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METRIZATION OF POWERS OF THE JENSEN-SHANNON
DIVERGENCE

KAZUKI OKAMURA

Metrization of statistical divergences is valuable in both theoretical and practical aspects.
One approach to obtaining metrics associated with divergences is to consider their fractional
powers. Motivated by this idea, Osdn, Bussandri, and Lamberti (2018) studied the metrization
of fractional powers of the Jensen—Shannon divergence between multinomial distributions and
posed an open problem. In this short note, we provide an affirmative answer to their conjecture.
Moreover, our method is also applicable to fractional powers of f-divergences between Cauchy
distributions.
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1. INTRODUCTION

Dissimilarity between probability distributions is a fundamental topic in probability,
statistics, and related fields such as machine learning, and has been extensively studied
([18]). Statistical divergences serve as canonical measures of dissimilarity. One of the
most widely used divergences is the Kullback-Leibler divergence (KLD), also known as
relative entropy. It has numerous theoretical and practical applications. In particular,
it naturally appears as the rate function in Sanov’s theorem in large deviation theory,
describing the exponential decay rate of rare events. In the framework of information
geometry, the KLD generalizes the squared Euclidean distance, and for exponential
families, it satisfies a Pythagorean theorem. However, the square root of the KLD is
generally not a metric: it can be asymmetric and violate the triangle inequality. Another
commonly used divergence is the total variation distance (TVD). Unlike the KLD, the
TVD is a bounded metric. However, the TVD between two distributions which are
singular to each other always equals 2. Furthermore, closed-form expressions are often
difficult to obtain, and one typically must rely on numerical approximations.

The Jensen—Shannon divergence (JSD), defined via the KLD, is also referred to as the
information radius or total divergence from the average. The JSD is always well-defined,
symmetric, and bounded ([IT]). It has found applications across numerous research
disciplines and admits both statistical and information-theoretic interpretations. In
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statistical inference, the JSD provides both lower and upper bounds on the Bayes error
probability, while in information theory, it is related to mutual information ([8]). Various
generalizations and related notions of the JSD have been proposed ([13} [16]).

From a theoretical standpoint, metric spaces are one of the most foundational frame-
works in mathematics. Metrizing divergences is also significant in practical applica-
tions, especially in the design of efficient algorithms in computational geometry ([3]).
For instance, the triangle inequality can accelerate proximity queries ([23]) and k-means
clustering ([5]). In general, symmetric divergences are not metrics, so it is natural to
consider fractional powers (moments) of these divergences to obtain associated metric
structures. Sufficient conditions for fractional powers of Csiszar’s f-divergences to form
metrics are given in [9, [I7]. It is well-known that the square root of the JSD satisfies
the triangle inequality ([T}, [6 21]). This, along with the TVD, constitutes a canonical
statistical metric distance.

Osén, Bussandri, and Lamberti [I5] considered the JSD as a special case of a Csiszar
divergence and provided a sufficient condition for the power of the JSD between multi-
nomial distributions to define a metric. In [I5, Conjecture 1], they conjecture that the
pth power of the JSD between multinomial distributions is not a metric for p > 1/2. The
square root of the JSD admits an isometric embedding into Hilbert spaces ([7]). Since
in general pth powers of distances on Hilbert spaces are not distances when p > 1, this
indirectly supports the conjecture. However, the embedding is far from being surjective,
so this fact cannot be directly used in the proof. To the best of our knowledge, this
problem remains open.

One aim of this paper is to prove [I5, Conjecture 1]. Our approach is elementary and
self-contained, differing significantly from [15]. While our method is somewhat similar
to the proof of [I4, Theorem 28], we do not utilize the metric transformation introduced
there. Furthermore, we present an alternative proof of [I5, Proposition 1], which is
considerably simpler than the original.

Our elementary method also applies to the Cauchy distribution, a canonical example
of a heavy-tailed distribution. For Cauchy distributions, f-divergences are always sym-
metric ([I4], 22]), which motivates the question of whether powers of f-divergences form
metrics for general convex functions f. We prove that the pth power of the f-divergence
between Cauchy distributions fails to be a metric for p > 1/2, for a broad class of differ-
entiable convex functions f on (0, 00), including those corresponding to the KLD and the
JSD, but excluding the TVD. Our proof relies on an expression of f-divergences given
by Verdu [22].

We include a short note in Appendix [A] on the fact that the square root of the JSD
satisfies the triangle inequality. This implies that the JSD defines a regular semi-metric,
meaning that its local properties are similar to those of a metric. See [2] for further
details.

2. FRAMEWORK

Let X be a set with a sigma-algebra and p be a positive measure on X. For the
discrete and continuous distributions, p is usually taken as the counting measure and
the Lebesgue measure, respectively. Let P and @) be two probability measures on X
with density functions p and ¢ with respect to pu, respectively. The Kullback-Leibler
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divergence between P and (@ is defined by

D (P Q)= [ o (28) pl@)u(d).

The Jensen—Shannon divergence between P and () is defined by

DJS(PQ) ;(DKL (P P;Q>+DKL <Q P;Q)>

There are generalizations of this divergence. For example, [I3] replaces (P + @)/2 with
a quasi-arithmetic mean.

We can define them by using the Radon-Nikodym derivative. The Kullback-Leibler
divergence is asymmetric in general, but the Jensen—Shannon divergence is always sym-
metric. We also remark that P and () are both absolutely continuous with respect to
(P + Q)/2, so the Jensen—Shannon divergence is always defined. If P is not absolutely
continuous with respect to @, then, Dy (P : @) = +00. These are canonical examples
of f-divergences.

We let the entropy be

H(P) = /X () log pla)u(d).

Then,

D.]S(PIQ)ZH(P+Q> _H(P)‘FH(Q)'

2 2

We now recall the definition of a metric. Let S be a non-empty set. We call a function
d:S xS —0,00) a distance function if it satisfies the following three conditions:

1. d(z,y) = 0 if and only if z = y.
2. (symmetry) d(z,y) = d(y,x) for z,y € S.
3. (triangle inequality) d(z,z) < d(z,y) + d(y, z) for z,y,z € S.
For such d, we call a pair (S, d) a metric space. This is a fundamental notion in geometry.
3. METRIZATION OF JENSEN-SHANNON DIVERGENCES
BETWEEN THE MULTINOMIAL DISTRIBUTIONS

Throughout this section, we set log = log,, so that 0 < D;s(P: Q) <1, and, D g(P :
Q) is smaller than the total variation distance. The natural-log version differs only by
a constant factor of In 2.

We let X = {1,2,---,n} and u be the counting measure on X. For n > 2, let
Pr ={Wi)i : >_;pi =1,p; >0} and Py, := {(ps)i : >_; pi = 1,p; > 0}. For P = (p;)j—,
and Q = (¢;)" in Py,

Dkr(P: Q)= Zpi log, <];> ;
i=1 ’
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and

—~ i Di + ¢ qi Di + ¢
DJS(PZQ):Z—210<‘%2< 9 )—210g2< %; )

=1

Our main result is:

Theorem 3.1. Let a > 1/2. Then, D g(P : Q)% is not a metric on P,.

Proof. We first deal with the case that n = 2. Let P, := (¢t,1 —¢), 0 < ¢t < 1.
For t € [0,1/2), let f(t) := Dys(Pija—¢ : Pijag¢) and g(t) := Dys(Pija—y : Pij2) =
Djs(Pyjg : Prjayy). Let F(t) := f(t)* — 2g(t)*. Tt suffices to show that F(t) > 0 for
some ¢. Since F'(0) = 0, by the mean-value theorem, it suffices to show that F’(¢) > 0 for
every t sufficiently close to 0. Since F'(t) = a(f'(t)f(t)* " — 2¢'(t)g(t)*™1), it suffices

to show that
ORI ()
(50) =2 W

for every t sufficiently close to 0.

H(P +1
We see that f(t) =1 — H(Py24¢) and g(t) = H(P(144)/2) — %

. H
5 ence,

d d 1d
()= *%H(H/QH) and ¢'(t) = %H(P(l-&-t)ﬂ) - iaH(Pl/Ht)-

d
Since H(Ps) = —slogy s — (1 — s)logy(1 —s), 0 < s < 1, we see that %H(P(Ht)p) =
1+ d 142t
—flog <1 t) and iH(Pl/QH) = —log <1—2t> . Hence,
g(t) _ SH(Painy) log 1%
25y =2 =
f(@) GH(Pyag) log 1757
log (1:) /
Since lim B /A 1, we see that lim 29 (*) = 1
5—0 2s t—0  fI(t) 2
We recall that f(0) = g(0) = 0. Then, by I’'Hospital’s theorem,

gt) .. g

lim =—+ im 1
t—0 f(t) 50 f’(t) 4’

11—« 11— 11—«
Hence, }gr(l) (?Eg) = <le> . Since a > 1/2, (i) > % Thus we have Eq. .
The proof of Theorem 1 is completed for n = 2.

We now deal with the case of n > 3. We can naturally embed P, into P,, by a map
(p1,p2) = (p1,p2,0,--+,0). Since P +— H(P) is continuous with respect to P on P,,, we
can find Py, P> and Pj3 in P,, such that DJS(Pl : Pg)a > DJS(P1 : Pg)a—i—DJs(PQ : Pg)a.
The proof of Theorem [3.1]is completed for n > 3. g
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Remark 3.2. In general, 2% + 3% < (x4 %)” for 2,5 > 0 and 8 > 1, and, if 27 +¢® =
(x +y)?, then, 8 =1 or zy = 0. Hence, if a function d : S x S — [0, 00) is not a metric
on a set S, then, d®(z,y) is not a metric S. Since it is known that Ds(P : Q)'/? is a
metric, this gives an alternative proof of [15, Proposition 1]. which is much easier than
the proof given in it.

4. METRIZATION OF F-DIVERGENCES BETWEEN THE CAUCHY
DISTRIBUTIONS

For p € R and o > 0, the density function of the univariate Cauchy distribution is
o
iven b o(x) == ————— x € R. For a continuous function f on (0, ), the
g yp#,() 71'(.%—/1/)2—’-0'2’ f (3 )7
f-divergence is defined by

Pus,o2 T
Df(p,ul,tfl :pﬂz,(fz) :Af<lm> p#l,Ul(x)dx'

P, (T)
The following result is crucial in our proof.

Theorem 4.1. (Verdu [22], Eq. (189) in Theorem 10) Let f be a continuous function
on (0,00). Then,

g 1 de
D 1,01 + Pus,o2) = )
S Puror : Praoz) /0 f<C+ \/<27_10059> T

(p2 — p11)* + (02 — 01)2.

2010’2

where ( :=1+

In particular, every f-divergence is a function of (. This quantity is also known as
maximal invariant with respect to an action of the special linear group SL(2,R) to the
upper-half plane H := {u + 0i : p € R,0 > 0} with complex parameter, considered by
McCullagh [12]. For example, we obtain the JSD if we let

Flu) = frstu) = (ulog 2 o 1;“) .

Theorem 4.2. Let f be a convex function on (0, 00) such that f(1) = 0, f is in C? class
on an open neighborhood of 1, and f”(1) > 0. Let a > 1/2. Then, D¢ (po,o, : Po,s5)" is
not a metric on (0, c0).

This result is applicable to a large class of f-divergences including the KLD and the
JSD. However, the regularity assumption for f is crucial. Obviously, the conclusion fails
for the TVD, which is obtained by f(u) = fry(u) := |u — 1]/2.

Proof. We will show that

Df(po,tn : poﬂz)a + Df(pO,Uz : poﬁs)a < Df(p070'1 : poaas)a
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where (01, 02,03) = (e7%, 1,e?) for sufficiently small ¢ > 0. For ¢ > 0, let

ht) = /wa <cosh(t)+slinh(t) 0089) %'

Then, by Theorem h(t) = Ds(po,o, : Po,os) = Df(Po,os : Po,0y) and h(2t) =
D¢(po,o,  Po,0s). Hence, it suffices to show that 2h(t)* < h(2t)* for some ¢t > 0.
We remark that

tgr-rs-lo cosh(t) 4 sinh(t) cosf = 1 (2)
and
lim sinh(¢) 4 cosh(t) cosf = cos 6 € [—1, 1]. (3)
t—+0

Under the assumption of f, we can exchange the derivative wit respect to ¢ and the
integral wit respect to 6, so we obtain that there exists a sufficiently small §; > 0 such
that for every 0 <t < dg,

i [T sinh(t) +cosh(t)cos® 1 do
i) = /o ~ (cosh(t) + sinh(t) cos )2 / (cosh(t) + sinh(¢) cos&) R

and,

wio [T (sinh(t) 4 cosh(t) cos §)? 1 46
PoE) = /0 (cosh(t) + sinh(t) cos )4 (cosh(t) + sinh(t) cos@) T

N /7r 2(sinh(t) + cosh(t) cos #)% — (cosh(t) + sinh(t) cos 0)? ( 1 ) dg
0 (cosh(t) + sinh(¢) cos #)3 cosh(t) + sinh(t) cos® ) "

T

We recall that cosfdf = / cos(26)df = 0 and cos® 0 df = f_ By this, (2)),
0
and (3] . we see that

lim A(t) = lim A/(t) =

t——+0 t——+0

and
. Q)
" _

tLHEOh (8) = 2 >0

By I'Hospital’s theorem,
h(2t 2h' (2t 4h" (2t
lim (7): lim L: im 7():4.

t—=+0 h(t)  t—+0 h/(t) t—+0  h'(¢)

Since a > 1/2, we see that 2h(t)* < h(2t)® for sufficiently small ¢ > 0. This completes
the proof. |
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1
Remark 4.3. (i) In the case of the TVD, tliIEO R'(t) = — > 0, and hence, by 'Hospital’s
- ™

theorem, we have that lim @
t—+0 h(t)

(ii) In [22] Theorem 10], it is assumed that f is convex and right-continuous at 0.
However, for every (u1,01) and (ug, 02),

=2

0 < inf pu2702($> < sup pMQ)UZ(x)
2€R Py oy (1') z€R Ppy,o1 (l’)

< 400,

so we do not need to assume that f is defined at 0. This property does not hold for
normal distributions.

A. ON THE SQUARE ROOT OF JENSEN-SHANNON DIVERGENCE

Fuglede and Topsge [7] stated that the square root of the JSD is a metric on the space
of probability measures over a given measure space. Acharyya, Banerjee, and Boley [I]
provided a proof of this result. However, some parts of the arguments of [I}[7] are sketchy,
and we offer more details here. While we follow the overall strategy used in [Il [7], we
believe that several components of our approach are more elementary, transparent, and
simpler than those in [I]. Our arguments make use of the Lambert W function.

Let P, @ be two probability measures on a measurable space X. Let M := (P+Q)/2.
Let the Jensen—Shannon divergence between P and @ be

L1 dP dQ
Djs(P.Q)._Q(/XlongPJr/XlongdQ).

Let ¢(z) := zlogz,z > 0. Then, this is convex. Let

o g) = \/¢<x>;¢<y> _¢(m;y), >0

Let A be a probability measure on X such that P < A and Q < A. For ease of
notation, we let f := dP/dX and g := dQ/d\. Then,

Dys(P:Q) = /X B(f,g) dA.

Let P, @, R be three probability measures on a measure space X. Let A be a proba-
bility measure on X such that P < A, @ < A and R < A. Let f :=dP/d\, g := dQ/d\
and h = dR/d)\. By the Minkowski inequality, in order to show that

VDys(P:R) < /Dys(P:Q)+/Dys(Q:R),

which is equivalent to

Jetroars [ wrgars [ max

it suffices to show that:
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Proposition A.1.

\/¢($az) < \/¢($ay) + \/Wy’Z)a z,y,z > 0.

By Schoenberg’s theorem [20], in order to show Proposition it suffices to show
that:

Proposition A.2. (Acharyya et al. [I], Lemma 4) If k(z,y) := ¢(z +y) = (x +
y)log(z +y), then, (x,y) — exp(Bk(z,y)) is a positive-definite kernel for every 5 > 0.

Let W (x) be the inverse function of a C* function z — zexp(z) on (—1,00). This is
called the Lambert W function, and W € C*°((—1/e, o0)). By [10], W () is a Bernstein
function. Since a map z — 1/(1+42) is a completely monotone function, by [I9, Theorem
3.7 (ii)], a map = — 1/(1 + W (x)) is also a completely monotone function.

Hence, by Bernstein’s theorem (cf. [I9, Theorem 1.4]), there exists a unique proba-
bility measure p on (0, 00) such that

1

/000 exp(—tz)u(de) = T t>0.

Let 0 < s < 1. Then, by a disintegration formula (cf. [24], p.63),

/OOC z*p(dz) = ﬁ /Ooo sl (1 - /OOO eXp(—tx)u(dx)) .

We see that

/ (1 - /OOO exp(—t;z:),u(dz)) dt = /tsl% dt = —s*7'T(1 — 5, sW(t)) + C,

where T'(,) is the incomplete Gamma function and C' is the integral constant.
Since lim W (t) =0 and lim W(t) = +oo,
t—+0 t——+oco

/ xu(dzr) = s* = exp(4(s)), 0 <s < 1.
0
We remark that for every n > 1 and ¢ > 0,

sup 2" exp(—tx) < +o0.
x>0

Hence, for each n > 1,

an

—/ exp(—tx)u(dz) z/ (—z)" exp(—tx)u(dx), t > 0.
at™ Jo 0
By the monotone convergence theorem, for each n > 1,

0o a2n oo aQn 1
2n . — _ — | - -
[ ntan) = i g [ -t = i,
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This limit is finite since W € C*°((—1/e, 00)). Hence,
(o)
/ 2®u(dz) < 400, s> 0.
0
Hence,
F(z):= / x*p(dez), z € {z € C:Re(z) > 0},
0

is well-defined and holomorphic. By the identity theorem for holomorphic functions,
/ 2’ u(dx) = s° = exp(o(s)), s > 0.
0
Let vi=po (log)_1 = p o exp be a probability measure. Then,

/ " exp(sy)r(dy) = 5 = exp(d(s)), 5 > 0.

Let 8 > 0. Then,
[ exp(s(By — log B))v(dy) = 5* = exp(Bé(s)), s > 0.

Let by, by > 0and c1,--- ,cn € R. Then,

oo

( cz'eXp(bi(ﬂy—logﬁ))> v(dy) = 0.
0 1

i,5=1 i—

> cicjexp(Bp(bi + b)) = /

This completes the proof of Proposition

Remark A.3. We see that

/ exp(ity)v(dy) = exp (—g|t\ + itlog \t|) , teR. (4)
—0o0
Hence, v is an asymmetric stable distribution with o = 1. The function ¢(t) :=

(oo}
/ exp(ity)v(dy) is not an entire function, so we cannot apply [4, Theorem 1].
— 00

The arguments in the proof of [I, Lemma 4] implicitly assumes that if (4)) holds, then,
oo
/ exp(sy)r(dy) < +oo for every s > 0. However, the proof is not written in it. One
—00

easy way to resolve this is to use an integral expression of the density function g of v
given in [24] Theorem 2.2.3] as follows:

g(x) = % /_1 U(t)exp(z —exp(x)U(t)) dt, x € R,
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where Lt
™ - ™
t) == —Z(1 —t) tan(=t
ue) 2 cos(rt/2) exp( 2( ) tan( ))
We see that
m U(t)=-, lim U(t)=+o0,
t——1+0 e t—1-0
and,
! L (n+2)
U(t) exp(—exp(z)U(t)) dt < exp(—(n + 2)z) ———dt, n>1.
-1 1 U@t

Then, we see that for every n > 1,

/ exp(nz)g(z)dzr < 4o0.
R

Now we can use the identity theorem as above, and obtain that

/Rexp(sm)g(m) dz = exp(é(s)), s > 0.
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