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THE RISK PROBABILITY OPTIMAL PROBLEM
FOR INFINITE DISCOUNTED SEMI-MARKOV DECISION
PROCESSES

Xian Wen, Jinhua Cui and Haifeng Huo

This paper investigates the risk probability minimization problem for infinite horizon semi-
Markov decision processes (SMDPs) with varying discount factors. First, we establish the
standard regularity condition to guarantee the state process is non-explosive. Furthermore,
based only on the non-explosion of the state process, we use value iteration technique to establish
the optimality equation satisfied by the value function, and prove the uniqueness of the solution
and the existence of the risk probability optimal policy. Our condition is weaker than the first
arrival condition commonly used in existing literature. Finally, we develop a value iteration
algorithm to compute the value function and optimal policy, and illustrate the feasibility and
effectiveness of the algorithm through a numerical example.
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1. INTRODUCTION

As is well known, the risk probability optimal problem for Markov decision processes
(MDPs) is an important dynamic programming problem, that has been extensively re-
searched and widely applied in various practical fields, including queueing systems[5, 15],
finance [3], and communication networks [7]. According to the probability distribution
characteristics of the holding time, the existing research can be classified into three main
categories: (i) Discrete-time Markov decision processes (DTMDPs), where the sojourn
time of the system state is a fixed constant; see, [19, 21, 23, 25, 26]. (ii) Continuous-time
Markov decision processes (CTMDPs), where the sojourn time of the system state fol-
lows an exponential distribution; see, [13, 14, 24]. (iii) Semi-Markov decision processes
(SMDPs), where the sojourn time of the system states follows an arbitrary probability
distribution; see, [8, 9, 11, 12, 18]. The risk probability criterion in SMDPs are pri-
marily focused on risk analysis of systems in finite-horizon. The corresponding dynamic
behaviors for SMDPs in infinite horizon still not adequately investigated.

The main motivation of this paper is as follows:
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(i) Compared to DTMDPs and CTMDPs, SMDPs are a more versatile stochastic dy-
namic programming model, capable of more flexibly modeling complex decision-making
problems in the real world, such as wireless communication, queuing systems, and ma-
chine maintenance.

(ii) For infinite horizon MDPs, the existing research have mainly focused on the
traditional expected criteria based on risk neutrality (see [4, 5, 7]), which optimize
decision-making by characterizing the expected values of total rewards. However, these
criteria fail to capture the risk characteristics of the system. Therefore, it is necessary
to introduce a probability criterion that can measure risk by calculating the probability
that the total rewards/costs exceeds a given threshold, providing a more precise method
for risk assessment in stochastic system.

(iii) The discount factor, as a core parameter for converting future rewards/costs into
present value, essentially represents the time value of money mathematically. Current re-
search on infinite horizon risk probability CTMDPs [13] typically assumes a constant dis-
count factor. However, in practical applications in finance and insurance [6, 15, 17, 26],
non-constant discount factors are more common. Therefore, in this paper, we consider
the varying discount factor to enable more precise and practical evaluation of the present
value of future cash flows.

Compared with the classical expected optimal problem [2, 9, 10, 17, 20], the decision-
maker considers not only the system states but also the additional cost levels in our
model, thereby providing a more robust framework for risk decision-making. Based on
these considerations, the classical expected utility theories, such as Dynkin’s formula in
[6] and the Banach fixed point theorem in [4], are no longer suitable for our model. To
deal with the probability criterion for SMDPs, we need to redefine the history-dependent
policies, construct a new probability measure. The contributions of this paper are as
follows:

(i) Redefining policies: since cost levels are regarded as components of an extended
state, as well as past states and decision epochs, we need to redefine history-dependent,
Markov, and stationary policies respectively by implementing a k-component internal
history; see Definition 1.

(ii) Reconstructing a probability space: Since the historical information includes ad-
ditional cost levels, the theory of traditional expected MDPs cannot be directly applied
to our model (see Ref. [2, 9, 10, 17, 20]). Therefore, for any redefined policy, initial
state and cost levels, we reconstruct a new probability measure and state process by
extending the Ionescu Tulcea theorem, as shown in (8) – (10).

(iii) Establishing the optimality equation: In contrast to the classical approaches us-
ing Dynkin’s formula and the Feynman-Kac formula for expected optimality problem,
our method is based on the iteration technique. As an advantage of developing this
approach, we first establish the optimality equation, and prove that the value function
is the unique solution to the corresponding optimality equation, see Theorem 3.

(iv) Proving the existence of an optimal policy: we establish a NEW fact (Theo-
rem 1) using only the non-explosive condition of the state process to prove the existence
of an optimal policy. However, the additional first passage condition in [8, 10, 12, 13]
is required for the existence of optimal policies. Then, our condition is weaker than the
previous work in [8, 10, 12, 13] for risk probability MDPs. Moreover, we can introduce
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standard continuity-compactness condition and successfully extend the results of this
paper to general action space without without any technical difficulty.

(v) Providing the value iteration algorithm: by utilizing Theorem 2, we introduce the
value iteration algorithm to calculate the value function and the optimal policy. Finally,
we explain and illustrate our main results through a specific example, and demonstrate
the computation of the value function and the optimal policy.

The remainder of this paper is organized as follows. In Section 2, we introduce the
optimal risk probability criterion for infinite discounted SMDPs. In Section 3, we present
the main results, including the establishment of the optimality equation and the proof
of the existence of optimal policies. In Section 4, we illustrate our main results through
a numerical example.

2. THE CONTROL MODEL

The model is composed of as follows:

{E,A, (A(x), x ∈ E), Q(·, ·|x, a), c(x, a), α(x)}, (1)

where

• E represents a Borel state space, endowed with the Borel σ-algebras B(E).

• A represents a Borel action space, endowed with the Borel σ-algebras B(A). A(x) ∈
B(A) represents the set of permissible actions in the state x ∈ E, which is assumed
to be finite. K := {(x, a)|x ∈ E, a ∈ A(x)} denotes the set of all feasible pairs of
states and actions.

• Q(·, ·|x, a) represents a semi-Markov kernel onR+×S givenK, whereR+ := [0,∞).
For any u ∈ R+ and D ∈ B(E), when the action a ∈ A(x) is selected at state x, the
semi-Markov kernel Q(u,D|x, a) represents the joint probability that the system’s
holding time is no more than u ∈ R+ and the state x transfers into the set D. The
semi-Markov kernel Q(·, ·|x, a) satisfies the following properties for (x, a) ∈ K:

(i) For any D ∈ B(E), Q(·, D|x, a) represents a non-decreasing, right-continuous
function from R+ to [0, 1] with Q(0, D|x, a) = 0.

(ii) For any u ∈ R+, Q(u, ·|x, a) represents a sub-stochastic kernel on E.

(iii) For any D ∈ B(E), P (D|x, a) represents a stochastic kernel on E, where
P (D|x, a) := limu→∞ Q(u,D|x, a).

• c(x, a) denotes the cost rate, which is assumed to be a nonnegative measurable
function on K.

• α(x) represents the discount factor, which depends on the state x ∈ E.

The infinite discounted risk probability SMDPs (1) evolves as follows: At the initial
time s0 = 0, the system has the initial state x0 ∈ E and the cost level (goal) λ0 ∈ R+.
The cost level indicates that the decision maker will make his or her best effort to ensure
that the total costs does not exceed the cost goal(level). Based on the initial state
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information h0 := (x0, λ0), the decision maker can choose an action a0 from the set of
available actions A(x0). The system will change in the following two aspects: (i) The
system state remains at the state x0 until the moment s1, at which point the system state
transitions to a new state x1 with the transition probability Q(s1,dx1|x0, a0). (ii) During
the interval [0, s1], the system incurs the operational cost

∫ s1
0

e−
∫ s
0
α(x0)dtc(x0, a0)ds. To

account for the time value, we introduce the state-dependent discount factor. At the
moment s1, the cost level becomes λ1 := e

∫ s1
0 α(x0)dt(λ0 −

∫ s1
0

e−
∫ s
0
α(x0))dtc(x0, a0)ds).

At the new decision making moment, the decision maker selects a new action a1 ∈
A(x1) based on historical information h1 := (x0, λ0, a0, s1, x1, λ1). The system evolves
continuously through (i) and (ii). At the decision-making moment sk, k = 2, 3, . . ., the
decision maker chooses a new action based on the system’s historical information

hk := (x0, λ0, a0, s1, x1, λ1, a1, . . . , sk, xk, λk), (2)

where sk represents the kth decision epoch; xk represents the state of the system during
the interval [sk, sk+1); ak denotes the action chosen by the decision maker at epoch sk,
θk+1 := sk+1−sk indicates the sojourn time at the state xk; λk represents the cost level,
and its variation pattern satisfies the following equation

λk+1 := L(xk, λk, ak, θk+1) (3)

:= e
∫ θk+1
0 α(xk)dt(λk −

∫ θk+1

0

e−
∫ s
0
α(xk)dtc(xk, ak)ds),

for λ0 = λ̂0. The set of all admissible histories hk is defined as H0 := E × R and
Hk := (E × R × A × (0,+∞])k × E × R. During the evolution process, the system
needs to pay a series of costs. Based on the risk probability criterion, the decision maker
considers how to choose the optimal action to ensure that the risk of system operation
is optimized.

Remark 1. For the risk probability optimization problem, the decision maker not only
considers the usual system state when making decisions but also takes into account
the cost levels. This is a fundamental difference from classical expected optimization
problem.

Definition 1. A randomized history-dependent policy π = {πk, k ≥ 0} represents a
sequence of stochastic kernel πk on A given Hk with

πk(A(xk)|hk) = 1 ∀hk ∈ Hk, k = 0, 1, . . . .

The set of all randomized history-dependent policies is represented as Π.

Let Φ be the set of all stochastic kernels φ on A given S such that φ(A(x)|x) = 1. F
denotes the set of all functions f such that f(x, λ) ∈ A for (x, λ) ∈ E ×R.

Definition 2. A policy π = {πk} ∈ Π is called randomized Markov if there is a stochas-
tic kernel φk ∈ φ such that πk(·|hk) = φk(·|xk, λk) for each hk ∈ Hk and k ≥ 0. Such a
randomized Markov policy is denoted by π = {φk}.
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A randomized Markov policy π = {φk} is called deterministic Markov if there exists
a measurable function fk ∈ F such that φk(·|xk, λk) is a Dirac measure concentrated at
fk(·|xk, λk) on E ×R.

A deterministic Markov policy π = {fk} is said to be deterministic stationary if the
measurable function fk is independent of k. For simplicity, such a policy is denoted by
f . The set of all stationary policies is denoted by F.

Let ΠRM ,ΠDM and ΠDS be the class of all randomized Markov, deterministic Markov
and deterministic stationary policies, respectively. Thus, F = ΠDS ⊂ ΠRS ⊂ Π.

Since the system state includes the additional cost levels, we need to construct a new
probability space. The probability space is constructed as follows: The sample space
is defined by Ω := {(x0, λ0, a0, s1, x1, λ1, a1, . . . , sk, xk, λk, ak, . . .)| x0 ∈ E, λ0 ∈ R,
a0 ∈ A(x0), sl ∈ (0,∞), xl ∈ E, λl ∈ R, al ∈ A(xl), for each 1 ≤ l ≤ k, k ≥ 1}. The
Borel σ-algebra of Ω is expressed as F . For any ω := (x0, λ0, a0, s1, x1, λ1, a1, . . . , sk,
xk, λk, ak, . . .) ∈ Ω, k ≥ 0, the following random variables Sk, Xk, Ak,Λk on (Ω,F) are
defined as follows:

S0(ω) := s0, Sk+1(ω) := sk+1, Xk(ω) := xk,

Ak(ω) := ak,Λk = λk, S∞(ω) := lim
k→∞

Sk(ω). (4)

The corresponding state process {Xs, s ≥ 0} and the action process {As, s ≥ 0} are
defined by

Xs(ω) :=
∑
k≥0

I{Sk(ω)≤s<Sk+1(ω)}Xk(ω) + ∆I{s≥S∞(ω)}, (5)

As(ω) :=
∑
k≥0

I{Sk(ω)≤s<Sk+1(ω)}Ak(ω) + a∆I{s≥S∞(ω)}, (6)

where ID(·) represents the indicator function on the set D, ∆ ̸∈ E denotes a cemetery
state, and a∆ denotes an isolated point. The ω will be omitted for convenience.

For any π ∈ Π, (x, λ) ∈ E × R, by the well-known Ionescu Tulcea theorem (e. g.,
Proposition 7.45 in [1]), there exists a unique probability space (Ω,F , Pπ

(x,λ)) and the

stochastic processes {Xs, As, s ≥ 0} satisfy the following properties: for any u > 0, C ⊂
R,D ∈ B(E), G ∈ B(A), hk ∈ Hk, k = 0, 1, . . .

Pπ
(x,λ)(S0 = 0, X0 = x,Λ0 = λ) = 1, (7)

Pπ
(x,λ)(Ak ∈ G|hk) =

∫
G

πk(da|hk), (8)

Pπ
(x,λ)(Sk+1 − Sk ≤ u,Xk+1 ∈ D|hk, ak) =

∫
D

Q(u,dy|xk, ak), (9)

Pπ
(x,λ)(Λk+1 ∈ C|hk, ak, sk+1) =

∫
C

δL(xk,λk,ak,θk+1)(dλk+1), (10)

where δλ∗(λ) denotes the Dirac measure on R at the point λ∗. The expectation operator
is denoted by Eπ

(x,λ) corresponding to the probability measure Pπ
(x,λ).
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Definition 3. For each (x, λ) ∈ E × R, π ∈ Π, the infinite discounted risk probability
criterion is defined by

Fπ(x, λ) := Pπ
(x,λ)

(∫ +∞

0

e−
∫ s
0
α(Xu)duc(Xs, As)ds ≤ λ

)
, (11)

which represents the probability that the total costs do not exceed the cost goal under
the policy π.

Definition 4. The infinite discounted risk probability value function is defined by

F ∗(x, λ) = inf
π∈Π

Fπ(x, λ) for all (x, λ) ∈ E ×R. (12)

A policy π∗ ∈ Π is called the risk probability optimal, if

Fπ∗
(x, λ) = F ∗(x, λ) for all (x, λ) ∈ E ×R. (13)

The goal of this paper is to present the infinite discounted risk probability optimiza-
tion problem, establish the optimality equation that the value function satisfies, prove
the existence of an optimal policy, and provide a value iteration algorithm.

3. MAIN RESULTS

Let Fm be the set of all Borel measurable functions F (·, ·) : E × R → [0, 1]. For any
F ∈ Fm, x ∈ E, a ∈ A(x) and φ ∈ Φ, the operators Tφ and T are defined on Fm as
follows: if λ ≥ 0,

T aF (x, λ) :=

∫
E

∫ +∞

0

F
(
y, eα(x)u(λ− c(x, a)(1− e−α(x)u)

α(x)
)
)
Q(du,dy|x, a),

TφF (x, λ) :=

∫
A(x)

φ(da|x, λ)T aF (x, λ), (14)

TF (x, λ) := min
a∈A(x)

T aF (x, λ). (15)

If λ < 0,

TφF (x, λ) = T aF (x, λ) = TF (x, λ) := 0. (16)

Similarly, the operators (T f )n, Tn, n ≥ 1 on Fm are defined by (T f )n+1F (x, λ) =
T f ((T f )nF (x, λ)) and Tn+1F (x, λ) = T (TnF (x, λ)).

Let F̃m be the set of all Borel measurable functions F̃ : E × R → [−1, 1]. For any

F̃ ∈ F̃m, a ∈ A(x) and φ ∈ Φ, the operators (T̃φ)n are defined for n ≥ 1 . If λ ≥ 0,

T̃ aF̃ (x, λ) :=

∫
E

∫ +∞

0

F̃
(
y, eα(x)u(λ− c(x, a)(1− e−α(x)u)

α(x)
)
)
Q(du,dy|x, a),

T̃φF (x, λ) :=

∫
A(x)

φ(da|x, λ)T̃ aF (x, λ), (17)
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(T̃φ)n+1F̃ (x, λ) := Tφ((Tφ)nF̃ (x, λ)). (18)

If λ < 0,

(T̃φ)nF̃ (x, λ) := 0. (19)

Lemma 1. For any (x, λ) ∈ E × R, a ∈ A(x), F,G ∈ Fm, the operator T satisfies the
following properties:

(a) If F ≥ G, then T aF (x, λ) ≥ T aG(x, λ) and TF (x, λ) ≥ TG(x, λ).

(b) There exists a f ∈ F such that TF (x, λ) = T fF (x, λ).

P r o o f . (a) For any (x, λ) ∈ E×R, a ∈ A(x), F,G ∈ Fm, F ≥ G, based on the definition
of T a and T , it is easy to see that T aF (x, λ) ≥ T aG(x, λ) and TF (x, λ) ≥ TG(x, λ).

(b) For any (x, λ) ∈ E × R, the finiteness of the set A(x) which implies that the
existence of f ∈ Πs in (b) is guaranteed. □

To ensure the existence of the optimal policy, we need to establish the following
assumption to guarantee that the state process is non-explosive, where the non-explosion
of state process means that the state process cannot have an infinite number of jumps
within a finite time.

Assumption 1. For any π ∈ Π, (x, λ) ∈ E ×R, Pπ
(x,λ)(S∞ = ∞) = 1.

To verify Assumption 1, we give a sufficient condition in Lemma 2.

Lemma 2. If there are some constants δ, ε > 0 such that Q(δ, E|x, a) ≤ 1 − ε for
each (x, a) ∈ K, then Assumption 1 holds.

P r o o f . It follows from Proposition 2.1 in [9]. □

Remark 2. It should be noted that Assumption 1 is used to ensure the existence of
an optimal policy, see Theorem 3. Our condition is weaker than those existing in the
research on infinite horizon [8, 10, 12, 13]. This is because, to ensure the existence of an
optimal policy, the additional first passage condition must be established in existing re-
search [4, 5, 13]. To facilitate the verification of Assumption 1, we provide the regularity
condition in Lemma 2.

For any (x, λ) ∈ E × R and π ∈ Π, based on the non-explosion of the controlled
state process, the continuity of the probability measure, Fπ(x, λ) can be reformulated
as follows:

Fπ(x, λ) = Pπ
(x,λ)

(∫ +∞

0

e−
∫ s
0
α(Xt)dtc(Xs, As)ds ≤ λ

)
= Pπ

(x,λ)

( ∞∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(Xt)dtc(Xs, As)ds ≤ λ

)
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= Pπ
(x,λ)

( ∞⋂
n=1

n∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(Xt)dtc(Xs, As)ds ≤ λ

)
= lim

n→∞
Pπ
(x,λ)

( n∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(Xt)dtc(Xs, As)ds ≤ λ

)
:= lim

n→∞
Fπ
n (x, λ) (20)

with Fπ
−1(x, λ) := I[0,+∞)(λ).

To prove the optimality equation satisfied by the value function, we first need to
establish some lemmas.

Lemma 3. Under Assumption 1, the following conclusions hold.

(a) Fπ
n ∈ Fm, n ≥ −1 and Fπ ∈ Fm for each (x, λ) ∈ E ×R, π = {φ0, φ1, . . .} ∈ Π.

(b) Fπ
n+1 = Tφ0F

1π
n and Fπ = Tφ0F

1π for each (x, λ) ∈ E × R, π = {φ0, φ1, . . .} ∈ Π,
1π := {φ1, φ2, ...} denotes the 1-shift policy of π.

In particular, for each f ∈ Πs, F
f (x, λ) = T fF f (x, λ).

P r o o f . (a) For each (x, λ) ∈ E ×R, π ∈ Π, firstly, we prove part (a) by using mathe-
matical induction. Obviously, Fπ

−1 = I[0,+∞)(λ) ∈ Fm. When n = k ≥ −1, assume that
the fact (a) holds. For n = k+1 ≥ −1, by the properties of conditional expectation and
(8), we have

Fπ
k+1(x, λ)

= Pπ
(x,λ)

( k+1∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(Xt)dtc(Xs, As)ds ≤ λ

)
= Eπ

(x,λ)[I{
∑k+1

m=0

∫ Sm+1
Sm

e−
∫ s
0 α(Xt)dtc(Xs,As)ds≤λ,S1<∞}

]

= Eπ
(x,λ)[E

π
(x,λ)[I{

∑k+1
m=0

∫ Sm+1
Sm

e−
∫ s
0 α(Xt)dtc(Xs,As)ds≤λ,S1<∞}

|XS0
,Λ0, S1, XS1

,Λ1]]

=

∫
A(x)

φ0(da|x)
∫
E

∫ +∞

0

Pπ
(x,λ)

( k+1∑
m=1

∫ Sm+1

Sm

e−
∫ s
0
α(Xt)dtc(Xs, As)ds

≤ λ−
∫ u

0

e−
∫ s
0
α(x)dtc(x, a)ds|XS0

= x,Λ0 = λ, S1 = u,XS1
= y,

Λ1 = e
∫ u
0

α(x)dt(λ−
∫ u

0

e−
∫ s
0
α(x)dtc(x, a)ds)

)
×Q(du,dy|x, a)

=

∫
A(x)

φ0(da|x)
∫
E

∫ +∞

0

Pπ
(x,λ)

( k+1∑
m=1

∫ Sm+1−u

Sm−u

e−
∫ l+u
0

α(Xt)dtc(Xl+u, Al+u)dl

≤ λ−
∫ u

0

e−
∫ s
0
α(x)dtc(x, a)ds|XS0

= x,Λ0 = λ, S1 = u,XS1
= y,
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Λ1 = eα(x)u(λ−
∫ u

0

e−
∫ s
0
α(x)dtc(x, a)ds)

)
×Q(du,dy|x, a)

=

∫
A(x)

φ0(da|x)
∫
E

∫ +∞

0

P
1π

(y,eα(x)u(λ− c(x,a)(1−e−α(x)u)
α(x)

))

( k∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(x)dt

c(Xs, As)ds ≤ eα(x)u(λ− c(x, a)(1− e−α(x)u)

α(x)
)
)
Q(du,dy|x, a)

=

∫
A(x)

φ0(da|x)
∫
E

∫ +∞

0

F
1π
k

(
y, eα(x)u(λ− c(x, a)(1− e−α(x)u)

α(x)
)
)
Q(du,dy|x, a)

:= Tφ0F
1π
k (x, λ).

Therefore, Fπ
n ∈ Fm holds by induction. Since the limit of a sequence of measurable

functions is also measurable, we know that limn→∞ Fπ
n = Fπ ∈ Fm.

(b) For each (x, λ) ∈ E × R,n ≥ −1, based on part (a), we know that Fπ
n+1(x, λ) =

Tφ0F
1π
n (x, λ). Letting n → ∞, by using the dominated convergence theorem, we have

Fπ(x, λ) = Tφ0F
1π(x, λ). Then, if π = f ∈ Πs, we have F f (x, λ) = T fF f (x, λ). □

Theorem 1. Suppose that Assumption 1 holds. Then

(a) For any (x, λ) ∈ E ×R, if F,G ∈ Fm, F −G ≤ T̃ f (F −G), then F ≤ G.

(b) For any (x, λ) ∈ E×R, F f is the unique solution in Fm to the equation F f = T fF f .

P r o o f . (a) For any (x, λ) ∈ E × R, f ∈ Πs, F,G ∈ Fm, firstly, we prove the fact for
n = 1, 2, . . . ,

(T̃ f )n(F −G)(x, λ) ≤ P f
(x,λ)(Sn < ∞). (21)

Since F −G ∈ F̃m, by (17), we obtain

(T̃ f )n(F −G)(x, λ) ≤ P f
(x,λ)(Sn < ∞). (22)

Since F −G ∈ F̃m, by (17), we obtain

T̃ f (F −G)(x, λ)

=

∫
E

∫ +∞

0

(F −G)
(
y, eα(x)u(λ− c(x, f)(1− e−α(x)u)

α(x)
)
)
Q(du,dy|x, f),

≤
∫
E

∫ +∞

0

Q(du,dy|x, f)

= P f
(x,λ)(S1 < ∞).
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When n = k, assume that the fact (22) holds. According to the definition of the
operator and the induction, we obtain

(T̃ f )k+1(F −G)(x, λ)

= T̃ f (T̃ f )k(F −G)(x, λ)

=

∫
E

∫ +∞

0

(T̃ f )k(F −G)
(
y, eα(x)u(λ− c(x, f)(1− e−α(x)u)

α(x)
)
)
Q(du,dy|x, f),

≤
∫
E

∫ +∞

0

P f

(y,eα(x)u(λ− c(x,f)(1−e−α(x)u)
α(x)

))
(Sk < ∞)Q(du,dy|x, f). (23)

On the other hand, by the properties of conditional expectation, we have

P f
(x,λ)(Sk+1 < ∞)

= Ef
(x,λ)[E

f
(x,λ)[I{Sk+1<∞}|XS0

,Λ0, S1, XS1
,Λ1]]

=

∫
E

∫ +∞

0

P f
(x,λ)

(
Sk+1 < ∞|XS0

= x,Λ0 = λ, S1 = u,

XS1
= y,Λ1 = eα(x)u(λ− c(x, f)(1− e−α(x)u)

α(x)
)
)
Q(du,dy|x, f)

=

∫
E

∫ +∞

0

P f

(y,eα(x)u(λ− c(x,f)(1−e−α(x)u)
α(x)

))
(Sk < ∞)Q(du,dy|x, f),

which combined with (23) shows that the inductive hypothesis holds. Thus, the fact
(22) is proved.

Finally, by using (22) and the induction hypothesis, it follows that

F (x, λ)−G(x, λ)

≤ T̃ f
(
F (x, λ)−G(x, λ)

)
≤ (T̃ f )n

(
F −G

)
(x, λ)

≤ P f
(x,λ)

(
Sn < ∞

)
∀n ≥ 1. (24)

Letting n → ∞, under Assumption 1, by the continuity of the probability measure,
we have

F (x, λ)−G(x, λ) ≤ P f
(x,λ)(S∞ < ∞) = 0,

which implies that F ≤ G.

(b) For any (x, λ) ∈ E × R, f ∈ Πs, based on Lemma 3, we know that F f = T fF f .
Suppose thatGf ∈ Fm is another solution to the equationGf = T fGf . Then, F f−Gf =
T̃ f (F f −Gf ). Consequently, by part (a), we have F f = Gf . □

Theorem 2. Suppose that Assumption 1 holds, for any (x, λ) ∈ E × R, let
F ∗
−1 := I[0,+∞)(λ), F

∗
n+1 := TF ∗

n , n ≥ −1. Then, limn→∞ F ∗
n = F ∗.
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P r o o f . Since F ∗
−1 := I[0,+∞)(λ), F

∗
n+1 := TF ∗

n , n ≥ −1, by Lemma 1, we know that

0 ≤ F ∗
n+1 ≤ F ∗

n ≤ 1 and limn→∞ F ∗
n := F̃ exists.

To prove F̃ ≤ F ∗, We first use induction to prove the following fact:

F ∗
n ≤ Fπ

n for all n ≥ −1, π ∈ Π. (25)

For any π ∈ Π, since F ∗
−1 = Fπ

−1 := I[0,+∞)(λ), when n = −1, the conclusion obviously
holds. Assume that F ∗

k ≤ Fπ
k for n = k ≥ −1. Then, for any (x, λ) ∈ E × R, π =

{φ0, φ1, . . .} ∈ Π, we have

F ∗
k+1 = TF ∗

k ≤ TF
1π
k ≤ Tφ0F

1π
k = Fπ

k+1,

where the second inequality and the last equality follow from the induction hypothesis
and Lemma 3(b), respectively. Hence, the inductive hypothesis is satisfied, and the
conclusion has been proven. Letting n → ∞ in (25), by (20), we have F̃ ≤ F ∗.

To prove F̃ ≥ F ∗, for any (x, λ) ∈ E×R and n ≥ −1, firstly, we prove that there exists
a policy η ∈ ΠRM such that F ∗

n = F η
n by induction. Since F ∗

−1 = Fπ
−1 = I[0,+∞)(λ) for

any π ∈ ΠRM , this fact is true for n = −1. Suppose that there exists a policy η ∈ ΠRM

such that F ∗
k = F η

k for n = k ≥ −1. Moreover, by using Lemma 1(b), we know that
there is a policy f ∈ Πs such that T fF ∗

k = TF ∗
k . Then, letting ζ = {f, η} ∈ ΠRM , by

the induction hypothesis and Lemma 3(b), we have

F ∗
k+1 = TF ∗

k = T fF ∗
k = T fF η

k = F ζ
k+1.

Then, the inductive hypothesis is valid. The conclusion is proven, that is, there exists a
a policy η ∈ ΠRM satisfies

F ∗
n = F η

n ≥ F η ≥ F ∗.

Hence, letting n → ∞, according to (20), we can deduce that F̃ ≥ F ∗, which implies
F̃ = F ∗. □

Remark 3. For each (x, λ) ∈ E × R, based on Theorem 2, we have established the
so-called value iteration algorithm to calculate the value function as follows: Let F ∗

−1 :=
I[0,+∞)(λ) and F ∗

n+1 = TF ∗
n , n ≥ −1. Then, limn→∞ F ∗

n = F ∗.

Theorem 3. Under Assumption 1, then

(a) F ∗ is the unique solution to the risk probability optimality equation F ∗ = TF ∗.

(b) There is a policy f∗ ∈ Πs such that F ∗(x, λ) = T f∗
F ∗(x, λ) and F ∗(x, λ) =

F f∗
(x, λ). Therefore, the risk probability policy π∗ := {f̂∗

0 , f̂
∗
1 , . . . , f̂

∗
k , . . .} is opti-

mal, where f̂∗
0 (x, λ) := f∗(x, λ), f̂∗

k (hk) := f∗(xk, λk) for any (x, λ) ∈ E ×R, hk ∈
Hk, k ≥ 1.

P r o o f . (a) For each (x, λ) ∈ E×R, π = {φ0, φ1, . . .} ∈ Π, by using Lemma 3 (b) and
(15), we have

Fπ(x, λ) = Tφ0F
1π(x, λ) ≥ Tφ0F ∗(x, λ) ≥ TF ∗(x, λ),
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which implies that F ∗ ≥ TF ∗.
On the other hand, by Theorem 2 and (15), we obtain

F ∗
n+1(x, λ) = TF ∗

n(x, λ) ≤ T aF ∗
n(x, λ). (26)

Letting n → ∞ in (26), by using the dominated convergence theorem, we have

F ∗(x, λ) ≤ T aF ∗(x, λ),

which implies F ∗ ≤ TF ∗. Thus, F ∗ = TF ∗ has been proven.
Since F ∗ = TF ∗, it follows Lemma 1(b) that there exists a policy f∗ ∈ F such that

F ∗(x, λ) = T f∗
F ∗(x, λ). (27)

Suppose that G is another solution to the equation G(x, λ) = TG(x, λ). Then, based
on Lemma 1(b), there exists a policy f

′ ∈ F satisfies

G(x, λ) = T f
′

G(x, λ), (28)

which together with (27) and (17) give that

F ∗(x, λ)−G(x, λ) ≤ T̃ f
′

(F ∗ −G)(x, λ),

G(x, λ)− F ∗(x, λ) ≤ T̃ f∗
(F ∗ − U∗)(x, λ).

According to Theorem 1, we know that F ∗ = G = F f∗
.

(b) For any (x, λ) ∈ E × R, hk ∈ Hk, k ≥ 0, let f̂∗
0 (x, λ) := f∗(x, λ), f̂∗

k (hk) :=

f∗(xk, λk), π∗ := {f̂∗
0 , f̂

∗
1 , . . . , f̂

∗
k , . . .}, for all k ≥ 0. Based on F ∗ = F f∗

and (8),

we know that P f∗

(x,λ)(
∫ +∞
0

e−
∫ s
0
α(Xt)dtc(Xs, π

∗
s ) ds ̸=

∫ +∞
0

e−
∫ s
0
α(Xt)dtc(Xs, f

∗) ds) = 0

and Fπ∗
= F ∗. Therefore, π∗ is optimal. □

Based on Theorem 3, we establish the value iteration algorithm for computing the
value function and the optimal policy as follows.

The value iteration algorithm

Step 1: (Initialization) For arbitrary small ε > 0 and (x, λ) ∈ E×R, given the initial
value F ∗

−1(x, λ) := I[0,∞)(λ).

Step 2: (Iteration) For any (x, λ) ∈ E × R, a ∈ A(x), n ≥ −1, the value F ∗
n+1 is

calculated as follows:

T aF ∗
n(x, λ) =

∫
E

∫ +∞

0

F
(
y, eα(x)u(λ− c(x, a)(1− e−α(x)u)

α(x)
)
)

×Q(du,dy | x, a),
F ∗
n+1(x, λ) = min

a∈A(x)
{T aF ∗

n(x, λ)}.

Step 3: (Approximation) If |F ∗
n+1 − F ∗

n | < ε, the iterative step stops. Then, the
value F ∗

n+1 can be considered as an approximation of the value function F ∗. Otherwise,
the program returns to step 2 for n+ 1.
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4. EXAMPLE

In this section, we illustrate our main results through an example and demonstrate how
to use the value iteration algorithm to calculate the value function and the optimal
policy.

Example 1. (Optimal control for machine maintenance)
Consider a machine maintenance system with three states: fault (0), normal (1), and

good (2). At the initial moment s0, when the system state is in state x ∈ {1, 2}, the
decision maker can choose the action ax1 to conduct a routine inspection or the action
ax2 to perform maintenance of the machine. Correspondingly, the system needs to incur
certain costs at the rate c(x, ax1) or c(x, ax2). Subsequently, the system remains in state
x until the moment s1. At the new decision making moment s1, the system transitions to
a new state y ∈ {0, 1, 2} with a certain probability, where the sojourn time in each state
follows an arbitrary probability distribution. If the system’s state becomes y = 0, the
decision maker must choose action a01 to stop the machine’s operation for maintenance
and repair. If the system’s state enters y ∈ {1, 2}, the system will evolve in a similar
repetitive manner. We can characterize the state evolution of this system as SMDPs with
the state space E = {0, 1, 2}, the allowable sets of actions A(x) = {ax1, ax2}, x ∈ {1, 2}
and A(0) = {a01}, and the discount factor α(x) = 1

2x for any x ∈ E. The transition
probabilities are assumed as follows:

p(0|0, a01) = 1, p(0|1, a11) =
1

3
, p(2|1, a11) =

2

3
,

p(0|1, a12) =
1

2
, p(2|1, a12) =

1

2
, p(0|2, a21) =

3

5
, (29)

p(1|2, a21) =
2

5
, p(0|2, a22) =

3

10
, p(1|2, a22) =

7

10
.

For any u ∈ [0,+∞), the semi-Markov decision kernels are given by

Q(u, 0|1, a11) = p(0|1, a11)(1− e−0.16u),

Q(u, 2|1, a11) = p(2|1, a11)(1− e−0.16u),

Q(u, 0|1, a12) = p(0|1, a12)(1− e−0.12u),

Q(u, 2|1, a12) = p(2|1, a12)(1− e−0.12u), (30)

Q(u, 0|2, a21) = p(0|2, a21)(1− e−0.03u),

Q(u, 1|2, a21) = p(1|2, a21)(1− e−0.03u),

Q(u, 0|2, a22) = p(0|2, a22)(1− e−0.18u),

Q(u, 1|2, a22) = p(1|2, a22)(1− e−0.18u),

and the cost rates are given as follows:

c(0, a01) = 0, c(0, a02) = 0, c(1, a11) = 1, c(1, a12) = 2, c(2, a21) = 3, c(2, a22) = 4.

The decision maker is primarily concerned with how to select the optimal policy.
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Firstly, we need to verify the condition of Lemma 2 to ensure that Assumption 1 holds.
For any 0 < ε < 1, selecting δ satisfies δ < − 25

9 ln ε, and applying (30), we obtain
Q(δ, E|x, a) < 1 − ε with a ∈ A(x). Since the regularity condition of Lemma 2 is
satisfied, we can conclude that Assumption 1 holds. Furthermore, based on Theorems
2 and 3, we use the value iteration algorithm to calculate the value function and the
optimal policy as follows:

Since c(0, a01) = 0, 0 ≤ c(x, a) ≤ 4 for any x ∈ {1, 2}, a ∈ A(x), by (11), it is known
that F ∗(0, λ) = I[0,+∞)(λ) and F ∗(x, λ) = 1 for λ ≥ 16, x ∈ {1, 2}.

Step 1: For λ ∈ R+ and x ∈ {1, 2}, let F ∗
−1(x, λ) := 1.

Step 2: For x = 1, n ≥ 0,

T a11F ∗
n(1, λ) =

1

3
× 0.16×

∫ +∞

0

F ∗
n(0, e

0.5u(λ− 1 + e−0.5u))e−0.16udu

+
2

3
× 0.16×

∫ +∞

0

F ∗
n(2, e

0.5u(λ− 1 + e−0.5u))e−0.16udu

=



1
3 × (1− e0.32 ln(1−λ)) + 2

3 × 0.16×
∫ −2 ln(1−λ)

0

×F ∗
n(2, e

0.5u(λ− 1 + e−0.5u))e−0.16udu, 0 < λ < 1,
1
3 + 2

3 × F ∗
n(2, 1), λ = 1,

1
3 + 2

3 × ( 15
λ−1 )

−0.32 + 2
3 × 0.16×

∫ 2 ln 15
λ−1

0

F ∗
n(2, e

0.5u(λ− 1 + e−0.5u))e−0.16udu, 1 < λ < 16,

1, λ ≥ 16.

=



1
3 × (1− e0.32 ln(1−λ))

+ 2
3 × 0.16×

∫ λ

0
F ∗
n(2, t)(

1−t
1−λ )

−0.32 2
1−tdt, 0 < λ < 1,

1
3 + 2

3 × F ∗
n(2, 1), λ = 1,

1
3 + 2

3 × ( 15
λ−1 )

−0.32

+ 2
3 × 0.16×

∫ 16

λ
F ∗
n(2, t)(

t−1
λ−1 )

−0.32dt, 1 < λ < 16,

1, λ ≥ 16.

(31)

T a12F ∗
n(1, λ) =

1

2
× 0.12×

∫ +∞

0

F ∗
n(0, e

0.5u(λ− 2 + 2e−0.5sds))e−0.12udu

+
1

2
× 0.12×

∫ +∞

0

F ∗
n(2, e

0.5u(λ− 2 + 2e−0.5u))e−0.12udu

=



1
2 × (1− e0.24 ln(1−λ

2 )) + 1
2 × 0.12×

∫ −2 ln(1−λ
2 )

0

F ∗
n(2, e

0.5u(λ− 2 + 2e−0.5u))e−0.12udu, 0 < λ < 2,
1
2 + 1

2 × F ∗
n(2, 2), λ = 2,

1
2 + 1

2 × ( 14
λ−2 )

−0.24 + 1
2 × 0.12×

∫ 2 ln 14
λ−2

0

F ∗
n(2, e

0.5u(λ− 2 + 2e−0.5u))e−0.12udu, 2 < λ < 16,

1, λ ≥ 16.
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=



1
2 × (1− e0.24 ln(1−λ

2 ))

+ 1
2 × 0.12×

∫ λ

0
F ∗
n(2, t)(

t−2
λ−2 )

−0.24( 2
2−t )dt, 0 < λ < 2,

1
2 + 1

2 × F ∗
n(2, 2), λ = 2,

1
2 + 1

2 × ( 14
λ−2 )

−0.24

+ 1
2 × 0.12×

∫ 16

λ
F ∗
n(2, t)(

t−2
λ−2 )

−0.24( 2
t−2 )dt, 2 < λ < 16,

1, λ ≥ 16.

F ∗
n+1(1, λ) = min{T a11F ∗

n(1, λ), T
a12F ∗

n(1, λ)}.

For x = 2, n ≥ 0,

T a21F ∗
n(2, λ) =

3

5
× 0.03×

∫ +∞

0

F ∗
n(0, e

0.25u(λ− 12 + 12e−0.25u))e−0.03u du

+
2

5
× 0.03×

∫ +∞

0

F ∗
n(1, e

0.25u(λ− 12 + 12e−0.25u))e−0.03u du

=



3
5 × (1− e0.12 ln(1− λ

12 ))

+ 2
5 × 0.03×

∫ −4 ln(1− λ
12 )

0

F ∗
n(1, e

0.25u(λ− 12 + 12e−0.25u))e−0.03udu, 0 < λ < 12,
3
5 + 2

5 × F ∗
n(1, 12), λ = 12,

3
5 + 2

5 × ( 4
λ−12 )

−0.12

+ 2
5 × 0.03×

∫ 4 ln 4
λ−12

0

F ∗
n(1, e

0.25u(λ− 12 + 12e−0.25u))e−0.03udu, 12 < λ < 16,

1, λ ≥ 16.

=



3
5 × (1− e0.12 ln(1− λ

12 ))

+ 2
5 × 0.03×

∫ λ

0
F ∗
n(1, t)(

12−t
12−λ )

−0.12( 4
12−t )dt, 0 < λ < 12,

3
5 + 2

5 × F ∗
n(1, 12), λ = 12,

3
5 + 2

5 × ( 4
λ−12 )

−0.12

+ 2
5 × 0.03×

∫ 16

λ
F ∗
n(1, t)(

t−12
λ−12 )

−0.12( 4
t−12 )dt, 12 < λ < 16,

1, λ ≥ 16.

T a22F ∗
n(2, λ) =

3

10
× 0.18×

∫ +∞

0

F ∗
n(0, e

0.25u(λ− 16 + 16e−0.25u))e−0.18udu

+
7

10
× 0.18×

∫ +∞

0

F ∗
n(1, e

0.25u(λ− 16 + 16e−0.25u))e−0.18udu

=



3
10 × (1− e0.72 ln(1− λ

16 ))

+ 7
10 × 0.18×

∫ −4 ln(1− λ
16 )

0

F ∗
n(1, e

0.25u(λ− 16 + 16e−0.25u))e−0.18udu, 0 < λ < 16,
3
10 + 7

10 × F ∗
n(1, 16), λ = 16,

1, λ ≥ 16.
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=


3
10 × (1− e0.72 ln(1− λ

16 ))

+ 7
10 × 0.18×

∫ λ

0
F ∗
n(1, t)(

16−t
16−λ )

−0.72( 4
16−t )dt, 0 < λ < 16,

3
10 + 7

10 × F ∗
n(1, 16), λ = 16,

1, λ ≥ 16.

F ∗
n+1(2, λ) = min{T a21F ∗

n(2, λ), T
a22F ∗

n(2, λ)}.

Step 3: Given ε = 10−12, if |F ∗
n+1 −F ∗

n | < ε, the program goes to step 4. The value
F ∗
n+1 is regarded as an approximation of the value F ∗. Otherwise, the program returns

to step 2 for n+ 1.

Step 4: Plot the function T aF ∗
n(x, λ) and F ∗(x, λ) for x ∈ {1, 2} by using MATLAB

software, see Figures 1 and 2.

Reward level λ 

0 5 10 15 20 25 30

T
a
F

* (x
,λ

)

0

0.2

0.4

0.6

0.8

1

1.2

(1.9,0.623)

(11.4,0.1903)

T
a

11F
*
(1,λ)

T
a

12F
*
(1,λ)

T
a

21F
*
(2,λ)

T
a

22F
*
(2,λ)

Fig. 1. The function T aF ∗(x, λ).

Remark 4. Based on the trapezoidal integration method in [15], we approximate the
calculation of the integral in (31) as below:∫ λ

0

F ∗
n(2, t)(

1− t

1− λ
)−0.32 2

1− t
dt

≈
l−1∑
k=0

[F ∗
n(2, kh)(

1− kh

1− λ
)−0.32 2

1− kh
+ F ∗

n(2, (k + 1)h)(
1− (k + 1)h

1− λ
)−0.32 2

1− (k + 1)h
]
h

2
,

where k ≤ l, k, l ∈ N, lh = λ, h denotes the step length, and N represents the set of all
positive integers.

By analyzing the value iteration calculation and Figures 1 – 2, we obtain the following
conclusions:
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Reward level λ 

0 2 4 6 8 10 12 14 16 18 20
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(1,λ)

F
*
(2,λ)

Fig. 2. The value function F ∗(x, λ).

(a) When the system is in state x = 1, if λ ∈ (0, 1.9), the value T a12F ∗(1, λ) is less
than T a11F ∗(1, λ), it is recommended that the decision maker should choose the low-risk
action a12. Otherwise, the decision maker should choose the optimal action a11. When
the system state is in state x = 2, if λ ∈ (0, 11.4), the decision maker should choose
the low-risk action a21. Conversely, if λ ∈ [11.4,+∞), the decision maker should choose
low-risk action a22.

(b) From Figures 1 and 2, it can be seen that when choosing the optimal action, the
decision-maker takes into account not only the system state but also the critical points
λ∗(1) = 1.9, λ∗(2) = 11.4, where the optimal action is selected as follows:

f∗(1, λ) =

{
a12, 0 ≤ λ < 1.9;

a11, λ ≥ 1.9.
, f∗(2, λ) =

{
a21, 0 ≤ λ < 11.4;

a22, λ ≥ 11.4.
(32)

5. CONCLUSIONS

In this paper, we consider the problem of minimizing the risk probability for infinite
discounted Semi-Markov decision processes with varying discount factors. Under the
regular condition, we prove that the value function is the unique solution to the opti-
mality equation and the existence of optimal risk probability policy. We provide the
value iteration algorithm to approximate the value function and the optimal policy.
Our condition is weaker than those in the previous literature. We further investigate
the risk probability minimization problem for partially observable semi-Markov decision
processes.
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