attributes.

The rest of this paper is structured as follows. Section 2 presents an overview of
the related work. The new ibk-means algorithm is discussed in Section 3. Numerical
results and the comparison of algorithms are reported in Section 4. Section 5 contains
concluding remarks.

2. RELATED WORK

One of the tools to process big data with unlabeled elements (aka unsupervised learn-
ing) is data clustering. The main task of cluster analysis is to partition a set of data
points into tightly organized groups based on a suitable similarity measure. There are
different types of clustering [1,11,29,45,51] and in this paper, we consider the partition
clustering problem in big datasets. In general, clustering algorithms for big datasets can
be classified into three groups [26]:

1. Sampling methods. These methods select a small subset of the dataset and then
the clustering is executed on this subset. Since the whole dataset is not processed,
these methods can speed up the execution time; however, the clustering precision
may be considerably affected.

2. Data transformation methods. These methods alter the structure of the data
so that it can be clustered more efficiently.

3. Single-pass methods. These methods divide the data into batches and perform
clustering on each batch, then combine the clustering results. These methods are
also classified into two classes: (i) Incremental methods; (ii) Divide and conquer
methods.

Parallelization of clustering algorithms is considered as one of the directions to develop
efficient algorithms for big datasets. Such methods can be classified into two groups [48]:

1. Single-machine clustering methods: For example, CLARANS, BIRCH, CURE.

2. Multiple-machine clustering methods: For example, ParMETIS, GPU-based
methods, MapReduce based on k-means, MapReduce based on GPU.

The k-means [40], for its good time performance, is one of the widely used clustering
algorithms. However, it was designed for solving single-view data clustering problems
and therefore, with the increasing size of the datasets being analyzed, this algorithm loses
its effectiveness as it requires the entire dataset to be stored in the main memory [15]. For
this reason, several methods were proposed to improve the performance of the k-means
algorithm. For example, [19] proposed a new robust large-scale multi-view k-means
algorithm which can be easily parallelized and performed on multi-core processors. The
computational complexity of this method is similar to that of the classical k-means
algorithm. Algorithms based on nonsmooth optimization techniques were proposed in

An iterative batch algorithm for big data clustering 495

[12,13,37,38] to solve the minimum sum-of-squares clustering problems in large datasets
where the new clustering algorithms is designed by modifying the limited memory bundle
method of nonsmooth optimization and combining it with an incremental approach.

There are several papers on the comparative assessment of the clustering algorithms
for big datasets [48, 53]. The paper [25] provides an analysis of the existing clustering
algorithms for big datasets and presents a framework for classification of the cluster-
ing algorithms to guide the selection of algorithms for big data. A detailed review of
density-based clustering methods, their advantages and disadvantages, and also their
performance comparison for different big datasets are presented in [16].

In [23], MapReduce was modified by proposing a novel processing model to eliminate
the iteration dependence and obtain high performance. Experiments demonstrated that
this algorithm is efficient, robust, and scalable. Another similar approach with a good
initial seeding was proposed in [46]. First, they describe the existing clustering algo-
rithms: the serial k-means++ and the competitive k-means. Then, they propose a new
algorithm called DisK-Means based on the above two algorithms. This algorithm divides
the complete dataset into parts, where each part must have more than the minimum
sample size to be representative of the dataset.

A parallel version of the k-means++ algorithm is much faster than existing parallel
versions of the k-means algorithms. The k-means++ algorithm obtains a nearly optimal
solution after a logarithmic number of passes [14]. A mini-batch k-means based algo-
rithm with low computation cost on large datasets was presented in [47]. This algorithm
reduces the computational cost and shows the best results compared to the stochastic
gradient descent algorithm. The parallel versions of the k-medoids and k-means algo-
rithms for big data clustering is developed in [8] and the parallel batch k-means for big
data clustering is introduced in [9]. In [43], it was shown that the triangle inequality-
based bounding can be used to accelerate the mini-batch k-means algorithm.

A version of the k-means algorithm that leads to higher speed and considerably lower
clustering distortion was presented in [55]. In this paper, a clustering objective function
that is feasible for the whole ℓ2-space was developed. The method is implemented by
top-down bisecting. The superior performance over most of the algorithms based on the
k-means was observed across different scenarios.

The paper [30] proposes the I−k-means−+ algorithm. This is an iterative approach
to improve the quality of clustering by the k-means via removing one cluster (minus),
dividing another one (plus), and applying re-clustering again, at each iteration. The
algorithm can be applied to datasets with a large number of data points or a large
number of clusters. Although this process is time-consuming, the use of some heuristics
effectively speeds up I − k-means−+. The robust fusion method [20] could be addressed
to some fundamental statistical problems in the context of big data.

Recently, a high-performance analysis of IoT big data has been a promising research
direction in big data analytics. Tsai et al. [52] presented an efficient framework for a
metaheuristic algorithm on a cloud computing environment for clustering big datasets.
Zhang et al. [54] proposed two high-order possibilistic c-means algorithms, called CP-
HOPCM and TT-HOPCM, for clustering IoT big data with a large number of attributes
which can be used in IoT systems with limited memory space and computing power.

Ilango et al. [35] proposed the artificial bee colony optimization algorithm for cluster-

496 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

ing in big data to reduce the execution time. For improving the scalability and precision
of FCM for big data, authors of the work [26] proposed scalable FCM on Hadoop, called
BigFCM. Havens and Bezdek [32] presented an efficient formulation of the iVAT (an
improved visual assessment of cluster tendency) algorithm which significantly reduces
the computational complexity of the iVAT algorithm from O(n2) to O(n log n), where
n is the number of objects to be clustered. Kumar et al. [39] presented a new clu-
siVAT algorithm, based on sampling the data. Havens, Bezdek and Palaniswami [33]
proposed an extension to the scalable VAT (sVAT) algorithm [31], called sVAT-S, whose
computational complexity is significantly smaller than O(n2).

The paper [27] proposed an algorithm that combines parallel clustering with single-
pass, stream-clustering algorithms. This approach has two key advantages. First, while
the dataset may not fit in the memory, one can still keep its portion in the memory
and cluster them before reading the rest of the data. The second advantage is that
multiple chunks can be clustered in parallel using multiple CPU cores utilizing their
maximum computational capability to cluster the dataset as quickly as possible. The
limited network bandwidth, limited storage, and low computational capacities of a single
machine do not allow merging big datasets generated across multiple distributed sources.
To address these problems, [50] proposed a three-stage distributed clustering scheme
using boundary information.

Clustering algorithms for big datasets were applied in various areas where such data
are available. An improved DBSCAN clustering method was proposed in [28] for pre-
dicting drilling overflow accidents. For intrusion detection systems over big data envi-
ronments, [44] proposed a clustering method combining mini-batch k-means with the
principal component analysis. For anomaly and DoS attack detection over big data en-
vironments in [3,5,6,36], a clustering, an optimization, and deep learning methods were
proposed, respectively.

Analysis of algorithms introduced in the above-mentioned papers shows that most
existing algorithms for clustering of big datasets are extensions or significant modifi-
cations of conventional clustering algorithms such as the k-means algorithm, the fuzzy
c-means algorithm, and hierarchical clustering algorithms. In all cases, the main aim is
to reduce the execution time using parallelization techniques or using partitioning of the
whole dataset into smaller groups and then defining representatives of each group. The
performance of these algorithms is reported using small to large datasets, and only a few
of them use datasets containing millions or tens of millions of data points. Most existing
clustering algorithms for big datasets are based on the so-called distributed clustering
schemes. In this paper, we propose a rather different approach to modify the k-means
algorithm for clustering big datasets using a single machine. The proposed algorithm
uses batch data and is based on the iterative clustering scheme.

3. K-MEANS AND THE PROPOSED IBK-MEANS ALGORITHMS

Let X = {x1, x2, . . . , xn} be a set of finite number of points given in an m-dimensional
space. Assume that this set should be clustered into k clusters. Denote the collection
of these clusters as C = {C1, C2, . . . , Ck}. The k-means algorithm seeks a partition
having an overall minimum squared error between the centers of the clusters and the

An iterative batch algorithm for big data clustering 497

data points in the clusters. The center oq of cluster Cq is calculated as follows:

oq =

∑
xi∈Cq

xi

|Cq|
, q = 1, 2, . . . , k, (1)

where |Cq| is the number of data points in the cluster Cq. For the cluster Cq, the squared
error is defined as:

fq =
∑

xi∈Cq

∥xi − oq∥2, q = 1, 2, . . . , k. (2)

Here ∥·∥ is the Euclidean norm on Rm. The goal of the k-means algorithm is to minimize
the sum of squared errors for all clusters, defined as:

f =

k∑
q=1

fq =

k∑
q=1

∑
xi∈Cq

∥xi − oq∥2. (3)

As stated in [10], minimizing the objective function (3) is an NP-hard problem. In
this study, we have used the classic k-means algorithm [41] which uses an iterative
refinement technique [40]. The pseudocode for the k-means algorithm is given below:

THE K-MEANS CLUSTERING ALGORITHM

Input:

• X = {x1, x2, . . . , xn} // Set of data points.

• k // Number of desired clusters.

Output:

• A set of k clusters: C = {C1, C2, . . . , Ck}.

Steps:

1. Sample k data points uniformly at random from X as initial centroids.

2. Repeat

(a) Assign each point xi to the cluster which has the closest centroid.

(b) Calculate the new centroid for each cluster.

3. Until no data point changes its cluster.

The main drawback of the k-means algorithm is that the quality of the final clusters
heavily depends on the initial centroids. The k-means algorithm produces different
clusters for different initial centroids. The time complexity of this algorithm is O(n ×
k ×m× t), where:

• n is the number of m-dimensional vectors to be clustered,

498 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

• k is the number of clusters,

• t is the number of iterations needed until convergence.

Lloyd’s k-means algorithm is efficient for real-world clustering tasks, in other words,
for clustering datasets that can be stored in the memory of a single machine. However,
this algorithm is slow for large datasets, and its accuracy deteriorates as the number of
data points increases.

As mentioned above, clustering of big datasets can be a problem due to memory
space and computational restrictions. To address both these problems, we propose a
new version of the k-means algorithm by combining it with batching of the dataset.
The algorithm takes some batch of data from the given dataset and processes it. Then,
it takes the next batch along with centroids from the previously processed batch and
processes it, and so on until all the elements of the dataset are processed.

This algorithm is called the iterative batch k-means (ibk-means) algorithm and
proceeds as follows:

1. Divide the given dataset into non-overlapping subsets (batches) with equal size
p (p < n). The maximum value of p is determined by the capabilities of the
personnel computer (PC), ensuring that each batch can be processed within RAM
and in a reasonable time.

2. Take the first p data elements from the given dataset of n elements.

3. Apply the k-means algorithm to find k centroids (k < p) in this batch. If all
batches are processed, proceed to Step 5.

4. Use the k centroids as the starting cluster centers for the next batch of p new data
elements from the remaining dataset and return to Step 3.

5. Assign elements of the whole dataset to the k centroids calculated in the last
iteration to obtain the k-partition of the dataset.

It can be seen from the description that the main tool in solving the clustering problem
in the proposed algorithm is the k-means algorithm. The use of batches improves the
accuracy of k-means since the number of data points in these batches is significantly
smaller than in the whole dataset. Moreover, in all batches except the first one, the
starting cluster centers are derived from the previous iteration of the k-means algorithm.
This is another advantage of using batches in clustering large datasets.

The time complexity of the ibk-means algorithm is similar to that of the k-means
algorithm and can be described as O((n× k ×m× t)nb), where:

• nb is the number of batches,

• n is the number of m-dimensional vectors in each batch,

• k is the number of clusters,

• t is the maximum number of iterations over all batches.

An iterative batch algorithm for big data clustering 499

4. COMPUTATIONAL RESULTS

In this section, we compare the ibk-means algorithm against both the classic k-means [40]
and mbk-means [47] algorithms using numerical results. In the comparison, we use
indicators such as the CPU time (T) required to compute centroids and assigning data
points to centroids; and the value of the objective function (f).

The parameters of the PC on which the experiments were conducted are as follows:

• CPU: Core i7 2.2 GHz.

• RAM: 8 GB.

• Video Card: 1 GB.

• HDD: 1 TB.

• Operating System: Microsoft Windows 7 Ultimate 64-bit.

The whole datasets are also clustered using the k-means algorithm for efficiency and
quality comparison with the proposed algorithm using the above-mentioned indicators.
Due to the memory restriction of the above hardware, it is sometimes impossible to
process a whole dataset for comparison purposes.

4.1. Datasets

In the numerical experiments, we use real-world datasets, all of which are available from
the UCI Machine Learning Repository [24]. The brief description of the datasets is given
in Table 1.

Dataset # Attributes # Instances Attribute Types Year Source

1. D500×2 2 500000 Integer, Real 2015 Online Retail
2. D500×3 3 – – – –
3. D500×5 5 – – – –
4. D2000×3 3 2000000 Real 2012 Individual Household Electric Consumption
5. D2000×5 5 – – – –
6. D2000×9 9 – – – –
7. D44000×16 16 43930257 Real 2015 Heterogeneity Activity Recognition

Tab. 1. The brief description of datasets.

The datasets D500×2, D500×3, and D500×5 are extracted from the Online Retail
dataset, which contains 541,909 data points and 8 attributes. The Online Retail dataset
contains records of transactions occurring between 01/12/2010 and 09/12/2011 for a
UK-based online retail company specializing in unique all-occasion gifts, with many
wholesale customers.

The datasets D2000×3, D2000×5, and D2000×9 are extracted from the Individual
Household Electric Power Consumption dataset, which contains 2,075,259 data points
and 9 attributes. This dataset consists of measurements gathered in a house located in
Sceaux, France, between December 2006 and November 2010 (47 months).

500 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

Finally, the dataset D44000×16 is from the Heterogeneity Activity Recognition dataset,
containing 43,930,257 data points and 16 attributes. This dataset consists of two
datasets designed to investigate the impact of sensor heterogeneities on human activ-
ity recognition algorithms, including classification, automatic data segmentation, sensor
fusion, and feature extraction.

4.2. Results

Results of numerical experiments are presented in Tables 2 – 8. We used batches with
10000, 50000 and 250000 data points for the largest dataset D44000×16. This dataset
cannot be stored in the RAM of the computer and therefore, we did not get results
using the k-means algorithm and report only results for the mbk and ibk algorithms.
To provide a proper evaluation of results, in the tables we include columns showing
improvements by the ibk algorithm in comparison with other two algorithms for both
the objective function value and CPU time. Positive numbers show improvement by the
ibk algorithm and negative numbers show deterioration of results of other algorithms.

of k-means Batch mbk ibk Relat. improv. Relat. improv.
clus. size(p) of ibk over of ibk over

k-means (%) mbk (%)

f T f T f T f T f T

2 1452.7 16.5 10000 1459.6 17.2 1459.6 17.7 -0.45 -7.27 +0.03 -2.91
50000 1457.8 18.7 1453.3 16.8 -0.04 -1.82 +0.31 +10.16
250000 1455.2 19.2 1450.5 15.4 +0.15 +6.67 +0.32 +19.79

5 494.6 18.2 10000 499.3 18.7 501.2 19.6 -1.33 -7.69 -0.38 -4.81
50000 502.8 19.2 497.5 18.7 -0.59 -2.75 +1.05 +2.60
250000 504.6 20.1 492.7 17.5 +0.38 +3.85 +2.36 +12.94

10 247.6 20.4 10000 252.5 20.6 253.9 22.5 -2.54 -10.29 -0.55 -9.22
50000 254.1 21.3 249.4 21.5 -0.73 -5.39 +1.85 -0.94
250000 253.5 22.1 245.7 19.9 +0.77 +2.45 +3.08 +9.95

Tab. 2. Clustering results on D500×2 dataset.

4.3. Discussion of experimental results

The analysis of the experimental results shows that:

• As the batch size increases, the performance of the ibk-means algorithm improves
across all datasets with respect to both indicators: CPU time (T) and clustering
quality (the value of the objective function f). For example, for the D500×2
dataset, if the size of the batch increases from 10000 to 250000, then the CPU
time decreases from 17.7 seconds to 15.4 seconds, and the value of f from 1459.2
to 1450.5. In other words, with the increase of the batch size, the performance of
the ibk-means algorithm improves.

• It is clear from Table 2 that when the batch size is 250000, the ibk-means algo-
rithm outperforms the k-means algorithm with respect to both indicators. From

An iterative batch algorithm for big data clustering 501

of k-means Batch mbk ibk Relat. improv. Relat. improv.
clus. size(p) of ibk over of ibk over

k-means (%) mbk (%)

f T f T f T f T f T

2 2102.2 19.9 10000 2104.6 20.5 2107.6 21.1 -0.26 -6.03 -0.14 -2.93
50000 2102.4 21.7 2105.6 20.5 -0.16 -3.02 -0.15 +5.53
250000 2105.7 22.1 2101.8 19.6 +0.02 +1.51 +0.19 +11.31

5 709.0 23.4 10000 710.0 23.9 714.8 25.6 -0.82 -9.40 -0.68 -7.11
50000 709.3 24.7 711.6 24.4 -0.37 -4.27 -0.32 +1.21
250000 709.2 25.5 708.5 23.1 +0.07 +1.28 +0.10 +9.41

10 352.3 26.5 10000 359.2 27.4 357.6 28.8 -1.50 -8.68 +0.45 -5.11
50000 357.3 28.2 354.4 27.7 -0.60 -4.53 +0.81 +1.77
250000 356.5 29.7 351.4 26.4 +0.26 +0.38 +1.43 +11.11

Tab. 3. Clustering results on D500×3 dataset.

of k-means Batch mbk ibk Relat. improv. Relat. improv.
clus. size(p) of ibk over of ibk over

k-means (%) mbk (%)

f T f T f T f T f T

2 3022.1 27.9 10000 3027.3 28.6 3028.5 29.3 -0.21 -5.02 -0.04 -2.45
50000 3028.7 28.9 3025.6 28.8 -0.12 -3.23 +0.10 +0.35
250000 3030.6 29.5 3021.8 27.5 +0.01 +1.43 +0.29 +6.78

5 1211.0 34.7 10000 1215.8 35.2 1217.3 36.3 -0.52 -4.61 -0.12 -3.12
50000 1214.1 36.4 1214.4 35.6 -0.28 -2.59 -0.02 +2.20
250000 1213.5 37.4 1210.3 34.3 +0.06 +1.15 +0.26 +8.29

10 700.6 39.1 10000 702.8 38.2 705.3 40.6 -0.67 -3.84 -0.36 -6.28
50000 707.4 39.1 703.4 39.4 -0.40 -0.77 +0.57 -0.77
250000 709.1 41.3 699.9 38.7 +0.10 +1.02 +1.30 +6.30

Tab. 4. Clustering results on D500×5 dataset.

Tables 2 – 7, it is easy to see that this observation is true for all datasets and the
number of clusters. Furthermore, for the batch sizes 10000 and 50000 the difference
between the clustering function values obtained by these two algorithms is insignif-
icant across all datasets. However, the k-means algorithm cannot be applied to
very large data sets containing millions of data points and the ibk algorithm can
be considered as an extension of k-means for clustering such datasets.

• The size of the batch cannot be increased arbitrarily due to the following reasons:

1. The batch size should be such that it can be efficiently processed on the
computer, i e., the RAM and computational power of the computer should
allow it.

2. The batch size strongly depends on the capabilities of the selected clustering
algorithm. It is known that the efficiency and accuracy of clustering algo-
rithms vary depending on the size of the dataset.

502 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

of k-means Batch mbk ibk Relat. improv. Relat. improv.
clus. size(p) of ibk over of ibk over

k-means (%) mbk (%)

f T f T f T f T f T

2 8698.4 77.7 50000 8709.1 76.3 8705.4 80.2 -0.08 -3.22 +0.04 -5.11
250000 8717.0 77.6 8701.7 78.8 -0.04 -1.42 +0.18 -1.55
500000 8715.5 80.6 8697.7 77.1 +0.01 +0.77 +0.20 +4.34

5 3512.4 94.1 50000 3529.3 94.9 3517.5 97.3 -0.15 -3.40 +0.33 -2.53
250000 3528.7 95.3 3515.7 95.6 -0.09 -1.59 +0.37 -0.31
500000 3524.5 96.1 3511.8 93.2 +0.02 +0.96 +0.36 +3.02

10 1869.3 111.2 50000 1906.0 111.2 1873.2 115.9 -0.21 -4.23 +1.72 -4.23
250000 1895.9 114.4 1871.7 113.4 -0.13 -1.98 +1.28 +0.87
500000 1891.4 115.8 1868.6 110.5 +0.04 +0.63 +1.21 +4.58

Tab. 5. Clustering results on D2000×3 dataset.

of k-means Batch mbk ibk Relat. improv. Relat. improv.
clus. size(p) of ibk over of ibk over

k-means (%) mbk (%)

f T f T f T f T f T

2 12653.6 109.1 50000 12653.8 110.2 12657.3 112.6 -0.03 -3.21 -0.03 -2.18
250000 12653.6 113.4 12654.7 110.5 -0.01 -1.28 -0.01 +2.56
500000 12653.4 114.7 12652.9 108.5 +0.01 +0.55 0.00 +5.41

5 5902.3 137.2 50000 5909.2 137.7 5905.4 140.9 -0.05 -2.70 +0.06 -2.32
250000 5911.3 139.2 5903.6 138.2 -0.02 -0.73 +0.13 +0.72
500000 5909.6 140.1 5901.8 137.0 +0.01 +0.15 +0.13 +2.21

10 3115.9 153.4 50000 3122.7 155.7 3118.6 156.5 -0.09 -2.02 +0.13 -0.51
250000 3121.7 157.9 3116.5 154.1 -0.02 -0.46 +0.17 +2.41
500000 3123.4 158.6 3115.0 152.9 +0.03 +0.33 +0.27 +3.59

Tab. 6. Clustering results for D2000×5 dataset.

• Results presented in the last column of Tables 2 – 7 (the relative improvement) lead
to some interesting observations. The increase in the batch size reduces the CPU
time required by the ibk-means algorithm. Preliminary analysis (see Tables 2 – 7)
shows that this is due to the fact that, with the decrease in the number of batches
(if the batch size increases), the number of requests to the hard drive also reduces.
In turn, this leads to time-saving.

• For both the mbk- and ibk-means algorithms the value of the objective function f ,
which represents the quality of clustering solutions, does not strongly depend on
the batch size. This dependence becomes even weaker as the size of the dataset
increases.

• The comparison of the mbk-means and ibk-means algorithms demonstrates that
there is no significant difference in accuracy when the batch sizes are not large.
However, the ibk-means algorithm performs better than the mbk-means algorithm
as the batch size increases. In the largest D44000×16 dataset, the ibk-means algo-

An iterative batch algorithm for big data clustering 503

of k-means Batch mbk ibk Relat. improv. Relat. improv.
clus. size(p) of ibk over of ibk over

k-means (%) mbk (%)

f T f T f T f T f T

2 29313.7 154.6 50000 29585.3 153.1 29318.5 157.5 -0.02 -1.88 +0.90 -2.87
250000 29582.4 154.2 29314.6 155.4 0.00 -0.52 +0.91 -0.78
500000 29579.5 155.7 29312.6 153.9 0.00 +0.45 +0.90 +1.16

5 11812.8 193.5 50000 11852.3 194.1 11817.3 196.7 -0.04 -1.65 +0.30 -1.34
250000 11854.2 195.4 11813.6 194.6 -0.01 -0.57 +0.34 +0.41
500000 11854.5 197.7 11811.6 193.0 +0.01 +0.26 +0.36 +2.38

10 6234.8 215.5 50000 6264.7 216.2 6239.2 218.5 -0.07 -1.39 +0.41 -1.06
250000 6261.9 219.3 6235.6 216.8 -0.01 -0.60 +0.42 +1.14
500000 6260.2 221.9 6233.6 214.8 +0.02 +0.32 +0.42 +3.20

Tab. 7. Clustering results on D2000×9 dataset.

rithm finds considerably more accurate solutions than the mbk-means algorithm.

• The comparison of CPU time required by thembk-means and ibk-means algorithms
clearly shows that the latter algorithm uses less CPU time than the former one as
the batch size, dataset size, and the number of clusters increase. This is due to the
special procedure for selecting starting cluster centers in the ibk-means algorithm,
which allows improvement in the quality of solutions obtained by the k-means
algorithm and significantly reduces the number of iterations.

• As can be seen from Table 8, the ibk-means algorithm produces clusters in a
reasonable time. For example, if the number of clusters is 10, the time for clustering
the dataset with size 43, 930, 257× 16 = 702, 884, 112 is approximately 3 hours 17
minutes (11796.9 sec.), which is reasonable for such a big dataset. In other words,
we have a significant gain in using computational power with restricted resources.

5. CONCLUSIONS

Clustering of big datasets is challenging due to the restrictions of computational power.
There are some research papers in this field to handle this challenge. In this paper, we
proposed a batch clustering algorithm, called the ibk-means algorithm, which is based on
the classic k-means algorithm, uses batches and thus efficiently manages computational
power. A number of computational experiments have been carried out using real-world
datasets. The largest dataset used in numerical experiments contains 43,930,257 in-
stances and 16 attributes. The main advantage of the ibk-means algorithm is that it
makes possible to process huge volume of datasets in batches, thus enabling of handling
any size of the big dataset. Results demonstrate that the proposed ibk-means algorithm
outperforms the classic k-means algorithm.

The proposed algorithm is fast in very large datasets. Another important strength
of the algorithm is that it allows one to effectively use the available computer resources
and provides real-time clustering in big datasets. However, this algorithm also has some
limitations. Since the proposed ibk-means algorithm uses the k-means algorithm at

504 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

of Batch mbk ibk Relat. improv.
clus. size(p) of ibk over

mbk (%)

f T f T f T

2 10000 1687897.9 6591.1 1657385.6 6648.4 +1.81 -0.87
50000 1683308.8 6603.2 1657381.4 6563.7 +1.54 +0.60
250000 1688630.1 6614.8 1657375.3 6478.7 +1.85 +2.06

5 10000 683180.1 9267.0 668457.8 9283.5 +2.15 -0.18
50000 691314.2 9224.6 668452.4 9194.4 +3.31 +0.33
250000 692381.5 9208.2 668447.5 9108.6 +3.46 +1.08

10 10000 359200.8 12083.0 347597.7 11985.3 +3.23 +0.81
50000 356364.4 12094.6 347596.4 11891.5 +2.46 +1.68
250000 356416.7 12102.1 347591.8 11796.9 +2.48 +2.52

Tab. 8. Clustering results on D44000×16 dataset.

each iteration its accuracy deteriorates as the number of batches increases. Moreover,
the increase of the number of batches may increase the computational time.

Results of numerical experiments demonstrated that the use of batch data allows
one to significantly improve efficiency of the k-means algorithm for clustering very large
datasets. The iterative nature of the proposed algorithm leads to the design of the
efficient procedure for finding starting cluster centers for the next iteration. Numerical
results also demonstrated that the accuracy of the proposed algorithm depends on the
batch size. Larger size of batch data leads to more accurate clustering results. It
is not unexpected as the larger batches are the better representatives of the whole
dataset. However, the batch size should be restricted above by some number. Beyond
this number the k-means algorithm may become inefficient and highly inaccurate. This
number depends on the size of a dataset. In this case the use of more accurate clustering
algorithms may improve overall accuracy, however they may also require prohibitively
large computational time.

Results presented in this paper open new opportunities for future research for clus-
tering of big datasets. One of the most important aspects of future research may be the
determination of the optimal size of the batch. In other words, taking into account the
capabilities of a computer, it is required to select the size of the batch so that to find
the high-quality solution to clustering problem in a big dataset in a reasonable time.
Another important aspect of the research may be to explore the possibility of combining
the proposed iterative batch clustering with other clustering algorithms. The use of
more accurate clustering algorithms with the optimal batch size may lead to more accu-
rate clustering results in big datasets. Finally, the fourth direction is the development
of parallel batch clustering algorithms. These all will be subjects for future research.

An iterative batch algorithm for big data clustering 505

ACKNOWLEDGEMENTS

The research by Dr. Ramiz Aliguliyev was supported by the Azerbaijan Science Foundation –
Grant No. AEF-MCG-2023-1(43)-13/04/1-M-04.

Competing interest. The authors have no competing interests to declare.

(Received February 28, 2025)

REFERENCES

[1] C.C. Aggarwal and C.K. Reddy: Data Clustering: Algorithms and Applications (First
edition). CRC Press, Taylor and Francis Group, Boca Raton, London, New York 2014.
DOI:10.1201/b17320

[2] E. Ahmed, I. Yaqoob, I. A.T.Hashem, et al.: The role of big data analytics in Internet of
Things. Computer Networks 129 (2017), 2, 459–471. DOI:10.1016/j.comnet.2017.06.013

[3] R. Alguliyev, R. Aliguliyev, and L. Sukhostat: Anomaly detection in big data
based on clustering. Statistics, Optim. Inform. Computing 5 (2017), 4, 325–340.
DOI:10.19139/soic.v5i4.365

[4] R. Alguliyev, R. Aliguliyev, A. Bagirov, and R. Karimov: Batch clustering algo-
rithm for big data sets. In: Proc. 2016 IEEE 10th International Conference on Ap-
plication of Information and Communication Technologies, IEEE Press 2016, pp. 79–82.
DOI:10.1109/ICAICT.2016.7991657

[5] R. Alguliyev, R. Aliguliyev, Y. Imamverdiyev, and L. Sukhostat: An anomaly de-
tection based on optimization. Int. J. Intell. Systems Appl. 9 (2017), 12, 87–96.
DOI:10.5815/ijisa.2017.12.08

[6] R. Alguliyev, R. Aliguliyev, Y. Imamverdiyev, and L. Sukhostat: Weighted clustering for
anomaly detection in big data. Statist. Optim. Inform. Comput. 6 (2018), 2, 178–188.
DOI:10.19139/soic.v6i2.404

[7] R.M. Alguliyev, R.M. Aliguliyev, and R.G. Alakbarov: Constrained k-means al-
gorithm for resource allocation in mobile cloudlets. Kybernetika 59 (2023), 88–109.
DOI:10.14736/kyb-2023-1-0088

[8] R. Alguliyev, R. Aliguliyev, and L. Sukhostat: Improved parallel big data clustering
based on k-medoids and k-means algorithm. Probl. Inform. Technol. 15 (2024), 18–25.
DOI:10.25045/jpit.v15.i1.03

[9] R. Alguliyev, R. Aliguliyev, and L. Sukhostat: Parallel batch k-means for big data clus-
tering. Comput. Industr. Engrg. 152 (2021), 107023, 1–11. DOI:10.1016/j.cie.2020.107023

[10] D. Aloise, A. Deshpande, P. Hansen, and P. Popat: NP-hardness of Euclidean sum-of-
squares clustering. Machine Learn. 75 (2009), 2, 245–248. DOI:10.1007/s10994-009-5103-0

[11] S. E. Amrahov, Y. Ar, B. Tugrul, B. E. Akay, and N. Kartli: A new approach to Mergesort
algorithm: Divide smart and conquer. Future Gener. Comput. Syst. 157 (2024), 330–343.
DOI:10.1016/j.future.2024.03.049

[12] A.M. Bagirov, S. Taheri, and B. Ordin: An adaptive k-medians clustering algorithm.
Probl. Inform. Technol. 13 (2022), 3–15. DOI:10.25045/jpit.v13.i2.01

[13] A.M. Bagirov, J. Ugon, and D. Webb: Fast modified global k-means algo-
rithm for incremental cluster construction. Pattern Recogn. 44 (2011), 866–876.
DOI:10.1016/j.patcog.2010.10.018

https://doi.org/10.1201/b17320
https://doi.org/10.1016/j.comnet.2017.06.013
https://doi.org/10.19139/soic.v5i4.365
https://doi.org/10.1109/ICAICT.2016.7991657
https://doi.org/10.5815/ijisa.2017.12.08
https://doi.org/10.19139/soic.v6i2.404
https://doi.org/10.14736/kyb-2023-1-0088
https://doi.org/10.25045/jpit.v15.i1.03
https://doi.org/10.1016/j.cie.2020.107023
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1016/j.future.2024.03.049
https://doi.org/10.25045/jpit.v13.i2.01
https://doi.org/10.1016/j.patcog.2010.10.018

506 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

[14] B. Bahmani, B. Moseley, A. Vattani, et al.: Scalable k-means++. Proc. VLDB Endowment
5 (2012), 7, 622–633. DOI:10.14778/2180912.2180915

[15] J. Béjar: k-means vs mini batch k-means: A comparison. Technical Report, Universitat
Politécnica de Catalunya, 2013. http://upcommons.upc.edu/bitstream/handle/2117/

23414/R13-8.pdf.

[16] A. Bose, A. Munir, and N. Shabani: A comparative quantitative analysis of contemporary
big data clustering algorithms for market segmentation in hospitality industry. 2017.
https://arxiv.org/abs/1709.06202

[17] L. Bottou and Y. Bengio: Convergence properties of the k-means algorithm. In: Proc.
7th International Conference on Neural Information Processing Systems, MIT Press, Cam-
bridge 1995, pp. 585–592.

[18] P. S. Bradley, U. Fayyad, and C. Reina: Scaling clustering algorithms to large databases.
In: Proc. Fourth International Conference on Knowledge Discovery and Data Mining,
AAAI Press, New York 1998, pp. 9–15. DOI:10.5555/3000292.3000295

[19] X. Cai, F. Nie, and H. Huang: Multi-view k-means clustering on big data. In: Proc.
Twenty-Third International Joint Conference on Artificial Intelligence, ACM Press, New
York 2013, pp. 2598–2604. DOI:10.5555/2540128.2540503

[20] A. Catherine, C. Alejandro, F. Ricardo, and G. Badih: Multivariate and functional ro-
bust fusion methods for structured big data. J. Multivar. Anal. 170 (2019), 149–161.
DOI:10.1016/j.jmva.2018.06.012

[21] P. Cetin and Ö. Ö. Tanriöver: Priority rule for resource constrained project planning prob-
lem with predetermined work package durations. J. Fac. Engrg. Architect. Gazi University
35 (2020), 3, 149–161. DOI:10.17341/gazimmfd.545873

[22] C. L. P. Chen and C.-Y. Zhang: Data-intensive applications, challenges, tech-
niques and technologies: a survey on Big Data. Inform. Sci. 275 (2014), 314–347.
DOI:10.1016/j.ins.2014.01.015

[23] X. Cui, P. Zhu, X. Yang, et al.: Optimized big data k-means clustering using MapReduce.
J. Supercomput. 70 (2014), 3, 1249–1259. DOI:10.1007/s11227-014-1225-7

[24] D. Dua and E. Karra Taniskidou: UCI Machine Learning Repository. Irvine, Univ. Cali-
fornia, School of Information and Computer Science, 2017. http://archive.ics.uci.edu/ml

[25] A. Fahad, N. Alshatri, Z. Tari, et al.: A survey of clustering algorithms for big data:
taxonomy and empirical analysis. IEEE Trans. Emerging Topics Computing 2 (2014), 3,
267–279. DOI:10.1109/TETC.2014.2330519

[26] N. Ghadiri, M. Ghaffari, and M.A. Nikbakht: BigFCM: Fast, precise and
scalable FCM on Hadoop. Future Gener. Computer Syst. 77 (2018), 29–39.
DOI:10.1016/j.future.2017.06.010

[27] A. Hadian and S. Shahrivari: High performance parallel k-means clustering for
disk-resident datasets on multi-core CPUs. J. Supercomput. 69 (2014), 2, 845–863.
DOI:10.1007/s10586-017-1687-5

[28] L. Haibo and W. Zhi: Application of an intelligent early-warning method based
on DBSCAN clustering for drilling overflow accident. Cluster Comput. (2019).
DOI:10.1007/s10586-017-1687-5

[29] J. Han, M. Kamber, and J. Pei: Data Mining: Concepts and Techniques (Third edition).
Morgan Kaufmann, 2011. DOI:10.1016/C2009-0-61819-5

https://doi.org/10.14778/2180912.2180915
http://upcommons.upc.edu/bitstream/handle/2117/ 23414/R13-8.pdf.
http://upcommons.upc.edu/bitstream/handle/2117/ 23414/R13-8.pdf.
https://arxiv.org/abs/1709.06202
https://doi.org/10.5555/3000292.3000295
https://doi.org/10.5555/2540128.2540503
https://doi.org/10.1016/j.jmva.2018.06.012
https://doi.org/10.17341/gazimmfd.545873
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1007/s11227-014-1225-7
https://doi.org/10.1109/TETC.2014.2330519
https://doi.org/10.1016/j.future.2017.06.010
https://doi.org/10.1007/s10586-017-1687-5
https://doi.org/10.1007/s10586-017-1687-5
https://doi.org/10.1016/C2009-0-61819-5

An iterative batch algorithm for big data clustering 507

[30] I. Hassan: I − k-means-+: an iterative clustering algorithm based on an enhanced version
of the k-means. Pattern Recogn. 79 (2018), 402–413. DOI:10.1016/j.patcog.2018.02.015

[31] R. J. Hathaway, J.C . Bezdek, and J.M. Huband: Scalable visual assessment
of cluster tendency for large data sets. Patt. Recog. 39 (2006), 7, 1315–1324.
DOI:10.1016/j.patcog.2006.02.011

[32] T.C. Havens and J.C. Bezdek: An efficient formulation of the improved visual assessment
of cluster tendency (iVAT) algorithm. IEEE Trans. Knowl. Data Engrg. 24 (2012), 5,
813–822. DOI:10.1109/TKDE.2011.33

[33] T.C. Havens, J. C. Bezdek, and M. Palaniswami: Scalable single linkage hierarchical
clustering for big data. In: Proc. 2013 IEEE Eighth International Conference on Intelli-
gent Sensors, Sensor Networks and Information Processing, IEEE Press 2013. pp. 396–401.
DOI:10.1109/ISSNIP.2013.6529823

[34] M. Hilbert and P. López: The world’s technological capacity to store, communicate, and
compute information. Science 332 (2011), 6025, 60–65. DOI:10.1126/science.1200970

[35] S. S. Ilango, S. Vimal, M. Kaliappan, and P. Subbulakshmi: Optimization using Ar-
tificial Bee Colony based clustering approach for big data. Cluster Comput. (2019).
DOI:10.1007/s10586-017-1571-3

[36] Y. Imamverdiyev and F. Abdullayeva: Deep learning method for DoS attack de-
tection based on restricted Boltzmann machine. Big Data 6 (2018), 2, 159–169.
DOI:10.1089/big.2018.29026.zob

[37] N. Karmitsa, A.M. Bagirov, and S. Taheri: New diagonal bundle method for clus-
tering problems in large data sets. European J. Oper. Res. 263 (2017), 2, 367–379.
DOI:10.1016/j.ejor.2017.06.010

[38] N. Karmitsa, A.M. Bagirov, and S. Taheri: Clustering in large data sets
with the limited memory bundle method. Pattern Recogn. 83 (2018), 245–249.
DOI:10.1016/j.patcog.2018.05.028

[39] D. Kumar, J. C. Bezdek, M. Palaniswami, et al.: A hybrid approach to clustering in big
data. IEEE Trans. Cybernet. 46 (2016), 10, 2372–2385. DOI:10.1109/TCYB.2015.2477416

[40] S. Lloyd: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28 (1982), 2,
129–137. DOI:10.1109/TIT.1982.1056489

[41] J. B. MacQueen: Some methods for classification and analysis of multivariate obser-
vations. In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probabil-
ity, Volume 1: Statistics, Berkeley, University of California Press, 1967, pp. 281–297.
https://projecteuclid.org/euclid.bsmsp/1200512992

[42] M. Marjani, F. Nasaruddin, A. Gani, et al.: Big IoT data analytics: architec-
ture, opportunities, and open research challenges. IEEE Access 5 (2017), 5247–5261.
DOI:10.1109/ACCESS.2017.2689040

[43] J. Newling and F. Fleuret: Nested mini-batch k-means. In: Proc. 30th International Con-
ference on Neural Information Processing Systems, Curran Associates Inc. 2016, pp. 1360–
1368. DOI:10.48550/arXiv.1602.02934

[44] K. Peng, V.C.M. Leung, and Q. Huang: Clustering approach based on mini batch k-
means for intrusion detection system over big data. IEEE Access 6 (2018), 11897–11906.
DOI:10.1109/ACCESS.2018.2810267

[45] M. Sabo: Consensus clustering with differential evolution. Kybernetika 50 (2014), 661–678.
DOI:10.14736/kyb-2014-5-0661

https://doi.org/10.1016/j.patcog.2018.02.015
https://doi.org/10.1016/j.patcog.2006.02.011
https://doi.org/10.1109/TKDE.2011.33
https://doi.org/10.1109/ISSNIP.2013.6529823
https://doi.org/10.1126/science.1200970
https://doi.org/10.1007/s10586-017-1571-3
https://doi.org/10.1089/big.2018.29026.zob
https://doi.org/10.1016/j.ejor.2017.06.010
https://doi.org/10.1016/j.patcog.2018.05.028
https://doi.org/10.1109/TCYB.2015.2477416
https://doi.org/10.1109/TIT.1982.1056489
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1109/ACCESS.2017.2689040
https://doi.org/10.48550/arXiv.1602.02934
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.14736/kyb-2014-5-0661

508 R. ALGULIYEV, R. ALIGULIYEV, A.M. BAGIROV, AND M. ALIYEV

[46] A. Saini, J. Minocha, J. Ubriani, and D. Sharma: New approach for clustering of big
data: disk-means. In: Proc. International Conference on Computing, Communication and
Automation, IEEE Press, 2016, pp. 122–126. DOI:10.1109/CCAA.2016.7813702

[47] D. Sculley: Web-scale k-means clustering. In: Proc. 19th International
Conference on World Wide Web, ACM Press, New York 2010, pp. 1177–1178.
DOI:10.1145/1772690.1772862

[48] A. S. Shirkhorshidi, S. Aghabozorgi, T.Y. Wah, and T. Herawan: Big data clustering: a
review. In: Proc. International Conference on Computational Science and its Applications,
LNCS 8583, Part V, Springer 2014, pp. 707–720. DOI:10.1007/978-3-319-09156-3-49

[49] Z. Sun and P.P. Wang: A mathematical foundation of big data. New Math. Natur.
Comput. 13 (2017), 2, 83–99. DOI:10.1142/S1793005717400014

[50] Q. Tong, X. Li, and B. Yuan: Efficient distributed clustering using boundary information.
Neurocomput. 275 (2018), 2355–2366. DOI:10.1016/j.neucom.2017.11.014

[51] V. Torra, Y. Endo, and S. Miyamoto: On the comparison of some fuzzy clustering methods
for privacy preserving data mining: towards the development of specific information loss
measures. Kybernetika 45 (2009), 548–560.

[52] C.-W. Tsai, S.-J. Liu, and Y.-C. Wang: A parallel metaheuristic data clus-
tering framework for cloud. J. Parallel Distribut. Comput. 116 (2018), 39–49.
DOI:10.1016/j.jpdc.2017.10.020

[53] R. Xu and D. Wunsch: Survey of clustering algorithms. IEEE Trans. Neural Networks 16
(2005, 3, 645–678. DOI:10.1109/TNN.2005.845141

[54] Q. Zhang, L.T. Yang, Z. Chen, and P. Li: High-order possibilistic c-means algorithms
based on tensor decompositions for big data in IoT. Inform. Fusion 39 (2018), 72–80.
DOI:10.1016/j.inffus.2017.04.002

[55] W.-L. Zhao, C.-H. Deng and C.-W. Ngo: k-means: a revisit. Neurocomput. 291 (2018),
195–206. DOI:10.1016/j.neucom.2018.02.072

Rasim Alguliyev, Institute of Information Technology, Baku. Azerbaijan.
e-mail: r.alguliyev@gmail.com

Ramiz Aliguliyev, Institute of Information Technology, Baku. Azerbaijan.
e-mail: r.aliguliyev@gmail.com

Adil M. Bagirov, Centre for Smart Analytics, Institute of Innovation, Science and Sus-
tainability, Federation University Australia, Ballarat. Australia.

e-mail: a.bagirov@federation.edu.au

Mustafa Aliyev, Azerbaijan University of Architecture and Construction, Baku. Azer-
baijan.

e-mail: m.aliyev@gmail.com

https://doi.org/10.1109/CCAA.2016.7813702
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1007/978-3-319-09156-3-49
https://doi.org/10.1142/S1793005717400014
https://doi.org/10.1016/j.neucom.2017.11.014
https://doi.org/10.1016/j.jpdc.2017.10.020
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1016/j.inffus.2017.04.002
https://doi.org/10.1016/j.neucom.2018.02.072

	Introduction
	Related work
	k-means and the proposed ibk-means algorithms
	Computational results
	Conclusions

