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A REGRESSION METHOD OF ESTIMATION
FOR GENERALIZED EXTREME VALUE DISTRIBUTION

Anand R and Chandran C

This study focuses on parameter estimation for the generalized extreme value distribution
(GEVD) using the regression method described by [27]. A regression equation is derived from
the cumulative distribution function and the scale parameter is estimated by applying the iter-
ative re-weighted least squares in this regression equation. For estimating the shape parameter,
a profile likelihood is constructed based on this regression equation. A comparison study of the
regression method with other existing estimators derived from the method of moments, maxi-
mum likelihood, probability-weighted moments, l-moments, and maximum product spacing is
performed for the GEVD. Also, the left truncated GEVD is considered and the behaviour of its
hazard function is studied. The parameter estimates of the left truncated GEVD is also derived
using the regression method. An extensive simulation study is conducted and the efficiencies of
the estimation techniques are analysed. The bootstrap confidence intervals for the estimators
are also constructed. Finally, a real data analysis is carried out to illustrate the applicability
of the models and estimation techniques.

Keywords: generalized extreme value distribution, regression method, Box–Cox transfor-
mation, profile likelihood
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1. INTRODUCTION

The theory of extremes provides models which can be used in extreme situations such
as flood, drought, earthquake, war, bush fire, stock market etc. The classical theory of
extremes deals with the distributional properties of the statisticsMn = max(X1, . . . , Xn)
and mn = min(X1, . . . , Xn) of independent and identically distributed random variables
X1, . . . , Xn. The pioneering works on the distributional aspects of extremes were carried
out by [12] and [11]. It was in the works of [11], the versions of the well known three
types of limiting distributions of extremes, also known as the type-I, type-II, and type-
III extreme value distributions, were derived. These three models for extremes can
be briefly described as follows. Let {Xn, n ≥ 1} be a sequence of independent and
identically distributed random variables. If the asymptotic distribution of Mn under
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proper normalization exits, i.e., if

P

(
Mn − bn

an

)
w−→ G(x), (1.1)

for sequences of constants {an > 0} and {bn} and a non-degenerate cumulative distri-
bution function (CDF) G(·), then the CDF G(·) is one among the following three:

Type-I : G1(x) = exp

(
− exp

(
− x− µ

σ

))
, −∞ < x < ∞

Type-II : G2(x) =


0, x ≤ µ

exp

(
−
(

x−µ
σ

)−ξ)
, for some ξ > 0, x > µ

Type-III : G3(x) =

exp

(
−
(
−
(

x−µ
σ

)−ξ))
, for some ξ < 0, x ≤ µ

1, x > µ.

(1.2)

When µ = 0 and σ = 1, the type-I, type-II, and type-III distributions in (1.2) are the
standard extreme value distributions. A complete theoretical framework of this result
is done by [13]. For a given data we fit type-I, type-II, and type-III extreme value
distributions and the best fitted distribution is used for further analysis of extremes.
[28] and [17] unified these three families of distributions into a single family known as
the generalized extreme value distribution (GEVD), by incorporating a new parameter
in the model. The distribution function of GEVD proposed by [28] and [17] is of the
form

G(x|µ, σ, ξ) = exp

(
−
(
1− ξ(x− µ)

σ

) 1
ξ
)
, (1.3)

where −∞ < µ < ∞ is the location parameter, σ > 0, is the scale parameter, and
−∞ < ξ < ∞, is the shape parameter. Also, x < µ+ ξ

σ , when ξ > 0 and x > µ+ ξ
σ , when

ξ < 0. The distribution function G(x) given in equation (1.3) is the three parameter
GEVD. The case ξ = 0, is interpreted as lim

ξ→0
G(x|µ, σ, ξ) which is the type-I extreme

value distribution or Gumbel distribution (G1(x)). For ξ > 0, G(x) is the type-II extreme
value distribution or Fréchet distribution (G2(x)), and for ξ < 0, G(x) is the type-
III extreme value distribution or reverse Weibull distribution (G3(x)). The practical
advantage of model (1.3) is that by estimating the shape parameter ξ, the model for
extreme is determined by the data itself. Detailed theoretical aspects of the above results,
its consequences and practical applications can be seen in [18, 23] and [10]. Practical
applications of model (1.3) in hydrology were discussed in [17] and a recent review on
model (1.3) can be seen in [6]. Moreover, the national environment research council in
1975, recommended the use of GEVD in flood related studies in the United States.

The parameter estimation of the model (1.3) have been studied by various authors.
An initial attempt to find the maximum likelihood (ML) estimates of GEVD can be
seen in [22], and it was later developed by [14] and [25]. The Fisher information matrix
for ML estimates of GEVD was also derived in [22]. It was [25], who described the
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existence of ML estimates for the parameters of GEVD in complete generality. [25]
also showed that the regularity conditions for ML estimates holds only when the shape
parameter ξ lies in the interval

(
0, 1

2

)
. The asymptotic normality of ML estimates of

the parameters of GEVD were established in [5]. Recently, [32] proved uniqueness and
global optimality of the ML estimates. Also, [20], using simulation studies showed that
for small samples, ML estimates of the parameters of GEVD leads to absurd results. [26]
derived the moments method of estimation (MOM) of the parameters of GEVD. [16] gave
a detailed note on how to calculate probability weighted moment (PWM) estimators of
the parameters of GEVD. Similarly the l-moment (LM) estimates, which are equivalent
to PWM estimates, were calculated by [15]. Moreover, in [16] it was shown that, for
sample sizes from 15 to 100, the PWM or equivalent LM perform better in terms of
bias and variance, than ML estimates. In [19], the MOM, PWM, and ML estimates are
compared for sample sizes 10 to 50 and for −0.25 < ξ < 0.3, and it was inferred that
the MOM estimates perform better than the ML and PWM estimates, in terms of root
mean square error. [29] derived the maximum product spacing (MPS) estimators for
the parameters of GEVD in situations where the ML estimates breaks down. Moreover,
they observed that the MPS estimates are more efficient than the ML estimates for
the parameters of GEVD. [29] also illustrated through simulation studies that for small
samples, MPS technique provide more stable estimates than the ML and PWM estimates
for the parameters of GEVD, in terms of bias and MSE. Moreover, [2] compared the
MPS estimates of the parameters of GEVD with the corresponding LM estimates and it
was observed that their efficiencies are relatively close. A detailed review on the various
estimation techniques and their comparisons for the parameters of GEVD can be seen in
[30] and [1]. The above mentioned estimation techniques have certain flaws in them. One
notable limitation is the absence of ML estimates for ξ < − 1

2 . Additionally, traditional
methods such as MOM, PWM, LM, and MPS often yield absurd results, particularly
when confronted with small sample sizes. Due to these drawbacks, researchers are trying
to develop better procedures to estimate the parameters of GEVD.

This served as a motivation for us to find new estimation techniques for the parame-
ters of GEVD which rectifies the above mentioned limitations. [27] introduced one such
technique called the regression method of estimation for the generalized Pareto distri-
bution (GPD). [27] showed through simulation studies that the parameter estimates of
GPD derived using the regression method exists throughout the parameter space and
that it works well for small samples. [21] showed that for modelling extremes the GPD,
is equivalent to the GEVD model whenever the maximum has a non-degenerate limit
distribution G(·), as mentioned in equation (1.1). This connection is crucial for extreme
value theory because it allows for modelling extremes using threshold excedences (GPD)
or block maxima (GEVD). Therefore, we examine the regression method for estimating
the parameters of the GEVD.

This paper aims to investigate the regression method for estimating the parameters
of the GEVD model and to compare it with existing estimation techniques. The rest of
the article is organised as follows: The main method is described in section 2. Also, a
left truncated GEVD model is considered and the corresponding parameter estimation
using the regression method is discussed. The behaviour of the hazard function of
the truncated model is also analysed in this section. In section 3, an algorithm for
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constructing the bootstrap confidence intervals for the parameters of GEVD using the
regression method is provided. A rigorous Monte Carlo simulation study is carried out
in section 4 using simulated random samples to analyse and compare the regression
method of estimation with the MOM, ML, PWM, LM, and MPS estimates. In section
5, a real life data of international crude oil prices during the initial stages of the Ukraine
war is considered for illustration purposes. Finally, a brief conclusion of the study is
given in section 6.

2. REGRESSION METHOD

In this section a regression method of estimation for the parameters of GEVD is dis-
cussed. The procedure is analogous to the one proposed by [27] to estimate the param-
eters of GPD. For computational ease, we assume µ = 0. The method is not in general
applicable to all models. However, if a linear regression equation can be obtained by
inverting the CDF, then this method can be applied. Consider the CDF G(·) of GEVD
given in (1.3). Now, by inverting G(·) we get

logG(x) = −
(
1− ξx

σ

) 1
ξ

=⇒ −1 + (− logG(x))ξ = −ξx

σ

=⇒ (− logG(x))ξ − 1

ξ
= −x

σ
, (2.1)

which can be written in the form of a regression equation as described below. Let
(X1, . . . , Xn) be a random sample of size n from GEVD and Gn(·) be the empirical
distribution function. Let x(1), . . . , x(n) be the ordered statistics corresponding to the
given sample. Since the empirical distribution function Gn(·), is an estimate of the G(·),
by substituting Gn(·) in equation (2.1), we obtain

(− logGn(x))
ξ − 1

ξ
= −x

σ
+ ϵr, (2.2)

where

Gn(x) =


0, x < x(1)
r
n , x(r) ≤ x < x(r+1), r = 1, 2, . . . , n

1, x > x(n).

(2.3)

For the given sample x(1), . . . , x(n), we can write (2.2) as

Gξ(x(r)) = −
x(r)

σ
+ ϵr, r = 1, 2, . . . , n, (2.4)

where, Gξ(x(r)) =
(− logGn(x))

ξ−1
ξ , and ϵr is the error term, resulting from substituting

G(·) with its estimate Gn(·). Note that, (2.4) is in the form of a regression equation
which can be written in vector form as follows:

Gξ = Xβ + ϵ, (2.5)
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where Gξ = (Gξ(x(1)), . . . , Gξ(x(n))), is an n × 1 vector, X = (x(1), . . . , x(n)), is an

n × 1 vector, β = − 1
σ and ϵ = (ϵ1, . . . , ϵn) is an n × 1 vector. Therefore, it is enough

to estimate the parameters β and ξ of the regression equation (2.4). For this, we follow
the Box–Cox procedure discussed in [31] where a Laplace assumption profile likelihood
is constructed for a series of ξ’s. Then, ξ is estimated as the value which maximizes the
profile likelihood and β is estimated using iterative weighted least squares technique.
The Box–Cox variance stabilizing transformation, suggested by [4] corresponding to the
regression equation (2.2) is

Gξ(x(r)) =

{
(− logGn(x))

ξ−1
ξ , ξ ̸= 0

log(− logGn(x)), ξ = 0.
(2.6)

We now estimate the shape parameter ξ using profile likelihood method discussed
in [31]. For this, we construct a profile likelihood for Gξ as a function of ξ and β and
obtain the estimate of ξ by assuming β as the nuisance parameter. As the left hand side
of equation (2.2) is a function involving ξ, a Jacobian needs to be evaluated in order to
obtain the profile likelihood. The Jacobian J(ξ) is obtained as

J(ξ) =

n∏
r=1

(
− logGξ(x(r))

)(ξ−1)

Gξ(x(r)
. (2.7)

The Laplace probability density with mean zero is given by

f(x) =
1

2ϕ
exp

(
−|u|

ϕ

)
, −∞ < x < ∞, ϕ > 0. (2.8)

The variance of the above Laplace distribution is 2ϕ. For a given sample (X1, X2, . . . , Xn)
of size n, the ML estimate of ϕ is the mean absolute deviation about the median, i.e.:

ϕ̂ =
1

n

n∑
i=1

∣∣∣y−Xβ̂
∣∣∣ . (2.9)

Following the procedure of [31], the Laplace profile likelihood for a given ξ denoted by
pL(ξ), is obtained as

pL(ξ) = C +

n∑
r=1

log

∣∣∣∣∣
(
− logGξ(x(r))

)(ξ−1)

Gξ(x(r)

∣∣∣∣∣− n log (ϕ̂(ξ)), (2.10)

where C represents the proportionality constant. The estimate β̂ of β is evaluated using
the iterative weighted least squares technique. The iteration formula is given by

β̂(j+1) = (X′W (j)X)−1X′W (j)Gξ(x(r)), (2.11)

where W (j) is the diagonal matrix of weights with entries, w
(j)
r = |Gξ(x(r))−x(r)β

(j)|−1,
r = 1, 2, . . . , n and j = 0, 1, . . . denotes the number of iterations. For estimating the
parameters β and ξ, we follow the method suggested by [31]. That is, we apply iterative
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weighted least squares estimate β̂ for β given in (2.11), to the profile likelihood equation
(2.10). Thus, the profile likelihood equation becomes a function solely depending on ξ.

From this, the estimate ξ̂ of ξ is obtained as the value of ξ which maximizes the profile
likelihood. Now, to find β̂, an initial value β(0) of β, is arbitrarily chosen and substituted
in (2.11) to evaluate β(1). Once β(1) is obtained, β(0) is replaced by β(1) to obtain β(2).
This process is continued out until |β(j+1) − β(j)| < δ, where δ is a small quantity.

We note that the closed form expression for the above estimates do not exist. So,
further evaluation of the estimates are carried out using simulation techniques and are
discussed in section 4. Now, we consider a left truncated GEVD and its parameter
estimation using the above method.

2.1. Truncated GEVD

To apply GEVD in reliability contexts, we consider the left truncated GEVD (TGEVD)
at zero, as introduced by [3]. The TGEVD was employed to calibrate wind speed
forecasts, thereby preventing negative wind speed predictions. The CDF of TGEVD is
defined as

G0(x|µ0, σ0, ξ0) =



0, x < 0

exp

(
−

(
1− ξ0(x−µ0)

σ0

) 1
ξ0
)

−exp

(
−

(
1+

ξ0µ0
σ0

) 1
ξ0
)

1−exp

(
−

(
1+

ξ0µ0
σ0

) 1
ξ0
) , 0 < x < σ0

ξ0
+ µ0

1, x > σ0

ξ0
+ µ0,

(2.12)

where µ0 is the location parameter, σ0 is the scale parameter and ξ0 is the shape pa-
rameter of TGEVD. The corresponding probability density function is

g0(x|σ0, ξ0) =

(
1− ξ0(x−µ0)

σ0

) 1
ξ0

−1

exp

(
−
(
1− ξ0(x−µ0)

σ0

) 1
ξ0
)

σ0

(
1− exp

(
−
(
1 + ξ0µ0

σ0

) 1
ξ0
)) , 0 < x <

σ0

ξ0
+ µ0.

(2.13)
The hazard function of TGEVD, denoted by h(x) is obtained as

h(x) =
g0(x|µ0, σ0, ξ0)

1−G0(x|µ0, σ0, ξ0)

=

(
1− ξ0(x−µ0)

σ0

) 1
ξ0

σ0

(
1− exp

[(
1− ξ0(x−µ0)

σ0

) 1
ξ0

−
(
1 + ξ0µ0

σ0

) 1
ξ0
]) . (2.14)

In the upcoming theorem, we analyse the behaviour of hazard function of the TGEVD
model.
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Theorem 2.1. Let X be a non-negative random variable following TGEVD. Then, the
TGEVD has decreasing hazard rate.

P r o o f . Consider the hazard function h(x) of TGEVD, given in equation (2.14). The
first derivative of h(x) is given by

d

dx
(h(x)) = −

(
1 − ξ0(x−µ0)

σ0

) 1
ξ0

−1(
1 − exp

[(
1 − ξ0(x−µ0)

σ0

) 1
ξ0 −

(
1 +

ξ0µ0
σ0

) 1
ξ0

(
1 − ξ0(x−µ0)

σ0

) 1
ξ0

])
σ4
0

((
1 − exp

[(
1 − ξ0(x−µ0)

σ0

) 1
ξ0 −

(
1 +

ξ0µ0
σ0

) 1
ξ0

]))2
.

(2.15)

Since 0 < x < σ0

ξ0
+ µ0 and σ0

ξ0
> −µ0,

d
dx (h(x)) is negative, which implies that, h(x) is

a decreasing function, which completes the proof. □

[3] has showed that, the mean of TGEVD exists only when ξ0 < 1. Due to this
constraint, the estimation of ξ0 using MOM, PWM, and LM are restricted. So, we
inspect the regression method of estimation discussed in section 2 for the TGEVD. As
in section 2, we assume µ0 = 0. Then, the CDF (2.12) becomes

G0(x|σ0, ξ0) =

exp

(
−
(
1− ξ0(x−µ0)

σ0

) 1
ξ0
)
− exp(−1)

1− exp(−1)
. (2.16)

The regression equation obtained from (2.16) is given as(
− log

(
G0(x)(1− e−1) + e−1

))ξ0

− 1

ξ0
= − x

σ0
. (2.17)

Following the procedure outlined in section 2, we derive the parameter estimates for
the left TGEVD using the regression method. An illustration of this technique is also
provided through simulation, as discussed in section 4.

For both GEVD and TGEVD, we note that the regression method provides estimates
which can only be evaluated using iterative procedures. Thus the corresponding confi-
dence intervals for the parameter estimates cannot be constructed. So as an alternative,
bootstrap confidence intervals are considered.

3. BOOTSTRAP CONFIDENCE INTERVAL

The current section deals with the evaluation of bootstrap confidence intervals for the
parameter estimates of GEVD and TGEVD using regression method. Bootstrap is a
resampling technique introduced by [7], wherein the observed sample is considered as a
finite population and random samples are generated with replacement from the observed
sample. Detailed discussions on bootstrap are available in [8] and [9]. A practical
oriented approach based on R programming can be seen in [24]. Here, the intervals
are constructed using the bootstrap-p method, were p stands for percentile. Algorithm
for evaluating the bootstrap confidence intervals for the parameters of GEVD is given
below. Let (X1, . . . , Xn) be a random sample from GEVD.
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1. Generate a bootstrap sample {x∗
1, x

∗
2, . . . , x

∗
n} of size n from (X1, . . . , Xn). Using

this sample, the bootstrap estimates σ̂∗ and ξ̂∗ are evaluated using regression
method discussed in section 3.

2. Step 1 is repeated B times.

3. Let F ∗
1 (x) and F ∗

2 (x) be the empirical distribution functions of bootstrap replicates
for σ∗ and ξ∗ respectively. Define σ∗p(x) = F ∗−1

1 (x) and ξ∗p(x) = F ∗−1
2 (x). Then

the approximate 100(1 − α)% bootstrap-p asymptotic confidence intervals for σ̂∗

and ξ̂∗ are(
σ∗p(α/2) , σ∗p(1− α/2)

)
and

(
ξ∗p(α/2) , ξ∗p(1− α/2)

)
.

respectively.

Similarly, the bootstrap confidence intervals for the parameter estimates of TGEVD can
be obtained as(

σ∗p
0 (α/2) , σ∗p

0 (1− α/2)

)
and

(
ξ∗p0 (α/2) , ξ∗p0 (1− α/2)

)
.

4. SIMULATION STUDY

In this section, we perform a rigorous Monte Carlo simulation to analyse the efficiencies
of the regression method compared to other existing methods of estimation for the
parameters of GEVD and TGEVD. For this purpose, the mean squared error (MSE)
and absolute bias of the estimates are evaluated. For illustration purpose, 4 sets of
parameter combinations (ξ = 0.1 , σ = 2), (ξ = 0.2 , σ = 2), (ξ = −2 , σ = 1) and
(ξ = 2 , σ = 1) and five different sample sizes, 10, 20, 50, 100 and 500 are considered.
R programming software is used for computation and the results are based on 1000
replications.

Sample Size
Shape Parameter Scale Parameter

Sample Size
Shape Parameter Scale Parameter

MSE bias MSE bias MSE bias MSE bias

ξ0 = 0.1 and σ0 = 2 ξ0 = 1 and σ0 = 1

10 0.4215 0.6605 0.1790 0.2836 10 0.2943 0.5200 0.0150 0.1012

20 0.3343 0.4930 0.0992 0.2444 20 0.2636 0.4461 0.0055 0.0588

50 0.2564 0.4138 0.0252 0.1160 50 0.2499 0.4117 0.0012 0.0275

100 0.1943 0.3834 0.0090 0.0707 100 0.2048 0.3341 0.0006 0.0199

500 0.1852 0.3041 0.0015 0.0295 500 0.1168 0.2909 0.0002 0.0120

ξ0 = 0.2 and σ0 = 2 ξ0 = 2 and σ0 = 1

MSE bias MSE bias MSE bias MSE bias

10 0.2674 0.4366 0.3723 0.5680 10 0.5771 0.7083 0.0931 0.2441

20 0.2012 0.3824 0.1073 0.2782 20 0.2562 0.4373 0.0223 0.1256

50 0.1747 0.3252 0.0714 0.2036 50 0.2045 0.3936 0.0113 0.0887

100 0.1139 0.2823 0.0205 0.1144 100 0.1772 0.3585 0.0067 0.0645

500 0.0290 0.1273 0.0043 0.0512 500 0.0883 0.2541 0.0050 0.0199

Tab. 1: MSE and Absolute biases of the estimates of TGEVD using regression method.
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Sample Size
Scale Parameter σ Shape Parameter ξ

Regression MOM MLE PWM L-Moment MPS Regression MOM MLE PWM L-Moment MPS

ξ = 0.1 , σ = 2

10 0.0986 0.1368 0.4063 0.5141 0.4351 0.7325 0.0583 0.3496 0.3547 0.6213 0.4956 0.2260

20 0.0242 0.0739 0.2152 0.1616 0.1623 0.2468 0.0735 0.1317 0.2015 0.2344 0.2538 0.0506

50 0.0096 0.0455 0.1305 0.0934 0.1018 0.0661 0.0094 0.0507 0.1166 0.1228 0.1220 0.0109

100 0.0039 0.0340 0.0704 0.0619 0.0685 0.0284 0.0041 0.0356 0.0707 0.0752 0.0573 0.0049

500 0.0006 0.0178 0.0338 0.0086 0.0089 0.0053 0.0009 0.0142 0.0285 0.0110 0.0113 0.0007

ξ = 0.2 , σ = 2

10 0.0707 0.1261 0.3427 0.4539 0.2236 0.7393 0.0299 0.2926 0.3789 0.6000 0.4693 0.2288

20 0.0219 0.1096 0.2272 0.1591 0.1598 0.2452 0.0303 0.1271 0.2103 0.2531 0.1721 0.0536

50 0.0084 0.0411 0.1206 0.0961 0.0882 0.0531 0.0085 0.0625 0.1078 0.1335 0.0636 0.0105

100 0.0036 0.0335 0.0841 0.0462 0.0563 0.0324 0.0072 0.0402 0.0749 0.0627 0.0309 0.0039

500 0.0005 0.0168 0.0339 0.0072 0.0072 0.0051 0.0009 0.0156 0.0272 0.0106 0.0074 0.0006

ξ = −2 , σ = 1

10 0.1718 0.4200 0.3937 0.2360 0.1735 0.1905 0.0688 0.4215 0.6280 0.4985 0.2878

20 0.0596 0.1828 0.1930 0.1697 0.0857 0.0689 0.0651 0.2775 0.4990 0.2193 0.0888

50 0.0190 0.0429 0.1164 0.0253 0.0260 0.0200 0.0449 0.1725 0.1339 0.1162 0.0229

100 0.0075 0.0172 0.0795 0.0103 0.0107 0.0086 0.0231 0.0805 0.0576 0.0570 0.0094

500 0.0009 0.0018 0.0341 0.0016 0.0018 0.0012 0.0056 0.0115 0.0102 0.0112 0.0012

ξ = 2 and σ = 1

10 0.2114 0.4560 0.3581 0.3144 0.2521 0.1656 0.3498 0.3733 0.7933 0.7388 0.7046

20 0.1755 0.2647 0.1875 0.2307 0.2210 0.0528 0.2678 0.3621 0.6758 0.5710 0.2164

50 0.0895 0.2182 0.1171 0.0342 0.0316 0.0153 0.1709 0.1557 0.2156 0.2142 0.0614

100 0.0206 0.2289 0.0783 0.0128 0.0124 0.0070 0.0928 0.0918 0.0992 0.0950 0.0280

500 0.0051 0.1397 0.0341 0.0022 0.0022 0.0013 0.0255 0.0509 0.0190 0.0184 0.0052

Tab. 2: MSEs of the estimates of GEVD.

Sample Size
Scale Parameter σ Shape Parameter ξ

Regression MOM MLE PWM L-Moment MPS Regression MOM MLE PWM L-Moment MPS

ξ = 0.1 , σ = 2

10 0.2374 0.2651 0.6173 1.1570 0.7136 0.7325 0.2082 0.3695 0.5847 1.2447 0.9174 0.2260

20 0.1213 0.2191 0.4571 0.3252 0.3227 0.2468 0.2489 0.2656 0.4448 0.4032 0.4086 0.0506

50 0.0778 0.1765 0.3471 0.2302 0.2418 0.0661 0.0758 0.1875 0.3362 0.2773 0.2745 0.0109

100 0.0506 0.1594 0.2654 0.1830 0.1747 0.0284 0.0506 0.1622 0.2658 0.2084 0.1997 0.0049

500 0.0199 0.1137 0.1838 0.0718 0.0425 0.0053 0.0254 0.1029 0.1687 0.0809 0.0825 0.0007

ξ = 0.2 and σ = 2

10 0.1805 0.2555 0.5710 0.9751 0.3875 0.7393 0.1530 0.3659 0.6052 1.1800 0.5027 0.2288

20 0.1193 0.2077 0.4647 0.3211 0.3181 0.2452 0.1334 0.2745 0.4484 0.4128 0.3163 0.0536

50 0.0740 0.1754 0.3456 0.2314 0.2222 0.0531 0.0736 0.2152 0.3272 0.2845 0.1954 0.0105

100 0.0483 0.1573 0.2877 0.1587 0.1718 0.0324 0.0666 0.1724 0.2714 0.1919 0.1350 0.0039

500 0.0177 0.1042 0.1841 0.0665 0.0651 0.0051 0.0248 0.1024 0.1649 0.0819 0.0672 0.0006

ξ = 1 and σ = 1

10 0.3132 0.6604 0.5977 0.3846 0.3175 0.1905 0.2308 0.6890 0.8344 0.5021 0.2878

20 0.1898 0.4152 0.4329 0.2271 0.2115 0.0689 0.2179 0.5068 0.6262 0.3738 0.0888

50 0.1082 0.1544 0.3400 0.1183 0.1190 0.0200 0.1839 0.3073 0.2806 0.2696 0.0229

100 0.0665 0.0952 0.2818 0.0772 0.0787 0.0086 0.1205 0.2080 0.1885 0.1876 0.0094

500 0.0238 0.0338 0.1846 0.0316 0.0339 0.0012 0.0610 0.0866 0.0810 0.0838 0.0012

ξ = 2 and σ = 1

10 0.3831 0.4797 0.5809 0.4085 0.4072 0.3124 0.5093 0.6220 1.0979 0.8745 0.6510

20 0.2411 0.3957 0.4641 0.2679 0.2461 0.177 0.4250 0.4626 0.8445 0.5895 0.3596

50 0.2329 0.3530 0.3407 0.1403 0.1366 0.0919 0.3361 0.3283 0.3458 0.3548 0.1845

100 0.1591 0.3415 0.2794 0.0900 0.0878 0.0623 0.2465 0.2669 0.2435 0.2402 0.1248

500 0.0551 0.2789 0.1847 0.0380 0.0377 0.0301 0.1271 0.2055 0.1093 0.1091 0.0603

Tab. 3: Absolute biases of the estimates of GEVD.
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The MSE and absolute bias of estimates of GEVD evaluated using all the above
mentioned techniques are tabulated in Table 2 and Table 3 respectively. Unlike MLE,
the estimates obtained using regression method exists throughout the parameter space
of GEVD. Also as sample size increases, the MSE and absolute bias decreases which
indicates the efficiency of the regression method. We can infer that, for small samples
the MSE and absolute bias of estimates evaluated using regression method are smaller
when compared to that of other estimates, justifying that for small samples the regression
method outperforms the other techniques. The PWM estimates and LM estimates are
found to be least efficient for small samples. In the case of large samples, the estimates
evaluated using regression method have smaller MSE and absolute bias than the other
estimates.

In the case of TGEVD, from Table 1 it is evident that the MSE and absolute bias de-
creases as sample size increases. Also, the estimates calculated using regression method
are found to be better for estimating scale parameter rather than shape parameter.

5. REAL DATA ANALYSIS

This section analyses a real dataset to demonstrate the computational method discussed
in this study. Specifically, we examine the international price of crude oil during the
Ukrainian war. The war in Ukraine has significantly impacted global economics, leading
to a sharp increase in crude oil prices on the international market. Given the extreme
nature of this scenario, we aim to model the price of crude oil (in US dollars) using
the GEVD and TGEVD. The dataset comprises of the daily maximum prices of crude
oil from January 1, 2022, to March 18, 2022, excluding weekends, taken from https:

//in.investing.com/commodities/crude-oil-historical-data. The data contains
52 values and it is given below in Table 4.

106.28 104.26, 99.21, 102.58, 109.94, 110.29, 114.87, 126.84, 129.44, 129.79,
116.10, 116.57, 112.50, 106.80, 99.13 100.53, 93.89, 94.93, 92.61, 93.35,95.01,
95.17, 95.82, 94.66, 91.74, 90.58, 91.68, 92.72, 93.17, 90.44,89.72, 88.87, 88.38,
88.84, 88.54, 87.94, 85.71, 86.08, 85.55, 87.10, 87.87, 86.62, 84.44, 82.93, 83.14,
81.58, 79.45, 80.48, 80.25, 78.73, 77.66, 76.46

Tab. 4: The daily maximum prices of crude oil in US dollars.

We now present the summary statistics of the considered data in the following Table 5.

Minimum First Quartile Median Third Maximum Mean

76.46 86.46 92.17 101.04 129.79 95.14

Tab. 5: Descriptive statistics for the considered data.

To determine if the given dataset fits the GEVD, we performed the Kolmogorov-
Smirnov (KS) goodness-of-fit test. The resulting p-value is 0.9211, and the KS statistic

https://in.investing.com/commodities/crude-oil-historical-data
https://in.investing.com/commodities/crude-oil-historical-data
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is 0.0736. Additionally, Figure 1 presents the empirical and theoretical cumulative distri-
bution functions along with the P-P plot for the data fitted using GEVD. These results
suggest that the GEVD provides an adequate fit for the dataset. The parameters of
GEVD were estimated using the regression method, and bootstrap confidence intervals
were calculated for each parameter. Moreover, for comparing the existing MLE method
with the proposed method, we have evaluated the ML estimates of GEVD for the con-
sidered data. For these estimates, the p-value and KS statistic are obtained as 0.9086
and 0.0752 respectively. This shows that the estimates evaluated using the proposed
regression method provides a better fit for the considered dataset. These results are
summarized in Table 6.

Regression Method Maximum Likelihood
Parameters Estimates Bootstrap intervals Parameters Estimates

ξ̂ −0.3002 (−0.5210,−0.08016) ξ̂ −0.1436

σ̂ 7.9853 (5.8575, 9.0531) σ̂ 9.3690

µ̂ 88.2761 (86.3975, 89.7732) µ̂ 88.6277

Tab. 6: Estimates and confidence intervals using regression method and the ML estimates
for the crude oil data.

The TGEVD model is also fitted for the same data and the parameter estimates are
obtained as ξ̂ = −0.0649, σ̂ = 9.1977 and µ̂ = 88.5821. The corresponding p-value and
KS statistic are 0.9726 and 0.0644 respectively. Comparing the goodness of fit measures
of GEVD and TGEVD, it is observed that the TGEVD is a better fit for the crude oil
price data. The plot between theoretical and empirical CDFs and P-P plot for the data
fitted using TGEVD are given in Figure 2.

Fig. 1: Goodness of fit plots for GEVD using regression estimates.
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Fig. 2: Goodness of fit plots for TGEVD using regression estimates.

6. CONCLUSION

In this article, we discuss the derivation of parameter estimates for the GEVD using
the regression method suggested by [27]. Initially, a regression equation is constructed
from the CDF, and the scale parameter is estimated using the iterative re-weighted
least squares technique. A profile likelihood is constructed using the regression equa-
tion to estimate the shape parameter. A comprehensive simulation study compares the
regression method estimators with those obtained using the MOM, MLE, PWM, LM,
and MPS methods. These comparisons are based on absolute bias and MSE for various
sample sizes and parameter combinations. The results indicate that as the sample size
increases, the absolute bias and MSE of the regression estimates for GEVD decrease,
demonstrating the efficiency of this method. The regression method is found to exist
throughout the parameter space. Moreover, the regression method consistently outper-
forms all other techniques across all considered cases, especially when the sample size
is small. For large samples, the regression, LM, and MPS methods perform better than
the other techniques for the considered parameter combinations. The left-truncated
GEVD at zero is considered, and its hazard rate behaviour is studied, showing that the
TGEVD has a decreasing hazard rate. Finally, a real dataset of crude oil prices during
the Ukraine war is analysed to illustrate the applicability of the models and estimation
techniques. The GEVD and TGEVD models are fitted to the dataset, and the param-
eter estimates are derived using the regression method. Bootstrap confidence intervals
for the estimates are also constructed. Moreover, the TGEVD model is found to be a
better fit for the data compared to the GEVD.

(Received June 23, 2024)
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[3] S. Baran, P. Szokol, and M. Szabó: Truncated generalized extreme value distribution
based emos model for calibration of wind speed ensemble forecasts. Environmetrics 32
(2021), 6, e2678. DOI:10.1002/env.2678

[4] G. E. Box and D.R. Cox: An analysis of transformations. J. Royal Statist. Soc.: Series B
(Methodological) 26 (1964), 2, 211–243. DOI:10.1111/j.2517-6161.1964.tb00553.x
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