
KYBERNET IKA — VOLUME 6 1 (2 0 2 5) , NUMBER 3 , PAGES 3 7 7 – 4 0 3

ADAPTIVE FRACTIONAL DISTRIBUTED OPTIMIZATION
ALGORITHM WITH DIRECTED SPANNING TREES

Huaijin Peng, Yiheng Wei, Shuaiyu Zhou, and DongDong Yue

Distributed optimization has garnered significant attention in past decade, yet existing al-
gorithms mainly rely on Laplacian matrix information for parameter settings, limiting their
adaptability and applicability. To design the fully distributed algorithm, this paper uses an
adaptive weight framework based on directed spanning trees (DST), which not only solves
the consensus optimization problem but also can be extended to solve the resource allocation
problem. The innovative integration of Nabla fractional calculus further improves performance,
enabling efficient discrete-time distributed optimization. Moreover, The proposed algorithms
optimality and convergence properties have been rigorously analyzed, which demonstrates that
they can converge to the optimal solution of the problem under consideration. Finally, numer-
ical simulations are conducted to validate the algorithm’s feasibility and superiority.

Keywords: distribute optimization, fractional calculus, directed graphs, directed spanning
trees, resource allocation, fully distributed

Classification: 05C05,05C20,26A33,90C26

1. INTRODUCTION

In past decade, with the development across multiple research fields, distributed
optimization has garnered significant attention and extensive study. Unlike centralized
optimization, distributed optimization operates by allowing multiple agents to work
together, each solving a part of the problem and sharing information with others in
order to obtain the optimal solution. Distributed optimization has achieved in various
applications such as autonomous driving, smart grids and distributed computing [1, 4,
6, 9, 16, 18, 27, 40].

To address distributed optimization, algorithm design must consider the network’s
communication topology, such as undirected connected graphs [14, 15, 17, 25, 28], and
digraphs [4, 7, 11, 12, 20, 24, 33] and so on. These algorithms in [7, 11, 12, 20, 33]
typically rely on the Laplacian matrix’s eigenvalues or eigenvectors for parameter set-
ting. An algorithm in [24] introduces saddle points for not requiring the knowledge of
Laplacian matrix but faces challenges with vanishing step sizes. Meanwhile, all afore-
mentioned algorithms except [12] require convexity of the local functions. When the
network is large and sparse, the strategy of setting parameters based on the global

DOI: 10.14736/kyb-2025-3-0377

http://doi.org/10.14736/kyb-2025-3-0377

378 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

Laplacian matrix with a static gain may lead to high gain and instability. The above
algorithms require global Laplace matrix information or global Lipschitz continuity and
are not fully distributed algorithms. Recently, one possible solution is to consider fully
distributed algorithms. The fully distributed algorithm does not need to rely on the
global Lipschitz continuity of the gradient, nor does it require a priori global Laplacian
information [35, 38, 39]. The fully distributed adaptive algorithm with DST in [35, 38] is
proposed to address the consensus optimization problem of the Lagrange multipliers. A
DST can be found in a distributed way without any knowledge of the Laplacian matrix
[10]. However, algorithms in [35, 38] only achieve asymptotic convergence.

In additon, fractional calculus, as an extension of classical calculus, allows derivatives
and integrals to have arbitrary real orders. In recent years, with the deepening study
of complex systems, fractional calculus has gained increasing attention and has been
widely applied in various fields [3, 13, 21, 29, 30]. The algorithm in [13] shows supe-
rior performance, achieving a convergence speed that surpasses that of the integer order
algorithm. Although fractional calculus has been proven to deliver significant perfor-
mance improvements, its application in distributed optimization algorithms is still in its
early stages [5, 23, 26, 34]. The study in [34] investigates the distributed optimization
problem for fractional nonlinear uncertain multi-agent systems with unmeasured states.
The algorithm in [26] solves the nonlinear fractional fixed-time distributed time-varying
optimization problem over unbalanced directed graphs. However, most of existing al-
gorithms are continuous-time algorithms, which require real-time communication and
gradient computation, leading to increased communication and computational costs. It
is worth mentioning that we have introduced Nabla discrete-time fractional calculus into
the distributed optimization algorithm, significantly reducing computational and com-
munication cost [8, 19, 37, 41]. Similarly, the aforementioned distributed algorithms face
the issue of relying on global Laplacian matrix information.

This work explores fractional distributed optimization on directed graphs. It intro-
duces fractional calculus and design the DST adaptive gain framework. Thus enable
agents to self-determine edge coupling strength based on DST, promoting consensus on
the Lagrangian multiplier of the optimal solution. It separately investigates the DST-
based fractional distributed optimization algorithm and fractional distributed resource
allocation algorithm. The advantages of these algorithms are as follows,

i) This paper designs DST-based adaptive fractional distributed optimization algo-
rithm and resource allocation algorithm, which is applied to solve the distributed
optimization consensus problem and distributed resource allocation problem over
directed graphs, with both proving their Mittag–Leffler convergence.

ii) Unlike traditional distributed algorithms, this paper designs the fully distributed
algorithm. Influenced by the viewpoint of uncertain saddle-point dynamics, this
paper designs an adaptive coupling gain framework based on DST, removing the
dependency on global Laplacian matrix information, eliminating the need for van-
ishing step sizes, and in optimization problems, relaxing the convexity requirement
for local cost functions, significantly enhancing flexibility and applicability. In the
DST-based adaptive strategy, only the gains along the edges associated with the
DST are adaptive.

Adaptive fractional distributed optimization algorithm with directed spanning trees 379

iii) This paper combined fractional calculus with adaptive weight mechanisms, the in-
corporation of fractional calculus, particularly Nabla fractional calculus, enriches
the algorithm’s dynamic characteristics, allowing it to better capture memory and
hereditary properties, improves algorithms performance. And it enables the tran-
sition from continuous-time to discrete-time implementations, ensuring robustness
and feasibility.

The rest of the paper is organized as follows. Section 2 introduces the preamble
and the problem setup. Section 3 describes DST-based fractional distributed optimiza-
tion algorithm and fractional distributed resource allocation and their Mittag–Leffler
convergence is obtained through proofs. Section 4 verifies the performance of the algo-
rithms numerically through simulations. Section 5 concludes and discusses some future
directions.

2. PRELIMINARIES

2.1. Notation

The real coordinate space with appropriate dimensions is denoted by R and R+ is
the real positive scalar subspace. Z+ usually represents the set of positive integers.
Na represents the set {a, a + 1, . . . }, where a ∈ R. IN represents the set {1, . . . ,
N}. Define the N -dimensional identity matrix by IN and 1N , and the column vector
with N elements being one. 0 denotes a column vector with all zeros. MN

r is a set
of n × n matrices with zero row sums. Denote col(x1, . . . , xN) = [x⊤1 , . . . , x

⊤
N]⊤ as

the column vectors. ⊗ is the Kronecker product. ∗ indicates the convolution operation,
i. e., x(k) ∗ y(k) =

∑k
j=a+1 x(k − j + a + 1)y(j)., for x, y : Na+1 → R, a ∈ R,.

(
p
q

)
=

Γ(p+1)
Γ(q+1)Γ(p−q+1) , and Γ(x) =

∫ +∞
0

e−ttx−1 dt. Let matrix A⊤ be the transpose of A.

And denote As = (A + A⊤)/2 as the undirected version of A. Denote λ̄ (or λ) as the
maximum (or minimum) eigenvalue of the symmetric matrix A. Denote the gradient of
the f differentiable function by ∇f . If a contineously differentiable funtion f : RN → R
is strictly convex, then there is a convex set Ω if (x−y)⊤[∇f(x)−∇f(y)] > 0, ∀x, y ∈ Ω
with x ̸= y. Define the value of the discrete optimization variable x at time k by x(k),
and k is omitted after. C

a∇α
kx(k) denotes the derivative of the α-order nabla discrete

fractional with respect to k under the definition of Caputo. The function pq = Γ(p+q)
Γ(p) is

called the rising function, where p ∈ R and q ∈ R.
From the asymptotic properties of the Gamma function, we have limp→+∞

pq

pq = 1.
Using mathematical induction and the definition of the rising function, and referring to
[3 – 5], the following basic properties can be easily derived:

2.2. Graph Theory

A weighted directed graph [22] G(V, E ,W) consists of a node set V = IN , an edge
set E = {eij | i ̸= j; i → j}, and a weighted adjacency matrix W = (wij) ∈ RN×N .
If eij ∈ E , then i is termed an in-neighbor of j, and the set of all in-neighbors of j is
denoted as Nin(j). Similarly, Nout(i) represents the set of all out-neighbors of i.

380 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

The Laplacian matrix L = (Lij) ∈ RN×N of G is defined such that Lij = −wij

for i ̸= j and Lii =
∑

k wik for i = 1, . . . , N . A path refers to a sequence of edges
that connects a pair of nodes. A directed graph G is considered strongly connected if
any pair of nodes is connected by a directed path and weakly connected if any pair of
nodes is connected by a path ignoring the direction of edges. Moreover, the graph is
weight-balanced if

∑
j∈Nin(i)

wij =
∑

j∈Nout(i)
wji for all i ∈ V.

A DST Ḡ(V, Ē , W̄) is a spanning tree that originates from a root node with no in-
neighbors and can reach each subsequent node along directed edges, with each node
having a unique in-neighbor except for the root. Let ip be the unique in-neighbor of
node p+ 1 in Ḡ. Correspondingly, L̄ and W̄ are the Laplacian matrix and the weighted
adjacency matrix of Ḡ, respectively. The set of out-neighbors of i in Ḡ is denoted as
N̄out(i).

2.3. Nabla fractional calculus

Definition 2.1. (Wei et al. [32]) The αth Grünwald–Letnikov fractional sum of func-
tion f : Na+1 → R is defined as

G
a ∇−α

k f(k) :=
∑k−a−1

i=0
(−1)i(−α

i)f(k − i), (1)

where α > 0, k ∈ Na+1, a ∈ R.

Definition 2.2. (Wei et al. [32]) The αth Caputo fractional difference of function
f : Na+1−n → R is defined as

C
a∇α

kf(k) :=
G
a ∇α−n

k ∇nf(k), (2)

where α ∈ (n− 1, n), n ∈ Z+, k ∈ Na+1, a ∈ R.

Lemma 2.3. (Wei et al. [32]) For any α ∈ (0, 1), y(k) ∈ Rn, n ∈ Z+, k ∈ Na+1, a ∈ R
and the positive definite matrix P ∈ Rn×n, it has the following inequality

C
a∇α

ky
⊤(k)Py(k) ≤ 2y⊤(k)PC

a ∇α
ky(k). (3)

Definition 2.4. (Wei et all. [31]) The discrete-time Mittag–Leffler function based on
the time domain is defined as

Fα,β(λ, k, a) :=

+∞∑
i=0

λi(k − a)iα+β−1

Γ(iα+ β)
, (4)

where α > 0, β > 0, λ ∈ C, k ∈ Na+1, and a ∈ R. By taking the inverse nabla Laplace
transform, it can be expressed as follows,

Fα,β(λ, k, a) := N−1
a

{
sα−β

sα − λ

}
, (5)

where s ∈ C, and N−1
a {·} denotes the inverse nabla Laplace transform.

Adaptive fractional distributed optimization algorithm with directed spanning trees 381

2.4. Technical Lemmas

Lemma 2.5. (Yue et al. [36]) Suppose G contains a DST Ḡ. Let L̃ = L − L̄.
Define Ξ = (Ξpj) ∈ R(N−1)×N to determine the edge relationship between p and j in

L̄ as

Ξpj =


−1, if j = p+ 1,

1, if j = ip,

0, otherwise.

(6)

Define Q = (Qpj) ∈ R(N−1)×(N−1) := Q̃+ Q̄ with

Qpj =Q̃pj + Q̄pj ,

Q̃pj =
∑

c∈V̄j+1

(L̃p+1,c − L̃ip,c),

Q̄pj =
∑

c∈V̄j+1

(L̄p+1,c − L̄ip,c),

(7)

where V̄j+1 represents the vertex set of the subtree of Ḡ rooting at node j + 1. Then,
the following statements hold

1. L has a simple zero eigenvalue corresponding to the right eigenvector 1N , and the
other eigenvalues have positive real parts.

2. ΞL = QΞ.

3. Q̄ can be explicitly written as

Q̄pj =


w̄j+1,ij , if j = p,

−w̄j+1,ij , if j = ip − 1,

0, otherwise.

4. The eigenvalues of Q are exactly the nonzero eigenvalues of L.

Lemma 2.6. (Bullo et al. [2]) A binary alphabet G with N nodes is weight-balanced
iff 1⊤NL = 0.

Lemma 2.7. Consider the Lyapunov function

V =
1

2

(
X⊤X + Y ⊤Y

)
, (8)

where X and Y are variables. Assume that there exists a constant µ > 0 such that

C
a∇α

kV ≤ −µ
(
1

2
X⊤X

)
. (9)

Then, it holds that X converges to 0 with the Mittag–Leffler rate.

382 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

P r o o f . From (9), the fractional sum is applied simultaneously to both sides of the
inequality, and it can be obtains that

G
a ∇−α

k
C
a∇α

kV = V (k)− V (a) ≤ −1

2
µG
a ∇−α

k X⊤X, (10)

which implys that

V (k) ≤ V (a)− 1

2
µG
a ∇−α

k X⊤X. (11)

It is inferred from (8) and (11) that

1

2
X⊤X ≤ 1

2

(
X⊤X + Y ⊤Y

)
≤ 1

2

(
X(a)⊤X(a) + Y (a)⊤Y (a)

)
− 1

2
µG
a ∇−α

k X⊤X.

(12)

By defining x(k) = 1
2X

⊤X, and λ = 1
2 [X(a)⊤X(a) + Y (a)⊤Y (a)], (12) reads

x(k) ≤ λ− µG
a ∇−α

k x(k). (13)

Denote m(k) = λ− µG
a ∇−α

k x(k)− x(k) ≥ 0, for every k ∈ Na+1, one has

x(k) +m(k) = λ− µG
a ∇−α

k x(k). (14)

By taking the nabla Laplace transform on both side of (14), it yields that

xf (s) +mf (s) =
λ

s
− µxf (s)

sα
, (15)

where xf (s) = Na{x(k)}, mf (s) = Na{m(k)}. Then, it follows that

xf (s) =
sα−1λ

sα + µ
− sαmf (s)

sα + µ
. (16)

Taking the inverse nabla Laplace transform on both sides, one has

x(k) = λFα,1(−µ, k, a)−m(k) ∗ Fα,0(−µ, k, a)
= λFα,1(−µ, k, a)−m(k) ∗ [1−Fα,α(−µ, k, a)],

(17)

Due to the properties of the Mittag–Leffler function, it holds that Fα,α(−µ, k, a) ≤ 1.
Thus, one has

x(k) ≤ λFα,1(−µ, k, a). (18)

Consequently, the convergence of x(k) can be obtained. Due to x(k) = 1
2X

⊤X, X is
Mittag–Leffler convergent. □

Adaptive fractional distributed optimization algorithm with directed spanning trees 383

2.5. Problem setup

This work studies two critical problems: distributed consensus optimization and dis-
tributed resource allocation.

The problem of distributed consensus optimization has the following form as

min
x∈RNn

F (x) =
∑N

i=1
fi(xi),

s.t. x1 = x2 = · · · = xN ,

(19)

where x = col(x1, . . . , xN), F (·) is the global summation-separable cost function and
fi(·) is the local cost function for each agent. Consider N agents interacting over a
digraph G(V, E ,W), cooperatively seeking a global minimizer of (19), denoted by x∗.

To solve the above optimization problem in a distributed manner, the following as-
sumptions are made.

Assumption 1. The global cost function F (·) is differentiable and strictly convex. Each
local cost function fi(·) is differentiable.

And for the distributed resource allocation problem, it is formulated as

min
x∈RNn

G(x) =
∑N

i=1
gi(xi),

s.t.
∑N

i=1
xi = d,

(20)

where x = col(x1, . . . , xN), d =
∑N

i=1 di. Each agent has its local resources di ∈ R and
is associated to a local cost function gi(·) : Rn → R. Consider N agents communicating
over a digraph G(V, E ,W), cooperatively seeking a global allocation strategy with the
minimum global cost function G(·) and satisfying the sum of the total resources.

For the distributed resource allocation, the following assumption is standard.

Assumption 2. The global cost function G(·) is differentiable and strictly convex. Each
local cost function gi(·) is differentiable.

Assumption 3. The digraph G is strongly connected and weight balanced.

3. MAIN RESULTS

3.1. Distributed consensus optimization problem

Under strongly connected graph conditions, DST can be obtained by a distributed
method even without any prior information about the Laplacian matrix. So a DST-
Based fractional distributed optimization algorithm with adaptive weights is proposed
to solve problem (19) without such knowledge.

Consider any DST Ḡ of G for the algorithm. Each agent i ∈ V has its own local
estimate xi ∈ Rn of the optimal decision variable x∗ and the auxiliary variable yi ∈
Rn. Communication between agents is only through their in-neighbors. Each agent i
communicates xi over GB(V, E ,B(k)), where B(k) = (bij(k)) is the weight matrix for

384 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

the dynamic coupling gain at B(a) = W and communicates yi over G. Hereafter, k is
omitted. Design the algorithm as follows,

C
a∇α

kxi =− γ1∇fi(xi)−
∑

j∈Nin(i)
bij(xi − xj)−

∑
j∈Nin(i)

wij(yi − yj), (21a)

C
a∇α

kyi =
∑

j∈Nin(i)
bij(xi − xj), (21b)

with dynamic coupling gains

bij =

{
wij , if eji ∈ E\Ē ,
b̄p+1,ip , if eji ∈ Ē ,

(22a)

C
a∇α

k b̄p+1,ip = γ2[(xip − xp+1)−
∑

j∈N̄out(p+1)(xp+1 − xj)]
⊤(xip − xp+1), (22b)

for γ1, γ2 ∈ R+. From (22), each agent i and its in-neighbor j update only when
communicating xj and when the edge eji is in Ḡ. By defining x = col(x1, . . . , xN), y =

col(y1, . . . , yN), f(x) =
∑N

i=1 fi(xi), the algorithm (21) reads

C
a∇α

kx = −γ1∇f(x)− (LB ⊗ In)x− (L ⊗ In)y, (23a)
C
a∇α

ky = (LB ⊗ In)x. (23b)

Theorem 3.1. Suppose Assumptions 1 and 3 hold. If (x̄, ȳ) is an equilibrium point of
(23), then it holds that x̄ = x∗, where x∗ is the global minimizer of (19).

P r o o f .

When (x̄, ȳ) is an equilibrium of (23), thus

0 = −γ1∇f(x̄)− (LB ⊗ In)x̄− (L ⊗ In)ȳ, (24a)

0 = (LB ⊗ In)x̄. (24b)

Let x = 1N ⊗x0, for some x0 ∈ Rn, so (LB⊗In)x = (LB1N)⊗(Inx0). By Lemma 2.5,
1N is the right eigenvector of L and LB corresponding to their simple zero eigenvalues,
so it implies that (LB1N)⊗ (Inx0) = 0. Therefore, x̄ = x = 1N ⊗ x0.

By Lemma 2.6, 1⊤NL = 0. Therefore, left-multiplying (24a) by 1⊤N ⊗ In results in

0 =− γ1(1
⊤
N ⊗ In)∇f(x̄)− (1⊤N ⊗ In)(LB ⊗ In)x̄− (1⊤N ⊗ In)(LB ⊗ In)ȳ

=− γ1(1
⊤
N ⊗ In)∇f(x̄),

(25)

which implies that
∑N

i=1 fi(x0) = 0, i. e., F (x0) = 0. According to the strict convexity
of F (·), it leads to x∗ = 1N ⊗ x0. Hence, x̄ = x∗. □

Note that if (x̄, ȳ) is an equilibrium point of (23), (x̄, y + 1N ⊗ κ) will also be an
equilibrium point of (23), for any κ ∈ Rn. Let any equilibrium point (x̄, ȳ) transferred
to the origin with applying a change of coordinates

µ = x− x̄, (26a)

Adaptive fractional distributed optimization algorithm with directed spanning trees 385

ν = y − ȳ, (26b)

µ̄ = (Ξ⊗ In)µ, (26c)

ν̄ = (Ξ⊗ In)ν, (26d)

where µ̄ = col(µ̄1, · · · , µ̄N−1) and µ̄p = µip −µp+1, p ∈ IN−1. Consequently, by Lemma
2.5 and the properties of the Kronecker product, the algorithm (21) and the adaptive
law (22) are as follows,

C
a∇α

k µ̄ = −γ1(Ξ⊗ In)h− (QB ⊗ In)µ̄− (Q⊗ In)ν̄, (27a)
C
a∇α

k ν̄ = (QB ⊗ In)µ̄, (27b)
C
a∇α

k b̄p+1,ip = γ2(µ̄p −
∑

j∈N̄out(p+1) µ̄j−1)
⊤µ̄p, (27c)

where h = ∇f(µ+ x̄)−∇f(x̄), and Q as well as QB are defined as in Lemma 2.5 based
on the DST Ḡ. More specifically, QB = Q̃ + Q̄B contains the fixed matrix Q̃, and the
following time-varying matrix

Q̄B
pj =


b̄j+1,ij , if j = p,

−b̄j+1,ij , if j = ip − 1,

0, otherwise.

(28)

Theorem 3.2. Under Assumptions 1 and 3, algorithm (21) and the adaptive law (22)
drive x = col(x1, . . . , xi, . . . , xN) to x∗ with Mittag–Leffler rate for all i ∈ V, and for any
initial condition xi(a), yi(a) ∈ Rn. Moreover, the weights b̄p+1,ip , p ∈ IN−1 converge to
some finite constant value.

P r o o f . The first step is to prove for system (27) with arbitrary initial conditions, (µ̄,
ν̄) Mittag–Leffler converges to the origin, and the weights b̄p+1,ip , p ∈ IN−1, converge
to some finite constant values.

Using the positive definiteness of the matrix Qs, reflect the stability of (27) in the
adaptive coupling weights b̄p+1,ip , p ∈ IN−1. Consider the following Lyapunov function

V =Vµ + Vν , (29a)

Vµ =
1

2
µ̄⊤µ̄+

∑N−1

p=1

1

2γ2
(b̄p+1,ip − ϕp+1,ip)

2, (29b)

Vν =
3λ̄(Q⊤Q)

λ(Qs)
· 1
2
(µ̄+ ν̄)⊤(µ̄+ ν̄), (29c)

where Qs > 0 is guaranteed by Lemma 2.5, and ϕp+1,ip ∈ R+, p ∈ IN−1 will be decided
later. According to Lemma 2.3, the fractional difference of Vµ along the trajectory of
(27) is

C
a∇α

kVµ ≤− γ1µ̄
⊤(Ξ⊗ In)h− µ̄⊤(QB ⊗ In)µ̄− µ̄⊤(Q⊗ In)ν̄

+
∑N−1

p=1 (b̄p+1,ip − ϕp+1,ip)(µ̄p −
∑

j+1∈N̄out(p+1) µ̄j)
⊤µ̄p.

(30)

386 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

According to (28), it holds that when j = p, b̄p+1,ip = Q̄B
pp. When j+1 ∈ N̄out(p+1),

it means that ij − 1 = p, so b̄p+1,ip = −Q̄B
jp. Let Φ ∈ R(N−1)×(N−1) is defined as

Φpj =


ϕj+1,ij , if j = p,

−ϕj+1,ij , if j = ip − 1,

0, otherwise.

(31)

Them, substituting (31) into (30) yields∑N−1
p=1 (b̄p+1,ip − ϕp+1,ip)(µ̄p −

∑
j+1∈N̄out(p+1) µ̄j)

⊤µ̄p

=
∑N−1

p=1 (Q̄B
ppµ̄p +

∑N−1
j=1,j ̸=p Q̄

B
jpµ̄j)

⊤µ̄p − (Φppµ̄p +
∑N−1

j=1,j ̸=p Φjpµ̄j)
⊤µ̄p

=
∑N−1

p=1

∑N−1
j=1 Q̄B

jpµ̄
⊤
j µ̄p − Φjpµ̄

⊤
j µ̄p

= µ̄⊤[(Q̄B − Φ)⊗ In]µ̄.

(32)

From Assumption 1 and (30)-(32), it follows that

C
a∇α

kVµ ≤− γ1µ̄
⊤(Ξ⊗ In)h− µ̄⊤(QB ⊗ In)µ̄− µ̄⊤(Q⊗ In)ν̄

+ µ̄⊤ [
(Q̄B − Φ)⊗ In

]
µ̄

=− γ1µ̄
⊤(Ξ⊗ In)h− µ̄⊤ [

(QB − Q̄B +Φ)⊗ In
]
µ̄− µ̄⊤(Q⊗ In)ν̄

≤− γ1λ(Υ)µ̄⊤µ̄− γ1µ̄
⊤(Ξ⊗ In)h

′ − µ̄⊤[(Q̃+Φ)⊗ In]µ̄− µ̄⊤(Q⊗ In)ν̄,

(33)

where h′ = ψ(µ+ x̄)− ψ(x̄) with ψ(x) = col(ψ1(x1), · · · , ψN (xN)).
By using Young’s inequality, it yields that

−γ1µ̄⊤(Ξ⊗ In)h
′ ≤ µ̄⊤µ̄

2
+
γ21h

′⊤(Ξ⊤Ξ⊗ In)h
′

2
≤ µ̄⊤µ̄

2
+
γ21 λ̄(Ξ

⊤Ξ)h′⊤h′

2
, (34a)

−µ̄⊤(Q⊗ In)ν̄ ≤ µ̄⊤µ̄

2
+
ν̄⊤(Q⊤Q⊗ In)ν̄

2
≤ µ̄⊤µ̄

2
+
λ̄(Q⊤Q)ν̄⊤ν̄

2
. (34b)

Moreover, assume that ∥ψ(x)∥ ≤
√
NK for all x ∈ RNn, and K can be unknown.

Hence, it holds as follows,

h′⊤h′ ≤ (∥ψ(µ+ x∗)∥+ ∥ψ(x∗)∥)2 ≤ 4NK2. (35)

From (33)-(35), it can be obtained that

C
a∇α

kVµ ≤− µ̄⊤((Q̃+Φ+ γ1λ(Υ)IN−1)⊗ In)µ̄+ µ̄⊤µ̄

+
λ̄(Q⊤Q)

2
ν̄⊤ν̄ + 2NK2γ21 λ̄(Ξ

⊤Ξ).
(36)

By Lemma 2.3, the fractional difference of Vν is computed as

C
a∇α

kVν ≤ −γ1µ̄⊤(Ξ⊗ In)h− µ̄⊤(Q⊗ In)ν̄ − γ1ν̄
⊤(Ξ⊗ In)h− ν̄⊤(Q⊗ In)ν̄. (37)

Adaptive fractional distributed optimization algorithm with directed spanning trees 387

Like (34), by using Young’s inequality and the positive definiteness of Qs, it is inferred
that

−γ1µ̄⊤(Ξ⊗ In)h ≤ µ̄
⊤µ̄

2
+ 2NK2γ21 λ̄(Ξ

⊤Ξ), (38a)

−µ̄⊤(Q⊗ In)ν̄ ≤ λ̄(Q
⊤Q)µ̄⊤µ̄

λ(Qs)
+
λ(Qs)ν̄⊤ν̄

4
, (38b)

−γ1ν̄⊤(Ξ⊗ In)h ≤λ(Q
s)ν̄⊤ν̄

2
+

2NK2γ21 λ̄(Ξ
⊤Ξ)

λ(Qs)
, (38c)

−ν̄⊤(Q⊗ In)ν̄ ≤− λ(Qs)ν̄⊤ν̄. (38d)

According to (37) and (38), one has

C
a∇α

kVν ≤ λ(Qs) + 2λ̄(Q⊤Q)

2λ(Qs)
µ̄⊤µ̄− λ(Qs)

4
ν̄⊤ν̄ +

2NK2γ21 λ̄(Ξ
⊤Ξ) [1 + λ(Qs)]

λ(Qs)
. (39)

According to (36) and (39), C
a∇α

kV in (30) is upper bounded by

C
a∇α

kV ≤ −µ̄⊤[(Q̃+Φ+ γ1λ(Υ)IN−1)⊗ In]µ̄− λ̄(Q⊤Q)

4
ν̄⊤ν̄ + η1µ̄

⊤µ̄+ η2, (40)

where η1 = 1+ 3λ̄(Q⊤Q)λ(Qs)+6λ̄(Q⊤Q)2

2λ(Qs)2 and η2 = 2NK2γ21 λ̄(Ξ
⊤Ξ){1+ 3λ̄(Q⊤Q)[1+λ(Qs)]

λ(Qs)2 }.
Let δ ∈ R+ be an arbitrarily small positive scalar. If µ̄⊤µ̄ ≥ δ, then for any η1, η2 ∈

R+, there exists a sufficiently large η ∈ R+ satisfying η ≥ η1 + η2

µ̄⊤µ̄
, ensuring that

ηµ̄⊤µ̄ ≥ η1µ̄
⊤µ̄+ η2. Thus, the inequality holds

C
a∇α

kV ≤ −µ̄⊤{[Φs − ηIN−1 + Q̃s + γ1λ(Υ)IN−1]⊗ In}µ̄− λ̄(Q⊤Q)

4
ν̄⊤ν̄, (41)

where

Φs =



ϕ2,i1
1
2ϕ21 · · · 1

2ϕN−2,1
1
2ϕN−1,1

1
2ϕ21 ϕ3,i2 · · · · · · 1

2ϕN−1,2

...
...

. . .
...

...

1
2ϕN−2,1

... · · · ϕN−1,iN−2

1
2ϕN−1,N−2

1
2ϕN−1,1

1
2ϕN−1,2 · · · 1

2ϕN−1,N−2 ϕN,iN−1

 .

The aim is to ensure C
a∇α

kV ≤ 0. From (41), clearly it holds true when Φs−ηIN−1 > 0,
where Φs is decided by the choice of appropriate ϕp+1,ip . Denote Ω1 = [ϕ2,i1 − η], and

Ωk =

[
Ωp−1 φp

φ⊤
p ϕp+1,ip − η

]
, where φp = 1

2 [ϕp1, ϕp2, · · · , ϕp,p−1]
⊤, p = 2, · · · , N − 1.

When ϕ2,i1 > η, Ω1 > 0. Assume Ωp−1 > 0, p ≥ 2. Due to |ϕpj | ≤
∣∣ϕj+1,ij

∣∣ ,∀j ∈ Ip−1

in (34), φ⊤
p Ω

−1
p−1φp ≤

∑p
j=2 ϕ2

j,ij−1

4λ(Ωp−1)
. So when choosing ϕp+1,ip > η+

∑p
j=2 ϕ2

j,ij−1

4λ(Ωp−1)
, Ωp > 0.

Through mathematical induction, it follows that Φs−ηIN−1 = ΩN−1 is positive definite.

388 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

Moreover, since Q̃ and Υ are fixed, choosing sufficiently large ϕp+1,ip always ensures

that λ(Φs−ηIN−1+ Q̃
s) > −γ1λ(Υ). Then, [Φs−ηIN−1+ Q̃

s+γ1λ(Υ)IN−1] is positive
definite. Let M = [Φs − ηIN−1 + Q̃s + γ1λ(Υ)IN−1]. From (41), it can be obtained that

C
a∇α

kV ≤ −2λ(M)(
1

2
µ̄⊤µ̄)− λ̄(Q⊤Q)

2
(
1

2
ν̄⊤ν̄) (42)

Obviously, it follows that C
a∇α

kV ≤ −2λ(M)(12 µ̄
⊤µ̄). Then, according to (29) and

Lemma 2.7, it is concluded that µ̄ converges to the origin with Mittag–Leffler rate.

Similarly, (42) can be computed as C
a∇α

kV ≤ − λ̄(Q⊤Q)
2 (12 ν̄

⊤ν̄). Therefore, based on the
Mittag–Leffler convergence of µ̄ and Lemma 2.7, ν̄ is also Mittag–Leffler convergent.

Thus (µ̄, ν̄) converges to the origin with Mittag–Leffler rate and the weights b̄p+1,ip ,
p ∈ IN−1, converge to some finite constant values.

The next step is to prove the algorithm (21) and the adaptive law (22) drive x =
col(x1, . . . , xi, . . . , xN) to x∗ with Mittag–Leffler rate for all i ∈ V. Since (µ̄, ν̄) converges
to the origin with Mittag–Leffler rate and null-space of Ξ is spanned by 1N , (x, y) in
(23) also converges to (x̄ + 1N ⊗ τ , ȳ + 1N ⊗ κ) for some τ , κ ∈ Rn, in the original
coordinates. According to the uniqueness of the optimizer x∗, seek a contradiction to
find τ = 0.

Then, assume τ ̸= 0 and the steady-state dynamics of τ can be obtained by (23) as

0 = C
a∇α

k τ =
1

N
(1⊤N ⊗ IN)Ca∇α

kx

=− γ1
N

∇F (x∗ + τ)− 1

N
(1⊤

NLB1N ⊗ (x∗ + τ))

− 1

N
(1⊤

NL ⊗ In)(ȳ + 1N ⊗ κ)

=− γ1
N

∇F (x∗ + τ) ̸= 0,

(43)

which is a contradiction. Thus τ = 0. Therefore, any trajectory of (23) converges to
an equilibrium point (x̄, ȳ + 1N ⊗ κ), for some κ ∈ Rn. According to Theorem 3.1, the
agents’ estimates col(x1, . . . , xi, . . . , xN) converge to the optimizer x∗ of (19). □

In this subsection, an adapted fractional distributed optimization algorithm is pro-
posed. It relies on DST to design a new adapted framework, which means that dynamic
coupling gains update as the agents communicate along the DST Ḡ. Theorem 3.1 and
Theorem 3.2 respectively prove the optimality and convergence of the algorithm. The
former analyzes the relationship between the equilibrium point and the optimal solution,
while the latter shows that the algorithm can converge to the equilibrium point with
Mittag–Leffler rate from any initial value so that we can get the solution of problem (19).

The proposed adaptive DST fractional distributed optimization algorithm demon-
strates significant advantages in solving distributed optimization problems:

i) The fully distributed algorithm eliminates the need for global Laplacian matrix
information through an adaptive coupling weight mechanism, making it highly

Adaptive fractional distributed optimization algorithm with directed spanning trees 389

scalable for large-scale systems. The algorithm relaxes the convexity requirement
for local cost functions, allowing non-convex objectives, which significantly expands
its applicability to a wider range of real-world problems.

ii) The algorithm achieves significant improvements in convergence performance. Com-
pared to the algorithm in [35], which only attains asymptotic convergence, the pro-
posed algorithm realizes Mittag–Leffler convergence. Notably, when the fractional
order α = 1x, the proposed algorithm reduces to exponential convergence, not
only maintaining a high convergence rate but also aligning with the convergence
properties of classical integer algorithm.

iii) The integration of fractional calculus enhances the algorithm’s dynamic proper-
ties, thereby improving convergence speed and optimization performance. Also,
the fractional calculus enables the proposed algorithm to achieve discrete-time
operation, making it more suitable for real-world applictions.

Remark 1. Because just using for proving convergence, K can be unknown. For any
initial x(a), y(a) ∈ RNn, and any parameters γ1, γ2 ∈ R+, algorithm (21) can ensure
convergence. When setting parameters γ1 and γ2, different purposes can be achieved
based on the different effects of γ1 and γ2. γ1 can be increased to allows larger step
sizes because of decreasing the local cost, while increasing γ2 enhances the importance
of communicating the estimates of the global minimizer.

Remark 2. η1 and η2, although they are related to the global Laplace information, are
not used in the design of the algorithm (23), and the conditions they fulfill are already
established. Therefore, the designed algorithm still does not rely on the Laplace matrix
information of the global network and is a fully distributed algorithm.

3.2. Distributed resourece allocation problem

Under Assumption 2 and 3, problem (20) has a unique solution x∗. There exists a
unique y∗ ∈ Rn which is the Lagrangian multiplier as follows,

∇g(x∗) + 1N ⊗ y∗ = 0,

(1⊤
N ⊗ In)(x

∗ −D) = 0,
(44)

where ∇g(x) = col(∇g1(x1), . . . ,∇gN (xN)) and D = col(d1, . . . , dN). In the same way,
it is the KKT condition of the question (20). Specifically, given the Lagrangian function
of problem (20), i. e., L(x, y) = g(x) + y⊤(1⊤

N ⊗ IN)(x − D), the KKT condition (44)
consists of ∇xL(x, y) = 0 and ∇yL(x, y) = 0.

The resource allocation problem (20) in a distributed system can be transformed into
a consensus optimization problem using the KKT condition, which is regarded as a set of
consensus constraints, i. e., the solution needs to satisfy all the KKT conditions so that
the system reaches the consensus state. Consider the DST-based system resulting from
incorporating a distributed integral feedback action of local dual variables as follows,

C
a∇α

kx = −κ1(∇g(x) + y), (45a)

390 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

C
a∇α

ky = x−D − (Lβ ⊗ In)y − (L ⊗ In)z, (45b)
C
a∇α

k z = (Lβ ⊗ In)y, (45c)

with dynamic coupling gains

βij =

{
0, if eji ∈ E\Ē ,
β̄p+1,ip , if eji ∈ Ē ,

(46a)

C
a∇α

k β̄p+1,ip = κ2[(yip − yp+1)−
∑

j∈N̄out(p+1)(yp+1 − yj)]
⊤(yip − yp+1), (46b)

where κ1, κ2 ∈ R+ and Lβ is the gain-dependent Laplacian matrix defined as

Lβ
ij = −βijwij , i ̸= j,

Lβ
ii =

∑N

j=1,j ̸=i
βijwij , i = 1, . . . , N.

The product of the weight wij and the gain βij defines the feedback gain of the relative
error vector (yi − yj) for agent i when updating its states yi and zi. It’s important to
note that aii is not specified in (45) and (46a), as there are no self-loops in the system.
According to (45), the gain βij is adjusted only when the edge eji ∈ Ē . This update
process relies on agent i, agent j, and all the out-neighbors of agent i in DST, so it is
distributed.

Theorem 3.3. Suppose Assumptions 2 and 3 hold. If (x̄, ȳ, z̄) is an equilibrium of (45)
and x∗ is the global minimizer of (20), then (x̄, ȳ) = (x∗, 1N ⊗ y∗).

P r o o f . Substituting (x̄, ȳ, z̄) into (45b), it follows that

0 = x̄−D − (Lβ ⊗ In)ȳ − (L ⊗ In)z̄. (47)

Since for any Lβ ∈ MN
r , there exists (Lβ ⊗ In)ȳ = 0 such that ȳ = 1N ⊗ y0, where

y0 ∈ Rn is some vector. Therefore, left-multiplying (47) by (1⊤
N ⊗In), it can be obtained

that
0 =(1⊤

N ⊗ In)(x̄−D)− (1⊤
N ⊗ In)(Lβ ⊗ In)ȳ − (1⊤

N ⊗ In)(L ⊗ In)z̄

=(1⊤
N ⊗ In)(x̄−D)− (1⊤

NL ⊗ In)z̄.
(48)

Given that 1⊤
NL = 0, there has (1⊤

N ⊗ In)(x̄−D) = 0. Combining this with ∇g(x̄) +
1N ⊗ y0 = 0, it can result in (44) and follows that (x̄, ȳ) = (x∗,1N ⊗ y∗) exists and is
unique.

Additionally, there are infinitely many solutions z̄ that satisfy (L ⊗ Im)z̄ = x − D
because rank(L) = N − 1. In fact, if (x̄, ȳ, z̄) is an equilibrium of (45), then for any
∆z ∈ Rn, (x̄, ȳ, z̄ + 1N ⊗∆z) is also an equilibrium of (45). □

Theorem 3.3 has completed the optimality analysis, indicating that the equilibrium
point of (45) is the optimal solution to the problem (20). Next, Theorem 3.4 will
explore the convergence of (45), proving whether the algorithm (45) can converge to the
equilibrium point from any initial value.

Adaptive fractional distributed optimization algorithm with directed spanning trees 391

Theorem 3.4. Under Assumptions 2 and 3, the adaptive algorithm (45) drives (x, y)
to (x∗,1N ⊗ y∗) with Mittag–Leffler rate for any initial condition x(a), y(a), z(a) ∈
RNn × RNn × RNn and any βij(a) ∈ R with spanning-tree-based m-strongly convexity
holding. Moreover, the adaptive gains β̄p+1,ip , p ∈ IN−1, converge to some finite constant
values.

The spanning-tree-based m-strongly convexity can be explained as follows. There
exists a scalar m ∈ R+, such that the following condition (referred to as ∀x, y ∈ RNn

(x− y)⊤(L̄U ⊗ In)(∇g(x)−∇g(y)) ≥ m(x− y)⊤(L̄U ⊗ In)(x− y), (49)

where L̄U = Ξ⊤Ξ is the unweighted Laplacian matrix of the undirected spanning tree
ḠU based on Ḡ (Ξ is defined as in Lemma 2.5).

P r o o f . The first step of the proof is to show that each trajectory of (45) converges to
a equilibrium of (45).

Define the error vectors between the trajectory of (45) and any equilibrium (x̄, ȳ, z̄)
of (45) as follows,

µ = x− x̄, v = y − ȳ, η = z − z̄, (50a)

µ̄ = (Ξ⊗ In)µ, v̄ = (Ξ⊗ In)v, η̄ = (Ξ⊗ In)η. (50b)

In a component-wise form, µ̄ = col(µ̄1, . . . , µ̄N−1) where µ̄p = µip − µp+1, p ∈ IN−1.
Note that Lβ ∈ MN

r .
According to (45), by using the statement 2) of Lemma 2.5, the properties of the

Kronecker product and the fact that (Ξ⊗ In)ȳ = 0, a new system comes out

C
a∇α

k µ̄ = −κ1(Ξ⊗ In)h− κ1v̄, (51a)
C
a∇α

k v̄ = µ̄− (Qβ ⊗ In)v̄ − (Q⊗ In)η̄, (51b)
C
a∇α

k η̄ = (Qβ ⊗ In)v̄, (51c)

C
a∇α

k β̄p+1,ip = κ2(v̄p −
∑

j∈N̄out(p+1)
v̄j−1)

⊤v̄p, p ∈ IN−1, (51d)

where h = ∇g(µ+ x̄)−∇g(x̄), and Q (resp. Qβ), is defined as in Lemma 2.5 based on
the DST Ḡ and the (resp. gain-dependent) Laplacian matrix. More specifically, Qβ =
Q̃β + Q̄β contains the fixed matrix Q̃β (note that C

a∇α
kβij = 0 if eji ∈ E\Ē), and the

time-varying matrix

Q̄β
pj =


β̄j+1,ijwj+1,ij , if j = p,

−β̄j+1,ijwj+1,ij , if j = ip − 1,

0, otherwise.

(52)

Consider the following candidate Lyapunov function

V1 =
1 + 3λ̄(Q⊤Q)

ϵ1λ
2(Qs)

Vµ̄ + V β
ν̄ +

3λ̄(Q⊤Q)

λ(Qs)
Vη̄, (53)

392 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

where Vµ̄ = 1
2 µ̄

⊤µ̄, V β
v̄ = 1

2 v̄
⊤v̄+

∑N−1
p=1

wp+1,ip

2κ2
(β̄p+1,ip(t)−ϕp+1,ip)

2, Vη̄ = 1
2 (v̄+η̄)

⊤(v̄+

η̄), and QS > 0 is guaranteed by 3) of Lemma 2.5, and ϵ1, ϕp+1,ip ∈ R+, p = 1, . . . , N−1,
will be determined later.

According to Lemma 2.3, the fractional difference of Vµ̄ is shown as

C
a∇α

kVµ̄ ≤ −κ1µ̄⊤(Ξ⊗ In)h− κ1µ̄
⊤ν̄, (54a)

≤ −κ1mµ̄⊤µ̄− κ1µ̄
⊤v̄, (54b)

≤ −κ1mµ̄⊤µ̄+ ϵ2µ̄
⊤µ̄+

κ21
4ϵ2

v̄⊤v̄, (54c)

≤ (ϵ2 − κ1m)µ̄⊤µ̄+
κ21
4ϵ2

v̄⊤v̄, (54d)

where ϵ2 ∈ R+ is to be decided later. The step in (54b) is derived from the fact that
µ̄⊤(Ξ ⊗ In)h ≥ mµ̄⊤µ̄ as known from (50a) and (49) and Young’s inequality was used
to get (54c).

According to Lemma 2.3, the fractional difference of V β
v̄ is formulated as

C
a∇α

kV
β
v̄ ≤v̄⊤µ̄− v̄⊤(Qβ ⊗ In)v̄ − v̄⊤(Q⊗ In)η̄

+
∑N−1

p=1
wp+1,ip(β̄p+1,ip − ϕp+1,ip)(v̄p −

∑
j+1∈N̄out(p+1)

v̄j)
⊤v̄p.

(55)

Define Φ ∈ R(N−1)×(N−1) as

Φpj =


ϕj+1,ijwj+1,ij , if j = p,

−ϕj+1,ijwj+1,ij , if j = ip − 1,

0, otherwise.

(56)

According to (52) and (56), it follows that

wp+1,ip β̄p+1,ip =

{
Q̄β

pp, if j = p,

Q̄β
jp, if j + 1 ∈ N̄out(p+ 1),

(57a)

wp+1,ipϕp+1,ip =

{
Φpp, if j = p,

Φjp, if j + 1 ∈ N̄out(p+ 1).
(57b)

From (57), it is inferred that∑N−1

p=1
wp+1,ip(β̄p+1,ip − ϕp+1,ip)(v̄p −

∑
j+1∈N̄out(p+1)

v̄j)
⊤v̄p

=
∑N−1

p=1
(Q̄β

ppv̄p +
∑N−1

j=1,j ̸=p
Q̄β

jpv̄j)
⊤v̄p

−
∑N−1

p=1
(Φppv̄p +

∑N−1

j=1,j ̸=p
Φjpv̄j)

⊤v̄p

=
∑N−1

p=1

∑N−1

j=1
(Q̄β

jp − Φjp)v̄
⊤
j v̄p

= v̄⊤[(Q̄β − Φ)⊗ In]v̄.

(58)

Adaptive fractional distributed optimization algorithm with directed spanning trees 393

Therefore, it implies from (58) that

C
a∇α

kV
β
v̄ ≤v̄⊤µ̄− v̄⊤(Qβ ⊗ In)v̄ − v̄⊤(Q⊗ In)η̄ + v̄⊤[(Q̄β − Φ)⊗ In]v̄,

=v̄⊤µ̄− v̄⊤((Q̃β +Φ)⊗ In)v̄ − v̄⊤(Q⊗ In)η̄.
(59)

The time-varying matrix Q̄β has been eliminated in (59), and all the matrices remained
are constant. Also using Young’s inequality, it holds that

C
a∇α

kV
β
v̄ ≤v̄⊤µ̄− v̄⊤((Q̃β +Φ)⊗ In)v̄ +

v̄⊤v̄

2
+
η̄⊤(Q⊤Q⊗ In)η̄

2

≤ 1

λ2(Qs)
µ̄⊤µ̄+ (

λ2(Qs)

4
+

1

2
)v̄⊤v̄ − v̄⊤((Q̃β +Φ)⊗ In)v̄

+
λ̄(Q⊤Q)

2
η̄⊤η̄.

(60)

According to Lemma 2.3, the fractional difference of Vη̄ is computed as

C
a∇α

kVη̄ ≤ v̄⊤µ̄− v̄⊤(Q⊗ In)η̄ + η̄⊤µ̄− η̄⊤(Q⊗ In)η̄. (61)

Using Young’s inequality, it follows that

C
a∇α

kVη̄ ≤ 1

2λ(Qs)
µ̄⊤µ̄+

λ(Qs)

2
v̄⊤v̄ +

λ̄(Q⊤Q)

λ(Qs)
v̄⊤v̄ +

λ(Qs)

4
η̄⊤η̄

+
λ(Qs)

2
η̄⊤η̄ +

1

2λ(Qs)
µ̄⊤µ̄− λ(Qs)η̄⊤η̄

≤ 1

λ(Qs)
µ̄⊤µ̄+ (

λ(Qs)

2
+
λ̄(Q⊤Q)

λ(Qs)
)v̄⊤v̄ − λ(Qs)

4
η̄⊤η̄.

(62)

From (54), (60), (62), and (53), the fractional difference of V1 along the trajectory of
(51) is limited by

C
a∇α

kV1 ≤− (1 + 3λ̄(Q⊤Q))(κ1m− ϵ1 − ϵ2)

ϵ1λ
2(Qs)

µ̄⊤µ̄

− v̄⊤[(Φs − γIN−1 + (Q̃β)s)⊗ In]v̄ −
λ̄(Q⊤Q)

4
η̄⊤η̄,

(63)

where γ ∈ R+is given by γ =
κ2
1[1+3λ̄(Q⊤Q)]

4ϵ1ϵ2λ2(Qs)
+ 3λ̄2(Q⊤Q)

λ2(Qs)
+ 3λ̄(Q⊤Q)

2 + λ2(Qs)
4 + 1

2 .

The aim is to make C
a∇α

kV1 ≤ 0 by choosing appropriate parameters ϵ1, ϵ2, and
ϕp+1,ip , p = 1, . . . , N−1. Because Q is fixed, selecting ϵ1 and ϵ2 satisfying ϵ1+ϵ2 ≤ κ1m

such that− (1+3λ̄(Q⊤Q))(κ1m−ϵ1−ϵ2)
ϵ1λ2(Qs)

µ̄⊤µ̄ ≤ 0. Because γ and (Q̃β)s are fixed, it only needs

to choose appropriate ϕp+1,ip such that the inequality Φs − γ̄IN−1 > 0 holds.
According to similar mathematical induction procedures in [36], for any positive real

number γ̄, there exists an appropriate choice of ϕp+1,ip . Specifically, let

ϕ2,i1 >
γ̄

w2,i1

, ϕp+1,ip > γ̄ +

∑p
j=2 ϕ

2
j,ij−1

w2
j,ij−1

4wλ
p+1,ip

(Ωp−1)
,

394 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

where Ω1 = [ϕ2,i1w2,i1−γ̄], and Ωp =

[
Ωp−1 φp

φ⊤
p ϕp+1,ipwp+1,ip − γ̄

]
with φp = 1

2 [ϕp1wp1,

ϕp2wp2, . . . , ϕp,p−1wp,p−1]
⊤, p = 2, . . . , N − 1. Then, the positive definiteness of Φs −

γ̄IN−1(ΩN−1) is guaranteed by the Schur complement and the induction principle.
Let M ′ = [(Φs − γIN−1 + (Q̃β)s)⊗ In]. From (63), it can be obtained that

C
a∇α

kV1 ≤− 2(1 + 3λ̄(Q⊤Q))(κ1m− ϵ1 − ϵ2)

ϵ1λ
2(Qs)

(
1

2
µ̄⊤µ̄)

− 2λ(M ′)(
1

2
v̄⊤v̄)− λ̄(Q⊤Q)

4
η̄⊤η̄.

(64)

According to (64), the following inequalities all hold

C
a∇α

kV1 ≤− 2(1 + 3λ̄(Q⊤Q))(κ1m− ϵ1 − ϵ2)

ϵ1λ
2(Qs)

(
1

2
µ̄⊤µ̄), (65a)

C
a∇α

kV1 ≤− 2λ(M ′)(
1

2
v̄⊤v̄), (65b)

C
a∇α

kV1 ≤− λ̄(Q⊤Q)

2
(
1

2
η̄⊤η̄). (65c)

Then, using Lemma 2.7, it can drive (µ̄, v̄, η̄) → (0, 0, 0) with Mittag–Leffler rate by
selecting the appropriate ϵ1, ϵ2 and ϕp+1,ip , and the adaptive gains β̄p+1,ip , p ∈ IN−1,
converge to some finite constant values.

Returning to the original coordinates of (45), (x, y, z) → (x̄ + 1N ⊗ ∆x, ȳ + 1N ⊗
∆y, z̄ + 1N ⊗∆z) := (xs, ys, zs), where ∆x,∆y,∆z ∈ Rn are some deviation vectors.

Next step is to proof that ∆x = ∆y = 0 holds. The steady-state dynamics of ∆x and
∆y are formulated as follows,

C
a∇α

k∆x =
1

N
(1⊤

N ⊗ In)
C
a∇α

kxs,
C
a∇α

k∆y =
1

N
(1⊤

N ⊗ In)
C
a∇α

kys. (66)

Substituting (45) evaluated at (xs, ys, zs) into the above equations, and noting that
Oβ

∣∣
(x̄,ȳ,z̄)

= 0, it can be obtained that

C
a∇α

k∆x = −κ1
N

(1⊤
N ⊗ In)(∇g(xs)−∇g(x̄))− κ1∆y = 0, (67a)

C
a∇α

k∆y = ∆x = 0. (67b)

This implies that ∆x = ∆y = 0, i. e., (xs, ys) = (x̄, ȳ). Thus, every trajectory of
(45) converges to an equilibrium of (45). By Theorem 3.3, it follows that (x, y) →
(x∗,1N ⊗ y∗). □

In this case, the spanning-tree-based m-strongly convex condition (49) holds with
any m ≤ λ(Θ) and for any DST. Immediately, it has the following corollary:

Corollary 3.5. Under Assumptions 2 and 3, the resource allocation problem (20) can
be solved with the adaptive algorithm (45) for any initial conditions (x(a), y(a), z(a) ∈
RNn × RNn × RNn and any βij(a) ∈ R, i. e., (x, y) → (x∗,1N⊗ y∗). Moreover, the
adaptive gains β̄p+1,ip , p ∈ IN−1, converge to some finite constant values.

Adaptive fractional distributed optimization algorithm with directed spanning trees 395

In this subsection, the fractional calculus and DST-based adapted frameworks are
applied to solve the distributed resource allocation problem (20) and design a fractional
distributed resource allocation algorithm with DST. It is verified its Mittag–Leffler con-
vergence by Theorem 3.3 and Theorem 3.4 as the same as the last section.

The adaptive fractional distributed resource allocation algorithm proposed in this pa-
per demonstrates significant advantages in solving distributed resource allocation prob-
lems:

i) The proposed fully distributed algorithm introduces a DST-based adaptive frame-
work, eliminating the need for global Laplacian matrix information. Moreover,
compared to the algorithm in [38], which requires strong convexity of local func-
tions, the algorithm (45) only requires the global cost function to be convex,
thereby relaxing the restrictions on local functions and enhancing the algorithm’s
applicability and flexibility.

ii) The proposed algorithm achieves Mittag–Leffler convergence, exhibiting faster con-
vergence rates in fractional systems. Notably, when the fractional order α = 1,
the algorithm reduces to an integer algorithm while maintaining exponential con-
vergence.

iii) The introduction of fractional calculus enriches the algorithm’s dynamic charac-
teristics, allowing it to better capture memory and hereditary properties, thereby
improving convergence speed and optimization accuracy. By using the Nabla frac-
tional calculus, the algorithm extends from a continuous-time framework to a
discrete-time framework, and broadens its feasible parameter range.

4. NUMERICAL SIMULATIONS

4.1. Simulations of distributed consensus optimization algorithm with DST

The algorithm designed above is tested over a set of one-dimensional cost functions
which are defined over x ∈ R as

f1(x) = 0.5e−0.5x + 0.4e0.3x,

f2(x) = x2 ln(2 + x2),

f3(x) = 0.5x2 ln(1 + x2) + x2,

f4(x) = x2 + e0.1x,

f5(x) = ln(e−0.1x + e0.3x) + 0.1x2,

f6(x) = (1 + ex)−1.

Consider the following multi-agent network topology in Figure 1.
To verify the Theorem (3.2), choose DST Ḡ which is red highlighted in Figure 1, and

the parameters in the algorithm are chosen as γ1 = γ2 = 0.5. Choose initial values x(a),
y(a) selected from the standard Gaussian distribution. The fractional order is chosen as
α = 0.8.

396 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

Fig. 1. Balanced digraph G with DST Ḡ, highlighted in red.

0 2 4 6 8 10 12 14 16 18 20

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(a) The local estimates xi(k)

0 2 4 6 8 10 12 14 16 18 20

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

(b) The parameters b̄p+1,ip

Fig. 2. The trajectories of the local estimates xi(k) in (a) and the

parameters b̄p+1,ip in (b).

0 2 4 6 8 10 12 14 16 18 20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) Fractional discrete algorithm

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

(b) Integer continuous algorithm

Fig. 3. Comparison of optimization value errors generated by integer

algorithm in [7] and fractional algorithm (23).

Adaptive fractional distributed optimization algorithm with directed spanning trees 397

0 1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

Fig. 4. The trajectories of the global cost function F with different

fractional order α.

In the Figure 2(a), it can see x converges to the global minimum point x∗, while the
parameters b̄p+1,ip , p ∈ IN−1 converge to fixed constant values in the Figure 2(b).

Figure 3 is provided to compare the integer continuous algorithm [7] with the frac-
tional discrete algorithm (23) presented in this paper, both using the digraph in the
Figure 1 and cost functions above. The optimal value error curves for the integer and
fractional algorithms are given respectively. This shows that the algorithm in this paper
can achieve the same convergence performance as the integer algorithm, and it also has
a performance advantage in the comparison that the errors’ trajectory of the fractional
algorithm is smoother, and convergence faster stabilizes at zero. Also, in Figure 4 it
provided a numerical simulation with different fractional order α ∈ (0, 1]. It can be
observed that convergence is still achieved.

4.2. Simulations of distributed resource allocation algorithm with DST

Consider N = 6 agents communicating over a new balanced digraph Figure 5. There
is a total resource d and each agent has its local resource di equally divided by d, which
di = d/N . The local cost function gi(x) = 0.1x2 + tix is associated to each agent i,
and ti, for all i is a random number selected in [1, 100]. Let the initial (x(a)), y(a), z(a))
randomly chosen from a Gaussian distribution, and the initial β(a) is chosen randomly
between [0, 1].

Consider the fractional order α = 0.8. Chose κ1 = κ2 = 1 and d = 1.5 × 103. The
local estimates xi of agents and the dynamic coupling gains β under (45) and (46a)
are provided in Figure 6. Only β̄p+1,ip updates in β. To compare with the first case,
the states of agents and coupling gains on DST are provided in Figure 7 with κ1 = 10,
κ2 = 0.1. It shows that a lager κ1 leads to better transient performance of xi and a
small κ2 leads to smaller steady values of β̄p+1,ip .

Compare the α = 0.8 fractional discrete algorithm and the integer continuous algo-
rithm [38] with κ1 = κ2 = 1 and the result is provided in Figure 8 and Figure 9. By
comparison, it is clear that the convergence curve of the fractional algorithm is more sta-

398 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

2

1

6

5

3

4

0.2

0.2

0.1

0.1

0.1

0.2

0.1

0.1

Fig. 5. Balanced digraph G with DST Ḡ, highlighted in red.

0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

350

400

450

500

550

(a) The local estimates xi(k)

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

160

180

200

(b) The coupling gains β̄p+1,ip

Fig. 6. The local estimates xi(k) and the coupling gains β̄p+1,ip with

κ1 = κ2 = 1.

ble than that of the integer algorithm, so the fractional algorithm has better robustness
and anti-interference ability. The fractional algorithm also improves the convergence
rate of β̄p+1,ip . In particular, within a certain simulation period k = t = 100, the integer
algorithm requires 1383 iteration points, whereas the fractional algorithm needs only 100
iteration points. This comparison highlights the discrete nature of the nabla fractional
algorithm, which demands fewer iteration points or updates while maintaining the same
level of accuracy.

To furnish additional examples, the article presents simulations under the fractional
order α = 0.9 in Figure 10, demonstrating that convergence can likewise be achieved
under these conditions.

To furnish additional examples, the article presents simulations under the fractional
order α = 0.9 in Figure 10, demonstrating that convergence can likewise be achieved
under these conditions.

Adaptive fractional distributed optimization algorithm with directed spanning trees 399

0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

350

400

450

500

550

X 88

Y 137.516

(a) The local estimates xi(k)

0 10 20 30 40 50 60 70 80 90 100

-20

0

20

40

60

80

100

(b) The coupling gains β̄p+1,ip

Fig. 7. The local estimates xi(k) and the coupling gains β̄p+1,ip with

κ1 = 10, κ2 = 0.1.

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

(a) Fractional discrete algorithm

0 10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

(b) Integer continuous algorithm

Fig. 8. Comparison of the state ||xi(k)− x∗|| of agents generated by

fractional algorithm (45) and integer algorithm in [38].

5. CONCLUSIONS

In this paper, two fully distributed fractional algorithms based on DST are pro-
posed to address optimization and resource allocation problems. The Mittag–Leffler
convergence of both algorithms is rigorously analyzed, and their performance is vali-
dated through extensive simulations. Fitst, the proposed DST-based fully distributed
algorithms eliminate the need for global Laplacian matrix information, and avoids the
requirement for sufficiently small step sizes. Secondly, by incorporating fractional cal-
culus, the algorithms achieve improved performance and reduced communication costs.
Moreover, both algorithms relax the convexity condition, requiring only the global cost
function to be convex while allowing local cost functions to be non-convex. Future re-
search will focus on extending the framework to unbalanced digraphs, further reducing
dependencies on directed spanning tree matrix information and exploring the effects of

400 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

160

180

200

(a) Fractional discrete algorithm

0 10 20 30 40 50 60 70 80 90 100

-50

0

50

100

150

200

250

(b) Integer continuous algorithm

Fig. 9. Comparison of the gains β̄p+1,ip of agents generated by

fractional algorithm (45) and integer algorithm in [38].

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

350

(a) The state ∥xi(k)− x∗∥

0 10 20 30 40 50 60 70 80 90 100

-50

0

50

100

150

200

250

(b) The coupling gains β̄p+1,ip

Fig. 10. The trajectories of the state ∥xi(k)− x∗∥ in (a) and the

gains β̄p+1,ip in (b) with α = 0.9.

introducing noise to create controlled interference in the algorithms.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science Foundation of China (62273092), the
Guangxi Natural Science Foundation (2025GXNSFDA069040), the Jiangsu Provincial Scientific
Research Center of Applied Mathematics (BK20233002), the Fundamental Research Funds for
the Central Universities (4207012301, 2025SMECP07), and the Guangdong Provincial Key
Laboratory of Mathematical Foundations for Artificial Intelligence (2023B1212010001).

(Received September 19, 2024)

Adaptive fractional distributed optimization algorithm with directed spanning trees 401

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al.: Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends
Machine Learn. 3 (2011), 1, 1–122.

[2] F. Bullo, J. Cortés, and S. Martinez: Distributed control of robotic networks: a mathemat-
ical approach to motion coordination algorithms. Princeton University Press, Princeton
2009.

[3] Y.Q. Chen, Q. Gao, Y.H. Wei, and Y. Wang: Study on fractional order gradient methods.
Appl. Math. Comput. 314 (2017), 310–321. DOI:10.1016/j.amc.2017.07.023

[4] S. S. Cheng and S. Liang: Distributed optimization for multi-agent system over un-
balanced graphs with linear convergence rate. Kybernetika 56 (2020), 3, 559–577.
DOI:10.14736/kyb-2020-3-0559

[5] S. S. Cheng, S. Liang, and Y. Fan: Distributed solving Sylvester equations with fractional
order dynamics. Control Theory Technol. 19 (2021), 2, 249–259. DOI:10.1007/s11768-021-
00044-0

[6] D.R. Ding, Q. L. Han, and X.H. Ge: Distributed filtering of networked dynamic systems
with non-gaussian noises over sensor networks: a survey. Kybernetika 56 (2020), 1, 5–34.

[7] B. Gharesifard and J. Cortés: Distributed continuous-time convex optimization on
weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 3, 781–786.
DOI:10.1109/TAC.2013.2278132

[8] X. L. Hong, Y.H. Wei, S.Y. Zhou, and D.D. Yue: Nabla fractional distributed optimiza-
tion algorithms over undirected/directed graphs. J. Franklin Inst. 361 (2024), 3, 1436–1454.
DOI:10.1016/j.jfranklin.2024.01.013

[9] J. Y. Huang, S.Y. Zhou, H. Tu, Y.H. Yao, and Q. S. Liu: Distributed optimization al-
gorithm for multi-robot formation with virtual reference center. IEEE/CAA J. Automat.
Sinica 9 (2022), 4, 732–734. DOI:10.1109/JAS.2022.105473

[10] P. Humblet: A distributed algorithm for minimum weight directed spanning trees. IEEE
Trans. Commun. 31 (1983), 6, 756–762. DOI:10.1109/TCOM.1983.1095883

[11] S. S. Kia, J. Cortés, and S. Mart́ınez: Distributed convex optimization via continuous-
time coordination algorithms with discrete-time communication. Automatica 55 (2015),
254–264. DOI:10.1016/j.automatica.2015.03.001

[12] Z.H. Li, Z. T. Ding, J. Y. Sun, and Z.K. Li: Distributed adaptive convex optimization on
directed graphs via continuous-time algorithms. IEEE Trans. Automat. Control 63 (2018),
5, 1434–1441. DOI:10.1109/TAC.2017.2750103

[13] S. Liang, L.Y. Wang, and G. Yin: Fractional differential equation approach for convex
optimization with convergence rate analysis. Optimiz. Lett. 45 (2019), 9, 145–155.

[14] P. Lin, W. Ren, and J.A. Farrell: Distributed continuous-time optimization: Nonuniform
gradient gains, finite-time convergence, and convex constraint set. IEEE Trans. Automat.
Control 62 (2017), 5, 2239–2253. DOI:10.1109/TAC.2016.2604324

[15] Q. S. Liu, S. F. Yang, and Y.G. Hong: Constrained consensus algorithms with fixed step
size for distributed convex optimization over multiagent networks. IEEE Trans. Automat.
Control 62 (2017), 8, 4259–4265. DOI:/10.1109/TAC.2017.2681200

[16] D.K. Molzahn, F. Dörfler, H. Sandberg, S.H. Low, S. Chakrabarti, R. Baldick, and
J. Lavaei: A survey of distributed optimization and control algorithms for electric power
systems. IEEE Trans. Smart Grid 8 (2017), 6, 2941–2962. DOI:10.1109/TSG.2017.2720471

https://doi.org/10.1016/j.amc.2017.07.023
https://doi.org/10.14736/kyb-2020-3-0559
https://doi.org/10.1007/s11768-021-00044-0
https://doi.org/10.1007/s11768-021-00044-0
https://doi.org/10.1109/TAC.2013.2278132
https://doi.org/10.1016/j.jfranklin.2024.01.013
https://doi.org/10.1109/JAS.2022.105473
https://doi.org/10.1109/TCOM.1983.1095883
https://doi.org/10.1016/j.automatica.2015.03.001
https://doi.org/10.1109/TAC.2017.2750103
https://doi.org/10.1109/TAC.2016.2604324
https://doi.org//10.1109/TAC.2017.2681200
https://doi.org/10.1109/TSG.2017.2720471

402 H. PENG, Y. WEI, S. ZHOU, AND D. YUE

[17] A. Nedić and A. Ozdaglar: Distributed subgradient methods for multi-agent optimization.
IEEE Trans. Automat. Control 54 (2009), 1, 48–61. DOI:10.1109/tac.2008.2009515

[18] W. Ni and X. L. Wang: Averaging approach to distributed convex optimiza-
tion for continuous-time multi-agent systems. Kybernetika 52 2016), 6, 898–913.
DOI:10.14736/kyb-2016-6-0898

[19] X.T. Ni, Y.H. Wei, S.Y. Zhou, and M. Tao: Multi-objective network resource allo-
cation method based on fractional PID control. Signal Process. 227 (2025), 109717.
DOI:10.1016/j.sigpro.2024.109717

[20] S. Pu, W. Shi, J. Xu, and A. Nedic: Pushpull gradient methods for distributed optimization
in networks. IEEE Trans. Automat. Control 66 (2021), 1, 1–16.

[21] Y. F. Pu, J. L. Zhou, Y. Zhang, N. Zhang, G. Huang, and P. Siarry: Fractional extreme
value adaptive training method: fractional steepest descent approach. IEEE Trans. Neural
Networks Learn. Systems 26 (2015), 4, 653–662. DOI:10.1109/TNNLS.2013.2286175

[22] W. Ren and Y.C. Cao: Distributed Coordination of Multi-Agent Networks: Emergent
Problems, Models, and Issues. Springer Science and Business Media, 2010.

[23] Y.W. Song, J.D. Cao, and L. Rutkowski: A fixed-time distributed optimization algorithm
based on event-triggered strateg. IEEE Trans. Network Sci. Engrg. 9 (2021), 3, 1154–1162.
DOI:10.1109/TNSE.2021.3133541

[24] B. Touri and B. Gharesifard: A modified saddle-point dynamics for distributed convex
optimization on general directed graphs. IEEE Trans. Automat. Control 65 (2020), 7,
3098–3103. DOI:10.1109/TAC.2019.2947184

[25] D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schenato: Newton-Raphson
consensus for distributed convex optimization. IEEE Trans. Automat. Control 61 (2016),
4, 994–1009. DOI:10.1109/tac.2015.2449811

[26] D. Wang and Z. Z. Gao: Distributed finite-time optimization algorithms
with a modified Newton–Raphson method. Neurocomputing 536 (2023), 73–79.
DOI:10.1016/j.neucom.2023.03.027

[27] Y.H. Wang, P. Lin, and H. S. Qin: Distributed classification learning based on nonlin-
ear vector support machines for switching networks. Kybernetika 53 (2017), 4, 595–611.
DOI:10.14736/kyb-2017-4-0595

[28] X.Y. Wang, G.D. Wang, and S.H. Li: Distributed finite-time optimization for integrator
chain multiagent systems with disturbances. IEEE Trans. Automat. Control 65 (2020),
12, 5296–5311. DOI:10.1109/TAC.2020.2979274

[29] Y.H. Wei and Y.Q. Chen: Converse Lyapunov theorem for nabla asymptotic stability
without conservativeness. IEEE Trans. Systems Man Cybernet.: Systems 52 (2022), 4,
2676–2687. DOI:10.1109/TSMC.2021.3051639

[30] Y. H. Wei, Y. Kang, W.D. Yin, and Y. Wang: Generalization of the gradient method
with fractional order gradient direction. J. Franklin Inst. 357 (2020), 4, 2514–2532.
DOI:10.1016/j.jfranklin.2020.01.008

[31] Y. D. Wei, Y.H. Wei, Y.Q. Chen, and Y. Wang: Mittag–Leffler stability of nabla
discrete fractional order dynamic systems. Nonlinear Dynamics 101 (2020), 407–417.
DOI:10.1007/s11071-020-05776-3

[32] Y. H. Wei, L. L. Zhao, X. Zhao, and J.D. Cao: Fractional difference inequalities for possible
Lyapunov functions: A review. Fract. Calculus Appl. Anal. (2024). DOI:10.1007/s13540-
024-00298-w

https://doi.org/10.1109/tac.2008.2009515
https://doi.org/10.14736/kyb-2016-6-0898
https://doi.org/10.1016/j.sigpro.2024.109717
https://doi.org/10.1109/TNNLS.2013.2286175
https://doi.org/10.1109/TNSE.2021.3133541
https://doi.org/10.1109/TAC.2019.2947184
https://doi.org/10.1109/tac.2015.2449811
https://doi.org/10.1016/j.neucom.2023.03.027
https://doi.org/10.14736/kyb-2017-4-0595
https://doi.org/10.1109/TAC.2020.2979274
https://doi.org/10.1109/TSMC.2021.3051639
https://doi.org/10.1016/j.jfranklin.2020.01.008
https://doi.org/10.1007/s11071-020-05776-3
https://doi.org/10.1007/s13540-024-00298-w
https://doi.org/10.1007/s13540-024-00298-w

Adaptive fractional distributed optimization algorithm with directed spanning trees 403

[33] R. Xin and U.A. Khan: A linear algorithm for optimization over directed graphs
with geometric convergence. IEEE Control Systems Lett. 2 (2018), 3, 315–320.
DOI:10.1109/LCSYS.2018.2834316

[34] X. L. Yang, W.M. Zhao, J.X. Yuan, T. Chen, C. Zhang, and L. Q. Wang: Dis-
tributed optimization for fractional-order multi-agent systems based on adaptive back-
stepping dynamic surface control technology. Fractal Fractional 6 (2022), 11, 642.
DOI:10.3390/fractalfract6110642

[35] D.D. Yue, S. Baldi, J.D. Cao, and B. De Schutter: Distributed adaptive optimiza-
tion with weight-balancing. IEEE Trans. Automat. Control 67 (2022), 4, 2068–2075.
DOI:10.1109/TAC.2021.3071651

[36] D.D. Yue, S. Baldi, J. D. Cao, Q. Li, and B. De Schutter: A directed spanning tree
adaptive control solution to time-varying formations. IEEE Trans. Control Network Syst.
8 (2021), 2, 690–701. DOI:10.1109/TCNS.2021.3050332

[37] Y.K. Zeng, Y.H. Wei, S.Y. Zhou, and D.D. Yue: Distributed optimization via active
disturbance rejection control: a nabla fractional design. Kybernetika 60 (2024), 1, 90–109.
DOI:10.14736/kyb-2024-1-0090

[38] D.D. Yue, S. Baldi, J. D. Cao, Q. Li, and B. De Schutter: Distributed adaptive resource
allocation: an uncertain saddle-point dynamics viewpoint. IEEE/CAA J. Automat. Sinica
10 (2023), 12, 2209–2221. DOI:10.1109/JAS.2023.123402

[39] J. Zhang, L. Liu, X.H. Wang, and H.B. Ji: Fully distributed algorithm for resource
allocation over unbalanced directed networks without global Lipschitz condition. IEEE
Trans. Automat. Control 68 (2022), 8, 5119–5126. DOI:10.1109/TAC.2022.3216972

[40] Y. L. Zheng and Q. S. Liu: A review of distributed optimization: Problems, models and
algorithms. Neurocomputing 483 (2022), 446–459. DOI:10.1016/j.neucom.2021.06.097

[41] S.Y. Zhou, Y.H. Wei, S. Liang, and J. Cao: A gradient tracking protocol for optimization
over nabla fractional multi-agent systems. IEEE Trans. Signal Inform. Process. Networks
10 (2024), 500–512. DOI:10.1109/TSIPN.2024.3402354

Huaijin Peng, School of Mathematics, Southeast University, Nanjing 211189. P.R.
China.

e-mail: 213212687@seu.edu.cn

Yiheng Wei, Corresponding author. School of Mathematics, Southeast University, Nan-
jing 211189. P.R. China.

e-mail: neudawei@seu.edu.cn

Shuaiyu Zhou, School of Mathematics, Southeast University, Nanjing 211189. P.R.
China.

e-mail: sy zhou@seu.edu.cn

Dongdong Yue, College of Electrical Engineering and Control Science, Nanjing Tech
University, Nanjing 211816. P.R. China.

e-mail: yued@njtech.edu.cn

https://doi.org/10.1109/LCSYS.2018.2834316
https://doi.org/10.3390/fractalfract6110642
https://doi.org/10.1109/TAC.2021.3071651
https://doi.org/10.1109/TCNS.2021.3050332
https://doi.org/10.14736/kyb-2024-1-0090
https://doi.org/10.1109/JAS.2023.123402
https://doi.org/10.1109/TAC.2022.3216972
https://doi.org/10.1016/j.neucom.2021.06.097
https://doi.org/10.1109/TSIPN.2024.3402354

	Introduction
	Preliminaries
	Notation
	Graph Theory
	Nabla fractional calculus
	Technical Lemmas
	Problem setup

	Main results
	Distributed consensus optimization problem
	Distributed resourece allocation problem

	Numerical simulations
	Simulations of distributed consensus optimization algorithm with DST
	Simulations of distributed resource allocation algorithm with DST

	Conclusions

