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A ROBUST HYBRID OBSERVER FOR ESTIMATING
STATES, REACTION RATES, AND AN EXTERNAL
INPUT DISTURBANCE FOR A CONTINUOUS
BIOREACTOR

V́ıctor Reza, Jorge Torres and Jesús Guerrero

The controlling and monitoring of bioprocesses very often requires the estimation of certain
biological concentrations that are difficult to measure, usually assuming some structure of the
reaction rates which might be barely known. Although many algorithms have been designed
to estimate these reaction rates, they are not robust against input disturbances and cannot
be updated to treat them. This paper addresses the problem of estimating unmeasurable
states, reaction rates, and input disturbance by applying a hybrid observer in a continuous
bioreactor. The proposed algorithm uses an extended super-twisting algorithm coupled with an
adaptive observer to exponentially estimate the reaction rates and input disturbance provided
the persistent excitation condition is fulfilled. Later, an asymptotic observer estimates the
unmeasurable states with the previous estimations. The hybrid observer is tested through
simulations in a continuous sulfate-reducing bioprocess. Finally, the advantage of estimating
the external disturbance is highlighted through its use in a disturbance rejection control to
counteract its undesirable effect.

Keywords: hybrid observer, super twisting algorithm, adaptive observer, asymptotic ob-
server, continuous bioreactor
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1. INTRODUCTION

Currently, any bioprocess can be improved by monitoring and controlling its related
bioreactors, where its key biochemical concentrations must be measured. However, some
of these variables are difficult to measure, such as the dissolved oxygen, total nitrogen or
phosphorous, and volatile fatty acids [30], due to these states being linked with sensors
characterized by being discontinuous, high-priced, invasive, sensitive to noise, with a
limited range of applications, and requiring constant maintenance [36].

Therefore, it is necessary to design an observer that estimates these unmeasurable
states under uncertain bioreactor models due to external disturbances and unknown
dynamics. First, the dilution rate is the most used input in fed-batch and continuous
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bioreactors, whose actuators are adjusted manually or automatically. Unfortunately, due
to imperfections, these devices can add input disturbances such that bioreactor operating
conditions can change notably, which may lead to inadequate or risky bioreactor dynam-
ical behavior when optimal biomass production is required, for instance, [56]. Second,
it is challenging to understand and describe the reaction rates, essential in bioreactor
monitoring, control, and scale-up design, as shown in [11, 23, 31, 47]. For example, many
models describe the specific growth rate of photosynthetic oxygenic microorganisms, a
particular reaction rate that describes the kinetics growth rate. Still, these models are
unsuitable in real operation conditions [18]. Furthermore, many reaction rates are not
necessarily represented by specific reaction rates, such as chemical reaction rates [16],
chlorophyll degradation, nitrogen uptake, photosynthesis, and respiration rates in ma-
rine phytoplankton growth dynamics [45], and the oxidation of ammonium and nutrient
uptake for non-growth maintenance rates in cyanobacteria [24].

Previous results exist in estimating unmeasurable biochemical concentrations by ap-
plying a single observer without the presence of external disturbances in the dilution
rate. When the bioreactor model is fully known, including the structure of the reaction
rates, Luenberger-based observers can be applied as the extended Kalman filter [27, 37]
and nonlinear observers [2, 28]. Although these algorithms can be robust under parame-
ter uncertainties in the yield coefficients[23], these algorithms require perfect knowledge
of the reaction rate structure. Another approach is to assume that the unknown reac-
tion rates and external disturbances are unknown inputs of the bioreactor. For example,
asymptotic and interval observers were applied for estimating nonmeasurable states
under unknown reaction rates and external disturbances in the influent feeding rates
in [3, 49], with the disadvantage that their convergence time cannot be modified. It is
worth saying that an unknown input observer can be designed to estimate reaction rates,
input disturbances non-related to the dilution rate, and the not-measurable states, as
described in [35, 38, 44, 52]. However, applying a hybrid observer is a desirable option
to estimate unmeasurable states under unknown dynamics and external disturbances,
such as the unknown reaction rates and additive disturbance in the dilution rate. As
described in [4], a hybrid observer combines more than one algorithm that overcomes the
main limitations of a single observer, which applications in bioprocesses have increased
in recent years. For example, in [58], a H∞ Luenberger observer coupled with a super-
twisting algorithm (STA) was designed for estimating biomass, glucose, and its influent
feeding rate. As shown in [11, 48], a standard hybrid observer for bioprocess applies an
asymptotic observer for estimating the not-measurable states and an observer-based es-
timator, which is an algorithm similar to an observer that estimates unknown dynamics,
uncertain parameters, or external disturbances [11, 46, 50].

Many observer-based estimators were designed for bioprocesses without additive dis-
turbances in the dilution rate. The first one is described in [10], where an adaptive
Luenberger observer was designed to estimate the specific growth rate and was extended
for estimating many reaction rates [11, 46]. Another method applies artificial neural net-
works or fuzzy techniques for the rough estimation of reaction rates, as shown in [8, 22].
Unfortunately, deep knowledge of neural networks and enough data are necessary to
train them [3, 22]. Also, high gain observers (HGO) have been applied for estimating
reaction rates, robust to discrete noisy measurements, as described in [13, 26, 51]. How-
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ever, in [48], a novel algorithm was designed based on sliding mode techniques by adding
discontinuous terms in the adaptive observer designed in [10]. As a result, the specific
growth rate estimation converges to the actual growth in finite time, except for a very
high-frequency discontinuous error (known as the chattering phenomenon), which is the
main drawback. In this vein, further research efforts were focused on improving this slid-
ing mode observer (SMO) and estimating several reaction rates. In [19], a second-order
SMO was designed to estimate the specific growth rate in fed-batch bioreactors while
reducing the chattering phenomena compared to a conventional SMO. Subsequently, in
[20], two super-twisting algorithms were designed for specific growth rate estimation in
finite time for batch, fed-batch, and continuous bioreactors. At the same time, chatter-
ing is substantially reduced for conventional second-order SMO. Afterward, in [43], an
extended STA for estimating several specific reaction rates was designed, provided the
observer has enough measurable outputs. Moreover, in [55], an STA-based observer with
weighted variable gains was designed for specific reaction rate estimation in continuous
bioreactors. Later, in [40], a generalized STA coupled with an asymptotic observer was
designed for reaction rate and state estimation.

Although many observer-based estimators were proposed for bioreactors, these algo-
rithms are inadequate under an external disturbance in the dilution rate. The main
reason is that the proposed sliding variable or the observer’s general structure depends
on biochemical concentrations coupled with specific reaction rates, such as biomass con-
centration and specific growth rate. Hence, this is quite limiting if there is only a
monoculture of microorganisms in a bioreactor [19, 20, 48] or the reaction rates do not
have this structure [16, 24, 45]. Furthermore, only some results consider the estimation
of a disturbance in the dilution rate. In [15], an HGO coupled with an adaptive ob-
server was designed for estimating a constant additive disturbance in the dilution rate
and unmeasurable states when the reaction rate structure is known. While in [50], an
extended STA was designed for simultaneously estimating reaction rates and an input
disturbance, which guarantees that the estimation error is stable.

In this work, a hybrid observer was designed to estimate not-measurable states, un-
known reaction rates, and an additive disturbance in the dilution rate for continuous
bioreactors. This observer consists of an extended STA coupled with an adaptive and
asymptotic observer. First, the STA jointly estimates the reaction rates and an input
disturbance in a finite time. Later, the adaptive observer decoupled them and converged
exponentially to their nominal values under the persistent excitation condition. Finally,
the asymptotic observer uses the previous estimations to estimate the desired states.
Even though this idea looks similar to mechanical and electrical systems, the proposed
hybrid observer estimates the unknown internal dynamics, the external disturbances,
and the unmeasurable states separately. In contrast, sliding mode techniques coupled
with adaptive laws are used in non-biological systems to estimate the total uncertainty
and improve the controller-based observer behavior. There are many examples of this
situation, as described in hydraulic-electrical systems [9], mobile robots [34], permanent
magnet synchronous motors [33, 57], lithium-ion batteries [53], wind turbines [25], and
unmanned aerial vehicles [6, 14, 17]. It is worth saying that there are successful real
applications of sliding mode observers in bioreactors, such as shown in [5]. In summary,
the main contributions of this work are the following:
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1. A hybrid observer was designed and analyzed to estimate the key biochemical
variables of continuous bioreactors: the unmeasurable states, unknown reaction
rates, and an additive disturbance in the dilution rate.

2. It was proven that the reaction rates and input disturbance are observable, while
the unmeasurable states are detectable.

3. An observer-based estimator, whose structure is based on sliding mode observers
and adaptive laws with projection, was designed and analyzed to estimate the
reaction rates and additive disturbance in the dilution rate with the property of
exponential convergence.

4. An asymptotic observer was designed and analyzed to estimate the nonmeasurable
states, so their estimates converge near their nominal values.

5. A preliminary observed-based disturbance rejection control was numerically eval-
uated to motivate further use of the proposed hybrid observer.

The rest of the paper is organized as follows. Section 2 describes the bioreactor
dynamics and the observation problem, and we recall some helpful theories before to
show the main result. Later, in Section 3, the desired hybrid observer is designed.
Section 4 applies the proposed algorithm in a sulfate-reducing process for monitoring
and controlling tasks. Finally, in Section 5, we give the conclusions of this work.

NOTATION AND ABBREVIATIONS

The following notation is used throughout the manuscript. Symbols R, R>0, R≥0 will
represent the sets of real numbers, positive or strict real numbers, respectively. Vectors
or matrices with real number entries are denoted by Rn and Rn×m, respectively. Given
a vector v = (v1, v2, ..., vn)

T ∈ Rn the notation v > 0 will mean that vi > 0, for all
i = 1, ...n. For a given M ∈ Rn×n, its eigenvalues are denoted by λ(M), with λmin(M)
and λmax(M) being the minimum and maximum elements of λ(M), respectively. Finally,
Lp or L∞ will stand for the usual normed spaces, namely, (Rk, ∥u∥p), (Rk, ∥u∥∞),
respectively. Finally, for σ ∈ Rm, the next functions are defined:

ABS(σ)1/2 ≜ diag
(√

|σ1|, · · · ,
√

|σm|
)
, SIGN(σ) ≜

[
sign(σ1) · · · sign(σm)

]T
Abbreviations glossary:

HGO high gain observer
SMO sliding mode observer
PE persistent excitation property
STA super-twisting algorithm
ESTA extended super-twisting algorithm
UUB uniformly ultimately bounded
HB-STA+AAO hybrid observer based on super-twisting plus adaptive

and asymptotic observers
HB-HGO+AO hybrid observer based on high gain observer plus asymptotic

observer.
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2. PROBLEM FORMULATION

Consider the continuous bioreactor model [11]:

ξ̇(t) = Kφ(t) + (D(t) + δ(t))(ξin(t)− ξ(t))−Q(t) (1a)

y(t) = h(ξ) (1b)

where1 ξ ∈ Rn
≥0 is the state, K ∈ Rn×m is the matrix yield coefficient, φ ∈ Rm

≥0 is

the reaction rate vector, D ∈ R≥0 is the nominal dilution rate2, δ ∈ R is the input
disturbance, ξin ∈ Rn

≥0 is the mass transfer rate for each ξ in the liquid phase, Q ∈ Rn
≥0

is the mass transfer rate for each ξ in gaseous form, y ∈ Rq is the output, and h(ξ) ∈ Rq

is a known continuous function.
From the dynamic system (1), it is required to estimate the complete state ξ. How-

ever, the primary objective is to estimate the reaction rates φ, as they are poorly known,
complex, nonlinear functions, and present a high parameter uncertainty. In addition,
determining reaction rates is also helpful for monitoring and controlling continuous biore-
actors. Several techniques have been proposed to observe ξ when the reaction rate vector
is partially or not known at all, see, for instance, [10, 19, 20, 43, 48]. Unfortunately, in all
these cases, one faces high sensitivity to input disturbances δ because it can drastically
change the bioreactor dynamics [11]. Motivated by the depicted scenario, the main goal
of this paper is to design a robust state observer for the bioreactor system (1) when re-
action rates φ are not known, and the system is also subjected to external disturbances
δ. For such an end, a hybrid observer strategy is applied. Firstly, as discussed later,
reaction rates and external disturbance are analyzed using an observer-based estimator.
Then, provided that one disposes of reasonable estimates of φ and δ, the estimation of
ξ can be considered.

2.1. General assumptions

In order to simplify the analysis, system (1) can be separated as follows [11]:

ξ̇a = Kaφ+ (D + δ)(ξina − ξa)−Qa (2a)

ξ̇e = Keφ+ (D + δ)(ξine − ξe)−Qe (2b)

ξ̇b = Kbφ+ (D + δ)(ξinb − ξb)−Qb (2c)

y = h(ξ) =
[
ξTa ξe

]T
(2d)

where K =
[
KT

a KT
e KT

b

]T
, Ka ∈ Rm×m is a nonsingular matrix, Ke ∈ R1×m and

Kb ∈ R(n−m−1)×m. In turn, (ξa, ξe, ξb), (ξ
in
a , ξ

in
e , ξ

in
b ) and (Qa, Qe, Qb) are the partitions

of ξ, ξin and Q induced by (Ka,Ke,Kb), similar as described in [11]. Henceforth, one
shall assume that the dynamic model (2) accomplishes the following.

1The term (t) will be introduced when necessary.
2The dilution rate is considered the system control input and describes the relation between the

influent or effluent flow rate dynamics and the volume of the bioreactor. In a continuous bioreactor,
influent and effluent flow rates are strictly positive and have the same value to guarantee a constant
bioreactor volume.
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Assumption 2.1. The matrix K =
[
KT

a KT
e KT

b

]T
is known.

Assumption 2.2. All the elements of ξin and Q are positive, continuously bounded,
and known, that is, for any ξini (0) and Qi(0) with i = {1, . . . , n}, ∃ξ̄ini , Q̄i ∈ R≥0 such

that 0 ≤ ξini ≤ ξ̄ini and 0 ≤ Qi ≤ Q̄i. Furthermore, all the elements of ξ, ξ̇ and ξ̇in are
continuously bounded, that is, ∃ξ̄i, ξ̄di, ξ̄indi ∈ R≥0 such that 0 ≤ ξi ≤ ξ̄i, |ξ̇i| ≤ ξ̄di, and

|ξ̇ini | ≤ ξ̄indi .

Assumption 2.3. All the elements of φ and φ̇ are continuously bounded, that is, ∃φ̄i ∈
R>0 with i = {1, · · · ,m} such that |φ̇i| < φ̄i and φ̄i are known.

Assumption 2.4. The input disturbance δ is a continuously bounded function with a
very slow dynamic, that is, δ̇ ≈ 0, and for any δ(0) > 0 ∃δ, δ̄ ∈ R such that δ ≤ δ ≤ δ̄ ∀t.

Assumption 2.5. The dilution rate D is strictly positive, bounded, and known, that
is, ∃d, d̄ ∈ R>0 such that 0 < d ≤ D ≤ d̄ <∞.

Assumption 2.6. The states ξa and ξe are measurable.

Remark 2.1. The previous assumptions are similar to the ones in [10, 19, 20, 43, 46, 48].
Assumption 2.1 is feasible if these parameters are previously estimated by parametric
identification, such as in [12]. Assumptions 2.2 and 2.3 are realistic due to the limited
resources in the bioreactor. Furthermore, Q can be known by measuring the input and
output of a gas flow rate, as described in [11]. Moreover, Assumption 2.4 says that
the external disturbance in the dilution rates behaves almost as a parameter, so an
adaptive observer can be used, as described in further sections. Also, Assumptions 2.4
and 2.5 are expected due to the limitations in the equipment that adjusts the dilution
rate. Finally, Assumption 2.6 is necessary for the observability and detectability of the
reaction rates φ, the input disturbance δ, and the unmeasurable states ξb ∈ Rn−m−1, as
further discussed in the next section.

Remark 2.2. The parameters previously described, such as φ̄i, δ̄, δ, ξ̄i or Q̄i are as-
signed heuristically or from the bioprocess knowledge. However, adaptive laws can be
applied to robustly estimate ψi = |Kai

|φ̄i+max(|δ|, |δ̄|)(ξ̄adi
+ ξ̄adi

), as described for an
STA in [54].

2.2. Proposed hybrid observer

A hybrid observer can now be proposed to estimate the desired key biochemical vari-
ables, whose structure is shown in Figure 1. From the start, a super-twisting algorithm
can be used to estimate the total uncertainty ω = Kaφ+δ(ξ

in
a −ξa), which can be seen as

the sum of the unknown reaction rates and the additive disturbance in the dilution rate.
Although this idea looks similar to mechanical and electrical systems, it is necessary to
separate the estimation of φ̂ and δ̂ from ω̂, which is done with an adaptive observer with
projection. Finally, the estimations of the reaction rates and external disturbances are
applied with an asymptotic observer to estimate the remaining unmeasurable biochem-
ical concentrations.
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Fig. 1: Structure of the proposed hybrid observer for estimating φ, δ, and ξb by using
the available measurements ξa and ξe.

2.3. Background theory

The rest of this section recalls helpful definitions and theorems for the further observer’s
analysis and design3. Let’s recall first the notion of uniformly ultimately bounded (UUB)
trajectories which play a key role when a system faces bounded external disturbances.

Definition 2.1. It is said that all trajectory solutions of a nonlinear system ẋ = f(x)
are UUB with ultimate bound b if there exist constants b, c ∈ R>0 independent of t0 ≥ 0
and ∀a ∈ (0, c), exist Tu = Tu(a, b), independent of t0, such that:

||x(t0)|| ≤ a→ |||x(t)|| ≤ b ∀t ≥ t0 + Tu.

Theorem 2.1. Let ẋ = f(x, t) be a nonlinear time-variant system. Suppose a contin-
uously differentiable function V : D × R≥0 → R≥0 with D ⊂ Rn, and positive definite
functions ω1(·), ω2(·) and ω3(·), such that the following is satisfied:

ω1(||x||) ≤ V (x, t) ≤ ω2(||x||)

V̇ (x, t) ≤ −ω3(x), ||x|| ≥ µ > 0.

If for a number r > 0 it is true that r ∈ B = {r ∈ B ⊂ D | r > ω2(µ)}, then all trajectory
solutions of ẋ = f(x) are UUB with ultimate bound b = ω−1

1 (ω2(µ)).

3For more details about Lyapunov stability and adaptive observers, see [29, 32].
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P r o o f . See Corollary 4.2 in [29]. □

Additionally, parameter uncertainty can drastically modify a system’s dynamic. Sup-
pose that δV ∈ Rm is a vector of parameter uncertainties associated with the nonlinear
system ẋ = f(x, δV ). It is said that ẋ is linearly parameterized if ẋ = g(x) + δV ϕ,
where g(x) ∈ Rn is a known vector and ϕ ∈ Rm is a known bounded regression vector,

which determines the convergence of the parametric error δ̃V = δV − δ̂V . Applying
an adaptive law to the system is an excellent choice to increase its robustness against
parameter uncertainties. Hence, the following definition recalls the persistent excitation
(PE) property. At the same time, Barbalat’s lemma is described, which is instrumental
for the theorem about the exponential convergence of δV to its nominal value, given
below.

Definition 2.2. Let ϕ ∈ Rp be an integrable and bounded function. It is said that ϕ
satisfies the PE condition if there exist constants α1, α2, T0 ∈ R>0 such that:

α2I ≥
∫ t+T0

t

ϕ(s)Tϕ(s) ds ≥ α1I

where I ∈ Rp×p is the matrix identity.

Lemma 2.1. (Barbalat’s Lemma) If f(t) : R≥0 → R is uniformly continuous and

limt→∞
∫ t

0
|f(s)|ds exists and is finite, then limt→∞ f(t) = 0.

P r o o f . See Lemma 2.12 in [42]. □

Theorem 2.2. Let be the general adaptive observer:

Ė = −AEE +Bϕδ̃V (3a)

˙̃
δV =MϕCTE (3b)

y = CT
EE (3c)

where M ∈ Rp is an adaptive gain, E ∈ Rn is the measurement error vector, y ∈ Rn

is the output, and AE ∈ Rn×n and B,CE ∈ Rn form the transference function H(s) =
CE(sI−AE)

−1B. If ϕ accomplishes the PE condition and H(s) is a strictly real positive

and proper function that accomplishes H(∞) = 0, then δ̂V → δV exponentially.

P r o o f . See Theorem 2.3 in [7]. □

Later, an observer’s existence can be guaranteed if a dynamical system is observable
or detectable. However, even though there are many criteria for evaluating this task, it
is challenging to conclude if the state of a nonlinear system is observable or detectable
when unknown inputs are present. Before ending this section, the following definitions of
observability and detectability for nonlinear systems with unknown inputs are described
[39, 41].
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Definition 2.3. Let be the following dynamical system:

ẋ = f(x, u, ω), x(0) = x0 (4a)

y = h(x) (4b)

˙̃x = f(x, u, ω)− f(x+ x̃, u, ω + ω̃), x̃(0) = x̃0 (4c)

ỹ = h(x)− h(x+ x̃) = 0 (4d)

where x, x̃ ∈ Rn is the state and its error estimation, respectively, u ∈ Rm is the input,
ω, ω̃ ∈ Rq is the unknown input and its error estimation, respectively, y, ỹ ∈ Rp is the
output and its error estimation. Furthermore, f(·) ∈ Rn and h(·) ∈ Rp are smooth.
Then:

• If x̃ ̸= x is such that y(t, x, u, w) = y(t, x̃, u, w̃) ∀t ∈ R>0 and for some ω, ω̃ ∈ Rq,
then x̃ is a strongly u-indistinguishable state from x. Denote by IUI

(u,x) the set of
strongly u-indistinguishable states from x.

• The nonlinear system (4) is strongly u-observable if for every x, IUI
(u,x) = {x}.

• The nonlinear system (4) is strongly u-detectable if for every x and every x̃ ∈ IUI
(u,x)

and any couple of signals ω and ω̃ that renders x̃ indistinguishable, it follows that
x(t, x̃, u, ω̃) → x(t, x, y, w) at t→ ∞.

Remark 2.3. From the previous definition, the nonlinear system (4) is strongly u-
observable if and only if this system is trivial, that is, the only solution is x̃ = 0.
Moreover, this nonlinear system is strongly u-detectable if and only if it has x̃ = 0 as
an attractive equilibrium point for every ω̃, that is, for every y(t, x(0), u, w) solution of
(4), every x̃0 and every w̃ such that (4) is satisfied, then x̃→ 0.

3. ANALYSIS AND DESIGN OF THE PROPOSED HYBRID OBSERVER

Before the analysis and design of the proposed hybrid observer, its existence is studied
by checking the observability and detectability properties of the bioreactor model (2).
Due to φ and δ being structurally equal to an unknown input, the following result shows
that this observer exists by applying the same methodology described in [41].

Proposition 3.1. Suppose that the continuous bioprocess (2) accomplishes Assump-
tions 2.1-2.6. Then, the reaction rates φ and external disturbance δ are strongly u-
observable, while the unmeasurable state ξb is strongly u-detectable.

P r o o f . One can define a copy of system (2) by substituting the state, reaction rates,

and external disturbance with their estimation, that is, ξ̂a, ξ̂e, ξ̂b, φ̂, and δ̂. Hence,
defining the estimation errors ξ̃a ≜ ξa − ξ̂a, ξ̃e ≜ ξe − ξ̂e, ξ̃b ≜ ξb − ξ̂b, φ̃ ≜ φ − φ̂, and
δ̃ ≜ δ − δ̂, it can be obtained the following nonlinear system:

˙̃
ξa = Kaφ̃− (D + δ)ξ̃a + δ̃

(
ξina − ξa + ξ̃a

)
(5a)

˙̃
ξe = Keφ̃− (D + δ)ξ̃e + δ̃

(
ξine − ξe + ξ̃e

)
(5b)

˙̃
ξb = Kbφ̃− (D + δ)ξ̃b + δ̃

(
ξinb − ξb + ξ̃b

)
(5c)
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by hypothesis, ỹ =
[
ξ̃Ta ξ̃e

]T
= [01×m 0]

T
, that is, ξ̃a = 0m×1 and ξ̃e = 0. Therefore,

φ̃ = −δ̃K−1
a (ξina − ξa) and δ̃ϕe = 0, where ϕe = ξine − ξe − KeK

−1
a (ξina − ξa). Hence,

δ̃ = 0 if ϕe ̸= 0 and consequently, φ̃ = 0m×1. From Remark 2.3, ξa, ξe, φ and δ are
strongly u-observable. Lastly, notice that:

˙̃
ξb = −(D + δ)ξ̃b

So, ξ̃b → 0(n−m−1)×1 if D + δ > 0 and from Remark 2.3, ξb is strongly u-detectable. □

It turns out that φ, δ, and ξb can be estimated using the measurements of ξa and ξe.
To address the estimation of ξb, it seems logical to first determine φ and δ. Note that
the dynamics of ξa and ξe given in (2) are algebraically dependent, so it is not possible
to dissociate them by a diffeomorphic transformation. Moreover, it is impossible to
estimate φ robustly without knowing δ, [50]. Therefore, the design of an extended STA
is proposed for first estimating φ and δ in finite time and later decoupling these estimates
with an adaptive observer. Finally, for the observation of ξb, an asymptotic observer
based on the estimates φ̂ and δ̂ is proposed.

3.1. Extended super-twisting algorithm

Firstly, it will be used the measurable state ξa to estimate the total uncertainty ω =
Kaφ+ δ(ξina − ξa). Hence, the dynamic of ξa can be expressed with respect to ω:

ξ̇a = ω + fa(ξa, D) (6)

where fa(ξa, D) = D(ξina − ξa) − Qa. Therefore, the next theorem shows the extended
STA designed in [50] can estimate ω in finite time.

Theorem 3.1. Consider the dynamic model (6) with the Assumptions 2.1-2.6 and the
following dynamical system:

˙̂
ξa = Ψ

(
η + L1ABS(σ)1/2SIGN(σ)

)
+ fa(ξa, D) (7a)

η̇ = L2SIGN(σ) (7b)

ω̂ = Ψη (7c)

σ = Ψ−1(ξa − ξ̂a) (7d)

where ξ̂a, ω̂ ∈ Rm are the estimation of ξa and ω, respectively, η ∈ Rm is a vector
linked with ω̂, σ ∈ Rm is a sliding vector, L1 > 0, L2 > 1 are algorithm gains, while
Ψ = diag(ψ1, · · · , ψm) is a positive definite matrix such that

|ω̇i| ≤ ψi = |Kai
|φ̄i +max(|δ|, |δ̄|)

(
ξ̄adi

+ ξ̄adi

)
.

Then, the observer (7) is finite time stable and exists a positive constant εω such that
||ω̂ − ω|| ≤ εω before the finite time convergence.
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P r o o f . See Theorem 1 in [50]. □

The previous result shows that ω can be estimated in finite time, which contains
the joint estimation of φ and δ. In the next section, we used an adaptive observer to
decouple the estimation of φ and δ from ω.

3.2. Adaptive observer

Secondly, once the total uncertainty ω is estimated, decoupling φ and δ from this esti-
mated variable is necessary. For this purpose, notice that δ is a scalar function. So, the
measurement of ξe can be used to decouple the desired dynamics, which dynamic model
can be expressed with respect to the total uncertainty ω, that is:

ξ̇e = KeK
−1
a ω + δϕe(ξa, ξe) + fe(ξe, D) (8)

where ϕe(ξa, ξe) = ξine − ξe −KeK
−1
a

(
ξina − ξa

)
and fe(ξe, D) = D(ξine − ξe)−Qe. Due

to δ slowly changes in time, an adaptive observer can be designed to separate φ and δ
from ω and ξe. For such an end, the PE condition for ϕe is discussed in the following.

Proposition 3.2. If ξine − ξe − KeK
−1
a

(
ξina − ξa

)
> 0 ∀t, then ϕe(ξa, ξe) satisfies the

PE condition given in Definition 2.2.

P r o o f . It is a directed consequence because all the elements of ϕe(ξa, ξe) > 0 are
continuously bounded (Assumption 2.2). □

Even though there are different adaptive laws [32], a gradient algorithm with projec-
tion is proposed for estimating φ and δ with the advantage of avoid high overshoots in
their estimates, as described in the following.

Theorem 3.2. Let the next algorithm be:

˙̂
ξe = KeK

−1
a ω̂ + δ̂ϕe(ξa, ξe) + fe(ξe, D) + α1ξ̃e (9a)

˙̂
δ =

{
α2ξ̃eϕe(ξa, ξe) if δ̂ ∈ Aδ

0 otherwise
(9b)

Aδ =

{
δ̂ ∈ R |

(
δ̂2 < γ2

)
or
((
δ̂2 = γ2

)
and

(
2α2ξ̃eϕe(ξa, ξe)δ̂ ≤ 0

))}
(9c)

where α1, α2 ∈ R>0 are algorithm gains, γ > max(|δ|, |δ̄|), while ξ̃e = ξe − ξ̂e is the

estimation error of ξe. Therefore, ξ̃e converges asymptotically to the origin while δ̂
and φ̂ = K−1

a (ω̂ − δ̂(ξina − ξa)) converge in a neighborhood near their nominal values.

Furthermore, if ϕe(ξa, ξe) accomplishes Lemma 3.2, then δ̂ and φ̂ converge exponentially
to δ and φ, respectively.
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P r o o f . The differentiation of ξ̃e with respect to time is:

˙̃
ξe = −α1ξ̃e + δ̃ϕe(ξa, ξe) +KeK

−1
a (ω − ω̂).

Now, let be the Lyapunov candidate function V = χTPαχ where χ =
[
ξ̃e δ̃

]T
and

Pα = 0.5 · diag(1, α−1
2 ). Applying Rayleigh-Ritz inequality:

λmin(Pα)||χ||2 ≤ V ≤ λmax(Pα)||χ||2 (10)

where λmin(Pα) = 0.5min(1, α−1
2 ) and λmax(Pα) = 0.5max(1, α−1

2 ), it is concluded that
V is a positive definite and decreasing function. Differentiation of V with respect to
time gives:

V̇ = −α1ξ̃
2
e + δ̃

(
ξ̃eϕe(ξa, ξe) + α−1

2
˙̃
δ
)
+KeK

−1
a (ω − ω̂)ξ̃e.

For Theorem 3.1, it follows that:

|KeK
−1
a (ω̂ − ω)ξ̃e| ≤ ρω|ξ̃e|, 0 ≤ t < τ

where ρω = λmax(K
−1
a )||Ke||ϵω. Otherwise, it is concluded that KeK

−1
a (ω − ω̂)ξ̃e = 0

since ω̂ → ω when t ≥ τ . Now it is necessary to analyze two different cases.

Case I:
˙̃
δ = −α2ξ̃eϕe. For this case:

V̇ ≤ −α1ξ̃
2
e + ρω|ξ̃e|.

During the interval 0 ≤ t < τ , notice that V̇ < 0 if |ξ̃e| > ρω/α1 and for Theo-
rem 2.1 it is proved that all trajectories of V are UUB with positive definite functions
ω1 = λmin(Pα)||χ||2, ω2 = λmax(Pα)||χ||2 and ω3 equal to the right term of V̇ . Now, in

the interval t ≥ τ , it is easy to show that δ̃, ξ̃e,
˙̃
ξe ∈ L∞ and ξ̃e ∈ L2. Therefore, ξe is uni-

formly continuous and limt→∞
∫ t

0
|ξe(s)|ds exists and is finite, so for Barbalat’s Lemma

2.1 it is proved that ξ̃e converge asymptotically to origin. Lastly, as a consequence of δ̃
is bounded and ω̂ = ω in finite time, δ̂ and φ̂ are also bounded.

Case II:
˙̃
δ = 0. For this case:

V̇ ≤ −α1ξ̃
2
e +

(
|ϕe(ξa, ξe)||δ̃|+ ρω

)
|ξ̃e|. (11)

For Assumptions 2.2-2.5, ϕe(ξa, ξe) is a bounded function, that is, exists a constant

σ1 ∈ R>0 such that |ϕe| ≤ σ1. Also, as a consequence of
˙̃
δ = 0, it is clear that

|δ̃| = |δ − δ̂| ≤ σ2. Therefore:

V̇ ≤ −α1

∣∣∣ξ̃e∣∣∣ (∣∣∣ξ̃e∣∣∣− κ+ ρω
α1

)
where κ = σ1σ2. Thus, V̇ < 0 if |ξ̃e| > (κ + ρω)/(α1) and for Theorem 2.1 it is
proved that ∀t ∈ R≥0 all trajectories of V are UUB with positive definite functions

ω1 = λmin(Pα)||χ||2, ω2 = λmax(Pα)||χ||2 and ω3 equal to right term of V̇ .
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Later, observe that V is UUB when 0 ≤ t < τ . However, it is different once ω̂
converges to its nominal value when t > τ . Even though case II shows that V is UUB,
notice that δ̂ is in the convex regionAδ which includes all possible values of δ described in
Assumption 2.4. In addition, this set is bigger enough to include the maximum absolute
values of δ without δ̂ being in the convex region limits. Hence, in long term δ̂ always
belong in Aδ and as a result, ξ̃e converges asymptotically to origin. Furthermore, as
mentioned before, if δ̂ and φ̂ are bounded, it means they converge in a neighborhood
near their nominal values δ and φ.

Now, let be defined the next dynamical system

˙̃
ξe = −α1ξ̃e + δ̃ϕe,

˙̃
δ = −α2ϕeξ̃e, y = ξ̃e.

This system has the same structure as (3). Moreover, for this system, H(s) = 1/(s+α1)
is a strictly real positive and proper function that satisfies H(∞) = 0 and suppose that

ϕe(ξa, ξe) accomplishes Lemma 3.2. Therefore, for Theorem 2.2, it is proved that δ̂
converges exponentially to δ. Finally, because ω̂ = ω in finite time, it is concluded that
φ̂ converge exponentially to φ. □

Remark 3.1. Due to the projection defined in the adaptive law (9b), the estimations of
φ and δ are defined inside the set Aδ, which is constructed using the input disturbance
properties described in Assumption 2.4. Therefore, φ and δ estimations are defined near
their possible values.

3.3. Asymptotic observer

Lastly, it is clear that ξb can be estimated using the previous estimations of φ and δ
decoupled from ω. However, due to ω̂ converging to its nominal value in finite time, it
is feasible to use ω̂ instead of φ̂ to estimate ξb, as will be shown. Therefore, notice that
ξb can be expressed with respect to ω, that is:

ξ̇b = KbK
−1
a ω + δϕb(ξa, ξb) + fb(ξb, D) (12)

where ϕb(ξa, ξb) =
(
ξinb − ξb −KbK

−1
a

(
ξina − ξa

))
and fb(ξb, D) = D(ξinb − ξb) − Qb.

Hence, an asymptotic observer can be used with ω̂ and δ̂ to estimate ξb, as described in
the following theorem.

Theorem 3.3. Let the next algorithm be:

˙̂
ξb = KbK

−1
a ω̂ + δ̂ϕb(ξa, ξ̂b) + fb(ξ̂b, D). (13)

If ω̂ = ω in a finite time, |δ − δ̂| ≤ εδ ∈ R≥0, and D + δ − εδ accomplishes the PE

condition, then ξ̂b converges asymptotically to a neighborhood near ξb, that is, exists a
constant κ > 0 such that:

lim
t→∞

||ξb(t)− ξ̂b(t)|| ≤
2
√
2m1

κ

m1 = εδ

n−m−1∑
k=1

ξ̄inbk + ξ̄bk +
∣∣K−1

ak

∣∣ m∑
j=1

|Kbkj
|
(
ξ̄inaj

− ξ̄aj

) .
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P r o o f . The differentiation of error ξ̃b = ξb − ξ̂b with respect to time is:

˙̃
ξb = −(D + δ)ξ̃b − δ̃

(
ς − ξ̃b

)
where ς = ξinb − ξb−KbK

−1
a

(
ξina − ξa

)
. Now, defining the candidate Lyapunov function

V = 1
2 ξ̃

T
b ξ̃b, which is a positive definite and decrescent function. The differentiation of

V with respect to time is:

V̇ (ξb(t)) ≤ −m0(t)||ξ̃b(t)||2 +m1||ξ̃b(t)||

where m0(t) = D(t)+ δ(t)− εδ. Using the comparison lemma (u =
√
V ), it is concluded

that:

V (ξb(t)) ≤ V (ξ(0))ρ(t, 0) +

√
2m1

2

∫ t

0

ρ(t, τ) dτ

ρ(t1, t2) = exp

(
−
∫ t2+T

t2

m0(s) ds

)

where T = t1 − t2. Due to m0(t) accomplishes PE condition and for Cauchy-Schwarz
inequality, then:

−
∫ t+T

t

m0(s) ds ≤ −
√
κT < 0

where κ, T > 0. Therefore ρ(t1, t2) ≤ e−
√

κ(t1−t2) and from the previous results, one
gets:

||ξ̃b(t)|| ≤ 2||ξ̃b(0)||e−
√
κt +

2
√
2m1

κ
ρ0(t)

ρ0(t) = 1− e−
√
κt
(
1 +

√
κt
)
.

Due to limt→∞ ρ0(t) = 1, then limt→∞ ||ξ̃b(t)|| ≤ 2
√
2m1

κ and the main result is proved.
□

Remark 3.2. Notice that the asymptotic observer has an indirect output injection term
due to the observer-based estimators previously designed.

Remark 3.3. Due to the STA guarantees that ω̂ → ω in finite time, the adaptive
observer can be studied directly, as similarly done in [48]. The asymptotic observer uses
ω̂ instead of φ̂ to avoid carrying additional estimation errors. Furthermore, observe that
ξb do not affect ξa and ξb dynamics, and consequently, the previous estimation of φ and
δ are independent of ξb estimation.
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3.4. A summary of the hybrid observer design procedure

In this part, the design steps to be followed for the sequential estimation of φ, the
external perturbation δ and/or the nonmeasurable states ξb of system (2) are suggested:

1. First, the implicit estimation of φ and δ is carried out by means of the estimation
of ω := Kaφ + δ(ξina − ξa) using the ESTA algorithm (7). Next, one can go to
steps 2 or 3 according to the desired estimation objective.

2. Suppose that, starting from ω̂, one wants to estimate φ and δ independently.
To this end, it is proposed here to use the adaptive asymptotic observer (8) to
estimate δ and consequently also determine φ, taking into account that ω̂ :=
Kaφ̂+ δ̂(ξina − ξa).

3. Finally, suppose it is wanted to estimate the nonmeasurable states ξb. For this,
it is proposed here to use the asymptotic observer (12), which only requires the
finite-time estimate of ω provided in step 1.

4. SIMULATION RESULTS

Consider sulfate-reducing bioprocess of Desulfovibrio alaskensis 6SR described in [1]:

Ẋ = φ− (D + δ)X − βX (14a)

L̇ = −YLφ+ (D + δ)(Lin − L) (14b)

Ȧ = YAφ− (D + δ)A (14c)

Ṡ1 = −YS1φ+ (D + δ)(Sin
1 − S1) (14d)

Ṡ2 = YS2
φ− (D + δ)S2 (14e)

where X is bacteria biomass, L, A, S1, and S2 are lactate, acetate, sulfate, and sulfide
concentration, respectively. While Lin and Sin

1 are the influent concentration of L and
S1, respectively. Moreover, YL, YA, YS1

and YS2
are lactate-biomass, acetate-biomass,

sulfate-biomass, and sulfide-biomass yield coefficients, respectively, while β is the specific
mortality rate and φ is the growth rate of microorganisms. Notice that the system (14)
can be expressed as the dynamic model (2), where:

ξa = X ξina = 0 Ka = 1

ξe = L ξine = Lin Ke = −YL

ξb =

AS1

S2

 ξinb =

 0
Sin
1

0

 Kb =

 YA
−YS1

YS2

 .
Remark 4.1. The dynamic model (14) describes the reduction of sulfate to sulfide
by Desulfovibrio alaskensis 6SR. This species is an anaerobic bacterium that produces
energy by reducing sulfate, and it is commonly used for the bioremediation of heavy
metals. In this case, lactate is used as a carbon source, while acetate is a secondary
metabolite from the bacteria. Sulfide is another secondary metabolite that, in high
concentrations, inhibits the reproduction of the bacteria.



Robust hybrid observer for estimating key biochemical variables in continuous bioreactors 419

For definiteness, let us summarize the context under which the experimental results
will be presented.

• The main objective is to monitoring the unmeasurable states A, S1, and S2 un-
der the external disturbance δ and without knowing the structure of φ, which is
described for simulation purposes as:

φ = µmax

(
L

KL + L

)(
S1

KS1
+ S1

)(
1− S2

Ps

)n

X

where µ,KL,KS1 , Ps, n ∈ R>0 are kinetic parameters.

• It is assumed that the input disturbance δ has four different behaviors: δ is null
(before 80 h), is negative (from 80 h to 160 h), is positive and greater to the
nominal dilution rate (from 160 h to 240 h), and its continuously bounded (after
240 h).

• Two cases will be studied for the sulfate reducing process. In case one, the moni-
toring performance of δ, φ, and the unmeasurable states (A, S1, S2) will be shown.

In case two, a compensation action based on δ-estimated (δ̂) will be presented to
alleviate the undesirable effects of δ on the bioreactor dynamics. This case will
illustrate the advantages of having a good estimate of δ and φ.

Case
Initial State Values (g/L)

Biomass (X) Lactate (L) Acetate (A) Sulfate (S1) Sulfide (S2)
System 0.125 2.75 0.025 5.25 0.05
Observer 0.5 1.0 0.5 4.0 0.3

Tab. 1: Initial conditions used in the simulations.

Algorithm
RMSE

φ A S1 S2

HB-STA+AAO 0.0037 0.1932 0.1426 0.0299
HB-HGO+AO 0.0168 0.2491 0.2374 0.0464

Tab. 2: RMSE results by estimating φ, A, S1, and S2 with the HB-STA+AAO (7),
(9) and (13) and the HB-HGO+AO (15) during t ≥ 25 h to avoid the high-frequency
discontinuous behavior for the HB-STA+AAO and the peaking phenomena for the HB-
HGO+AO.

Now, to compare estimation dynamics of φ, δ, and ξb with the designed hybrid ob-
server based on super-twisting plus adaptive and asymptotic observers (HB-STA+AAO),
suppose that δ ≈ 0. Defining Z = [ξTa φTKa]

T , then ξa and φ can be expressed as fol-
lowing:

Ż(t) = AZ(t) + f(Z,D) + g(t)

y(t) = CZ(t)
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Fig. 2: Simulation results for monitoring φ with the HB-STA+AAO (7), (9), and (13)
and the HB-HGO+AO (15) in the sulfate-reducing bioprocess (14).

where

A =

[
0m×1 Im×m

0 01×m

]
C =

[
Im×m 0m×m

]
f(Z,D) = D(ξina − Z1(t))−Qa g(t) = KaŻ2(t).

Hence, the following hybrid observer can be used:

Ż = AẐ + f(Ẑ,D) + θ∆−1
θ K(y − CẐ) (15a)

˙̂
ξb = Kbφ̂+D(ξinb − ξb)−Qb (15b)

where φ̂ = K−1
a Z2, K ∈ R2m×1 is an algorithm gain, θ is a high gain term and

∆θ = diag(Im×m,
1
θ Im×m). This hybrid observer is based on a high gain observer plus

an asymptotic observer (HB-HGO+AO). The HGO guarantees that Ẑ(t) converges ex-

ponentially to its nominal value [13], while the asymptotic observer guarantees that ξ̂b
converges near its nominal value. Additionally, the root mean squared error (RMSE)
will be used to compare the performance estimation of φ and ξb between both observers,
that is:

RMSE(Fi, F̂i) =

(
1

TR

T∑
i=1

(
Fij − F̂ij

)2)1/2

(16)

where F =
[
φ A S1 S2

]
and TR > 0 is the number of observations.

All simulations were done in MATLAB with Simulink (2023b) using Euler solver
which step solution size is fixed as 1 miliseconds. While the numerical values of model
parameters are equal to the ones described in [1], except for µmax = 1 h−1 and β =
0.01 h−1. Also, the input values of the bioprocess are D = 0.1 h−1, Lin = 10 g/L,
and Sin

1 = 6 g/L, while the initial conditions of the system are described in Table 1.
Additionally, the states X and L are measured discontinuously each 0.25h (equivalent
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to 15 minutes). Lastly, the gain values of both observers are L1 = 1, L2 = 0.2 K1 = 1,
K2 = 2, Ψ = 0.02, α1 = α2 = 1, θ = 1.5, and γ = 0.25. In both cases, the observers’
performance was compared with simulated data obtained by simulating the bioprocess
model (14).

4.1. Case 1: Robust estimation

The simulation results are shown in Figures 2 – 4, while the calculated RMSE is shown
in Table 2. Thus, the HB-HGO+AO has the fastest and best performance for estimating
the reaction rate before 80 h because δ = 0. Furthermore, although the adaptive law
with projection ensures that |δ̂| ≤ γ, it affects the estimation performance of φ and δ
with the HB-STA+AAO by producing a high-frequency discontinuous behavior during
the first 10 h, as shown in Figures 2a and 3a. However, the estimation performance of φ,
A, S1, and S2 with the HB-HGO+AO drastically worsens under the presence of external
input disturbance. Moreover, the RMSE calculated shows that the HB-STA+AAO has
the best performance for estimating the key biochemical variables. Also, observe that
ϕe accomplishes Lemma 3.2 due to ϕe > 0, as shown in Figure 5a. Therefore, Φ(t, T ) is
strictly positive and bounded, as shown in Figure 5b. Consequently, ϕe accomplishes the
PE condition and guarantees that the adaptive observer performs well in estimating δ.
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Fig. 3: Simulation results for monitoring δ with the HB-STA+AAO (7), (9), and (13) in
the sulfate-reducing bioprocess (14).

4.2. Case 2: Disturbance rejection control

For D = 0.1 h−1 and δ = 0, the state ξ = [X L A S1 S2]
T of system (14) has two

feasible equilibrium points:

ξ̄eq1 =
[
0 Lin 0 Sin

1 0
]T

ξ̄eq2 =
[
0.3167 5.2518 2.9657 3.1661 0.5533

]T
.
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Fig. 4: Simulation results for monitoring A, S1 and S2 with the HB-STA+AAO (7), (9),
and (13) and the HB-HGO+AO (15) in the sulfate-reducing bioprocess (14).
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Fig. 5: Dynamics of ϕe(t) and Φ(t, T ) =
∫ t+T

t
ϕ2e(τ) dτ (T = 80 h, PE condition) in the

sulfate-reducing bioprocess (14) for Case 1 and 2.
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Notice that ξ̄eq1 corresponds to the washout equilibrium condition, that is, a patho-
logical behavior of the process, such that no more bioreactions occur. Hence, it could
be reasonable that the state ξ converge to an optimal equilibrium point. However, the
previous simulation shows that bioreactor dynamics and their equilibrium points can
be drastically changed by the effect of the input disturbance δ. So, it is necessary to
propose a disturbance compensation action to reject the impact of δ in the bioreactor
dynamics. For this task, the simplest compensation is given by D = U− δ̂, where U may
stabilize the bioreactor, guarantee the tracking of a desired dynamic reference, or drive
the bioreactor’s behavior to a desirable equilibrium point, for instance [47]. In order to
fulfill Assumption 2.5, which avoids negative values of the dilution rate and batch or
washout conditions, it is necessary that D has the following structure:

D = min
(
max

{(
δ̂ − U

)
sign

(
δ̂ − U

)
, d
}
, d̄
)

(17)

where d, d̄ ∈ R > 0 are the minimum and maximum value of D, respectively. Although
the proposed action rejects δ, notice that if |δ| > U , it is impossible to deny its effect.
Therefore, it is given an additional assumption usually accomplished in real applications.

Assumption 4.1. The absolute value of the input disturbance δ is never bigger or equal
to U , that is, |δ| < U .

Now, suppose that4 U = YS2
φ̂/Sr where Sr = 0.9Ps, d = 0.002 h−1, d̄ = 0.2 hr−1 and

D = U in the first 25 hr to avoid the high-frequency discontinuous estimation of δ. The
simulation results of the sulfate-reducing bioprocess (14) coupled with the controller (17)
is shown in Fig.6a for the HB-STA+AAO. At the same time, the simulated data were
obtained by simulating the bioprocess coupled with the disturbance rejection control,
assuming that δ is fully known and D = U−δ. Notice that the proposed controller-based
observer guarantees a good disturbance rejection and estimation of S2. Moreover, S2

converge near 0.9Ps except between the 160 h and 240 h. This specific behavior happens
because Assumption 4.1 is no longer valid, that is, |δ| > U and D must be negative to
reject the input disturbance, as shown for the simulated case in Figure 6b. However, a
negative value of D is impossible for real applications. Hence, the dilution rate needs to
be strictly positive and bounded to avoid negative values, as shown in Figure 6b. Finally,
notice that ϕe still accomplishes the PE condition for all time, as shown in Figure 5.

To summarize, the main advantage of the proposed algorithm is that it can expo-
nentially estimate the reaction rates and additive disturbance in the dilution rate, in
contrast with the convergence near their nominal values obtained in [50]. Moreover,
these estimations belong to a bounded range of values due to the projection in the adap-
tive law. Hence, the peaking phenomena of an HGO do not happen in this algorithm.
Also, the estimation of the unmeasurable states converges near their nominal values.
However, the main limitation of this hybrid observer is that the external disturbance
must slowly change in time, and the projection in the adaptive law can produce discon-
tinuities for a short interval of time, as shown in the following section. Furthermore, the

4This controller is based on the results developed in [21], that is, under a known φ and δ = β = 0,
this algorithm guarantees that the bioreactor avoids washout and batch conditions, while X → 0.9Ps,
L → Lin − (0.9YLPs/YS2 ), A → 0.9YAPs/YS2 , S1 → Sin

1 − (0.9YS1Ps/YS2 ), and S2 → 0.9Ps.
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Fig. 6: Dynamic of the sulfide S2 and dilution rate D in the disturbance rejection control
of the sulfate-reducing bioprocess (14).

proposed algorithm must be modified for biochemical processes under noisy or discrete
measurements.

5. CONCLUSION

The problem under study is centered on the robust observation problem of continuous
bioreactors. For this, and of independent interest, the paradigm of unknown reaction
rate dynamics faced by input external disturbance is considered. The hybrid observer
design methodology presents a systematic way based on a careful and realistic state
space representation that facilitates the hybrid sequential observer design. Hence, a
hybrid observer was designed to estimate unmeasurable states, unknown reaction rates,
and an input disturbance in the dilution rate for a continuous bioprocess. The proposed
algorithm uses a partition of the measurable state and the extended super-twisting algo-
rithm to jointly estimate reaction rates and an input disturbance in finite time. Later, an
adaptive observer with projection and the measurement of another reactive or product
was used to decouple them. These estimates converge exponentially to their nominal
values if the persistent excitation condition is accomplished. Lastly, using the previous
estimations and an asymptotic observer, the unmeasurable states converge near their
nominal value. Finally, the proposed technique may offer a way of approaching robust
disturbance rejection control problems under partially known dynamics in bioreactors.
The proposed observer and controller are illustrated in two simulations dealing with a
sulfate-reducing process in a continuous bioreactor. The results show a good perfor-
mance in monitoring and controlling different input disturbance behaviors.
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