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STABILIZABILITY OF MULTI-AGENT SYSTEMS
OVER FINITE FIELDS VIA FULLY ACTUATED SYSTEM
APPROACHES

Yunsi Yang, Jun-e Feng and Lei Jia

The problem of stabilizability of high-order fully actuated (HOFA) multi-agent systems over
finite fields is considered in this paper. The necessary and sufficient conditions for the stabiliz-
ability of HOFA multi-agent systems are presented, which indicates the stabilizability is closely
related to the interaction topology among agents. Using the full-actuation property of HOFA
models, a stabilization control protocol with neighbor interaction is given for HOFA multi-agent
systems. Additionally, when the multi-agent system is stabilizable, the time for the system to
reach a stable state can be determined through the control protocol. Finally, the results are
employed to solve the formation control problem, and some sufficient and/or necessary condi-
tions are proposed. Numerical examples are presented to demonstrate the effectiveness of the
proposed results.
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1. INTRODUCTION

With increasing informatization, multi-agent systems have garnered wide-spread pop-
ularity and applicability in different fields [1, 11, 27]. From robotics and autonomous
vehicles to social networks and swarm intelligence, multi-agent systems have demon-
strated their potential in solving complex problems and achieving collective behavior
[12, 16, 25]. The concept of agents is inspired by numerous collective behaviors observed
in nature, emphasizing collaboration among multiple systems to achieve complex objec-
tives. However, the realization of ultimate goals relies on the fundamental properties of
systems, including controllability, consensus, and stabilizability. Controllability, intro-
duced by Kalman [18, 19], is a crucial notion in the control field. Tanner [42] extended
this concept to first-order multi-agent systems. Subsequent researchers explored the con-
trollability of multi-agent systems with different topologies [17, 42, 44]. A fundamental
control problem is to make some agents reach an agreement under a given control proto-
col, which is known as the consensus problem [36, 37]. It entails achieving a consensus in
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the network state within a specified time frame, considering given constraints and infor-
mation [30]. Scholars have extensively investigated the consensus problem under various
conditions, such as time delay and switching topology [33, 39]. Notably, research on con-
sensus has found applications in diverse practical domains, including robotics, drones,
and collaborative robotic arm operations, among others.

Recently, the concept of stabilizability has been proposed for multi-agent systems,
which is also the most basic and crucial problem [13, 14, 20]. As an intrinsic characteris-
tics of systems, stabilizability represents the capacity of each agent to utilize information
from itself and its neighbors as feedback such that the entire group of agents to arrive
stable state. Kim [20] proposed decentralized stabilizability for systems with dynamics
characterized by single integrators with a fixed network topology. Guan [14] analyzed
the decentralized stabilizability of linear model under consensus protocol, and consid-
ered the stabilizability with fixed and switching topologies. Based on complete NSi
graph partition and quotient graph G/π, Sun [40] focused on the stabilizability of sys-
tems under structural unbalanced topology. They explored the relationship between
stabilizability of uncontrollable multi-agent systems and network topology. Guan [15]
extended the stabilizability problem to discrete-time linear multi-agent system, propos-
ing several graph-theoretic conditions for both fixed and switching topologies. However,
due to potential variations in the state dimensions among agents, it is referred to as a
heterogeneous system. For the stabilizability of the heterogeneous system, Franceschelli
[13] also gave some conclusions.

However, the issues mentioned earlier regarding the controllability, consensus, and
stabilizability problems predominantly investigated within the framework of real num-
ber fields. Such investigations assumed infinite memory and communication resources,
which may not be feasible in practice to achieve the desired objectives. Recognizing
the constraints posed by limited communication bandwidth and storage capacity, re-
searchers have increasingly turned their attention towards studying various problems
related to multi-agent systems over finite fields [46]. Within these studies, states of
systems are constrained to finite fields, and the process of state evolution includes oper-
ations based on modular arithmetic. Besides, systems over finite fields will possess some
special properties and structures [35, 43]. In 2013, the authors [38] applied the concepts
of structural controllability and observability to finite field leader-follower multi-agent
systems. Subsequent researchers [28] investigated the structural controllability of finite
field generalized linear systems with switching topologies, expanding on the findings of
[38] to higher dimensions. Meanwhile, in 2014, Pasqualetti [34] developed some sufficient
conditions for network consensus in finite fields using theories from graph theory and
linear algebra. And then Li [21, 24] extended the results of [34] on finite fields consensus
to networks with time-delays and switching topology. Meng [31] proposed the concept
of synchronization, and gave some sufficient conditions for achieving synchronization of
finite field networks. Xu [45] addressed the leader-follower consensus problem for finite
field high-dimensionality dynamical systems, requiring that the weighted adjacency ma-
trix of the system is a directed acyclic graph. In addition to above study, Li [22, 23]
proposed a novel strategy to solve the problems of controllability and consensus of finite
field dynamics based on semi-tensor product of matrices.

Some research methodologies require finite field systems to possess a specific topology
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structure or satisfy certain algebraic constraints for controllability and consensus. Other
studies employ semi-tensor product, yielding effective conclusions. However, when deal-
ing with high-dimensional systems or finite fields with a large number of dimensions,
it may result in significant computational complexity. Regarding the stabilization and
stabilizability of finite field networks [47], there is hardly any relevant research [46].
It is worth noting that some control methods for linear systems over the general real
field cannot be directly applied to the analysis and control of dynamics over finite fields
[32, 35]. Since the system state can only take values in a finite field, systems over finite
fields are discrete. However, unlike general discrete linear systems, the stability of these
systems cannot be determined by examining whether the eigenvalues of the system con-
stant matrix lie on the unit circle in the complex plane. Controller parameter design
methods based on matrix eigenvalues are difficult to apply to finite fields [47]. This
limitation may stem from the fact that finite fields are not algebraically closed, implying
that not all polynomials with coefficients in finite fields have roots within those fields
[29]. Additionally, constructing a Lyapunov function for systems over finite fields is also
a complex task [35]. Therefore, for finite field multi-agent systems, the aforementioned
methods are not suitable for the control protocol design in this paper. Consequently, it
is necessary to take into account the unique characteristics of finite fields and introduce
new methods to address the control problem.

The fully actuated system (FAS) approach [4] has recently found wide application in
complex systems and has shown considerable practical effectiveness, especially in cases
where conventional algebraic methods fail to apply. Duan [5, 6] presented the FAS ap-
proach, illustrating the correlation of full-actuation with controllability. Indeed, both
controllable linear and nonlinear unactuated systems can be transformed into high-order
fully actuated (HOFA) models. Furthermore, a class of practical systems, which can be
described by physical laws in the real world, can be directly modeled as HOFA systems,
such as Lagrange Equations, Newton Laws, and so on [5]. After obtaining the HOFA
systems, the full-actuation feature facilitates the design of the control protocol, enabling
the elimination of dynamic characteristics in the original system and the creation of a
new autonomous system with considerable degrees of freedom. In subsequent studies
[7, 8, 9, 10], Duan specifically elaborated on the principles and implementation process
of the FAS approach, particularly providing methods for handling various types of non-
linear systems. Due to the inherent advantages of HOFA models in system analysis and
control, along with their practical relevance to real-world systems, the introduction of
HOFA models and the FAS approach into multi-agent systems becomes a highly natural
idea. However, research in this area is still lacking, especially when it comes to multi-
agent systems within finite fields, which remains largely unexplored. Liu [26] addressed
the coordinative control problem of a class of high-order fully actuated nonlinear multi-
agent systems, introducing an HOFA predictive coordination method to mitigate for
communication delays. Zhang [48, 49, 50] introduced a discrete HOFA model in multi-
agent system field, and developed a predictive control strategy to achieve coordination
objectives. The aforementioned researchers have studied fully actuated multi-agent sys-
tems, but the relevant studies were all conducted over the general real number field
rather than finite fields. This paper introduces the concept of FAS into multi-agent
systems within finite fields. It not only considers HOFA multi-agent systems but also
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transforms multi-agent systems with different dynamics into HOFA models via the FAS
approach. This enables the resolution of stabilizability problems in such systems.

The main contributions and novelties are summarized as follows: First, the HOFA
multi-agent system is defined over finite fields rather than general real number fields
[26, 48]. Some necessary and sufficient conditions of stabilizability for HOFA multi-
agent systems, along with corresponding stabilization protocol designs, are derived. A
stabilization control method is obtained for linear multi-agent systems by FAS approach.
Furthermore, utilizing the properties of HOFA systems and finite fields, it is possible
to provide the time for the system to reach a stable state when designing stabilization
control protocols. Additionally, results regarding stabilizability are used to tackle the
formation control problem. Consequently, the time required by agents to achieve their
objectives can also be determined through the design of control protocols. Compared
with the existing works [14, 20], the HOFA multi-agent system is a completely new
model. The stabilizability analysis over finite fields is different from discrete-time multi-
agent systems over real number fields [15].

The rest of this paper is outlined as follows. In Section 2, some preliminary knowledge
and definitions are given. Section 3 devotes to investigate the stabilizability of HOFA
multi-agent systems over finite fields. In Section 4, the results are employed to solve the
formation control problem. Numerical examples are presented in Section 5. Section 6
gets a conclusion.

2. PRELIMINARIES

2.1. Notations

A finite field is denoted as Fp, with p being a prime number. The notation Fn
p represents

the space of n-dimensional vector over Fp, while Fm×n
p denotes the space of m × n

dimensional matrices over the same field, where the entries of vectors and matrices
are in Fp. The symbol In denotes the identity matrix, and ∅ represents the null set.
Additionally, det(A) denotes the determinant of the matrix A, while A−1 represents the
inverse of matrix A.

For Ki ∈ Fn×n
p , Ai ∈ Fn×n

p , i = 1, 2, . . . , n, there is

K̂ =


K1 · · · Kn−1 Kn

In
. . .

In 0

 ,

Â =


A1 · · · An−1 An

In
. . .

In 0

 .

2.2. Finite fields and graph theory

According to the relevant definitions in abstract algebra, it can be understood that an
abelian group is a set capable of addition and subtraction operations, whereas a ring
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extends this capability to include multiplication. A field, on the other hand, is a more
powerful algebraic structure. It extends a ring by having commutative multiplication
and ensuring that every nonzero element has a multiplicative inverse. Simply put, a
field can be considered a commutative division ring. Fields are typically represented by
the symbol F. In this paper, the elements in the field are considered finite, consisting of
a prime number p of elements. Then, Fp represents a finite field, and more properties
about finite fields can be found in [34, 46].

Finally, we review some fundamental concepts in graph theory. A directed graph
G = (V, ε) consists of a set of vertices V and a set of edges ε ⊆ V × V. An edge (v, u) ∈ ε
is directed, u is the parent node, and v is the child node receiving transmissions from
v. For a vertex v ∈ V, its neighbor set is defined as Ni = {u ∈ V : (v, u) ∈ ε}. The
adjacency matrix of G is denoted as A = (aij) ∈ Fn×n

p : if u ∈ Ni, aij ̸= 0, and aij = 0
otherwise. The in-degree of v ∈ V is |Ni| = δi =

∑n
j=1 aij , and the degree matrix is

∆ = diag{δ1, δ2, . . . , δn}. A path in G is a sequence of nodes v1, . . . , vk+1 such that
(vi, vi+1) ∈ ε for all i = 1, . . . , k. If any pair of nodes in a directed graph can be linked
by a directed path, the graph is considered strongly connected. A cycle is defined as a
path where the start and end nodes are identical. A directed graph without cycles is
called a directed acyclic graph (DAG).

2.3. Fully actuated system approaches over finite fields

The fully actuated systems are a widely encountered class of systems in the natural
world, and they can also be derived from common linear or nonlinear systems. Consider
a linear system over Fp:

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ Fn
p is the state, u(t) ∈ Fr

p is the control input, both A ∈ Fn×n and B ∈ Fn×r

are constant matrices.

It can be proved Theorem 3.4 of [10] holds over finite fields [47], that is, system (1)
under Assumption 1, there is following lemma.

Lemma 1. System (1) over Fp is controllable if and only if it can be converted equiva-
lently into a step forward HOFA model or a step backward HOFA model.

From the aforementioned lemma, system (1) can be converted into an HOFA model
if it is controllable. Though two kinds of HOFA models are both FAS models, there still
exist certain differences in aspects such as model transformation and control inputs [10,
47]. In order to facilitate the implementation of control for system (1), it is transformed
into a step backward HOFA system, which can be written in the following form:

z(t+ 1) =

µ∑
i=1

Aiz(t− i+ 1) + B̂u(t), (2)

where vector z(t) ∈ Fr
p, input matrix B̂ is nonsingular, and µ = max{µi, i = 1, 2, . . . , r}

is the largest controllability index of system (1).
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Remark 1. By Lemma 1 proposed in this paper and Theorem 3.3 of [47], there exists a
state transformation y = Tx, such that the system is transformed into the controllability
canonical form:

y(t+ 1) = Ây(t) + B̂u(t). (3)

For some yj(t) in y(t), there exists yi(t) such that the following equation satisfies

yj(t) = yi(t− s+ 1), (4)

where i, j ∈ {1, . . . , n}, s = 1, 2, . . . , µi, and µi, i = 1, . . . , r are the controllability indices
of system (1). Using equation (4), some state variables can be represented using the
other r state variables. Then system (3) can be converted into system (2). This also
implies that when the closed-loop system of HOFA system (2) is asymptotically stable,
the closed-loop system of system (3) is also asymptotically stable.

It is shown in Remark 1 that state y(t) is obtained from x(t) by a non-singular state
transformation. Similar to Lemma 6 in [40], it can be proved that the controllable
subspace of system (3) and the eigenvalues of the dynamic matrix A are the same as
system (1). Hence, system (1) and (3) are equivalent, then there is the following lemma.

Lemma 2. The stabilizability of system (1) is invariant under state transformation
y = Tx.

Clearly, when system (3) achieves stabilization, after the corresponding inverse trans-
formation, linear system (1) also achieves stabilization. Building on the preceding discus-
sion, HOFA systems can be transformed from controllable linear systems. Once control
input is implemented in the HOFA system, the initial linear system will also achieve the
control objectives.

3. STABILIZABILITY OF MULTI-AGENT SYSTEMS OVER FINITE FIELDS

In the previous study of finite field networks, controllability and consensus of one-
dimensional multi-agent systems both have garnered some attention, where each indi-
vidual agent was represented as a one-dimensional entity. However, real-world systems
often exhibit higher complexity, demanding the depiction of dynamics with agents pos-
sessing higher-level capabilities and intricate behaviors. Such advanced agents, with
their sophisticated abilities and complex behaviors, interact to form multi-dimensional
multi-agent systems.

3.1. Stabilizability analysis

Consider a group of multi-agent systems with general linear dynamics over Fp, consisting
of N agents. The dynamics of each agent is described by

xi(t+ 1) = Axi(t) +Bui(t), i = 1, . . . , N, (5)

where xi(t) ∈ Fn
p is the state of agent i, ui(t) ∈ Fr

p is the control input of agent i, A
and B are identical to those in system (1). The interaction topology among the above
N agents can be described by a graph G, and the adjacency matrix of G is A.
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Assumption 1. The pair (A,B) is controllable.

Under Assumption 1, by Lemma 1, system (5) can be converted into an HOFA system:

zi(t+ 1) =

µ∑
s=1

Aszi(t− s+ 1) + B̂ui(t), i = 1, . . . , N, (6)

where vector zi(t) ∈ Fr
p, the input matrix B̂ is nonsingular, and µ = max{µi, i =

1, 2, . . . , r} is the largest controllability index of system (5).
In fact, through appropriate state transformation and variable elimination, HOFA

systems can be derived not only from controllable linear systems, but also from strict-
feedback nonlinear systems, feedback-linearizable nonlinear systems, and other related
classes of systems. Furthermore, there exist an abundance of HOFA systems in the
physical world, such as Eulerian law, Newtonian law, etc. These systems can be directly
modeled as HOFA models. Therefore, the research concerning HOFA multi-agent sys-
tems (6) can not only solve the stabilizability of finite field linear multi-agent system
(5), but also provide a control method for various systems represented by this model,
which has great practical significance. The research in [48, 49, 50] addressed the pre-
dictive control problem of HOFA multi-agent systems. However, its model differs from
system (6). In comparison to system (6), if the time index of the model in [48, 49, 50]
shifts n − 1 steps, it can be considered that there are time-delays in the control input.
However, regarding those models, the control protocol considered in this paper are also
effective.

For HOFA multi-agent system (6) over Fp, a control protocol is presented as
ui(t) = B̂−1(ui1(t) + ui2(t))
ui1(t) = K0

∑
j∈Ni

aij(zi(t)− zj(t))

ui2(t) = −
µ∑

s=1
Asd̄izi(t− s+ 1) +

µ∑
s=1

Ksdizi(t− s+ 1),

(7)

where ui1(t) ∈ Fr
p is the cooperative control based on relative states between neighboring

agents, and ui2(t) ∈ Fr
p is the external control based on self-state feedback. Besides,

Ki ∈ Fr×r
p , i = 0, . . . , µ are the feedback gain matrices to be designed, and di indicates if

agent i is impacted by an external control. Agent i acquires data provided by an external
control if di = 1, otherwise di = 0, and d̄i = 1− di. For the subsequent analysis, define
Γ1 = {i|i ∈ N , di = 1} and Γ2 = {i|i ∈ N , di = 0}, where N = Γ1

⋃
Γ2 = {1, 2, . . . , N},

and Γ1

⋂
Γ2 = ∅.

System (6) under protocol (7) can be written as

zi(t+ 1) =

µ∑
s=1

diKszi(t− s+ 1) +

µ∑
s=1

d̄iAszi(t− s+ 1)

+K0

∑
j∈Ni

aij(zi(t)− zj(t)).
(8)

Let yi(t) = [zTi (t), z
T
i (t − 1), . . . , zTi (t − µ + 1)]T ∈ Fµr

p , then there is the following
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equivalent form:

yi(t+ 1) = K̂diyi(t) + Âd̄iyi(t) + K̄
∑
j∈Ni

aij(yi(t)− yj(t)), (9)

where
K̄ = diag{K0, 0, . . . , 0}.

In addition, denote Y (t) = [yT1 (t), y
T
2 (t), . . . , y

T
N (t)]T ∈ FNµr

p , so

Y (t+ 1) = (D ⊗ K̂ + D̄ ⊗ Â− L⊗ K̄)Y (t), (10)

where D = diag{d1, d2, . . . , dN}, D̄ = IN−D, L = ∆−A, and ∆ = diag{δ1, δ2, . . . , δN},
δi =

∑N
j=1 aij . ∆ can be defined as the degree matrix in Fp, which is different from

the degree matrix in real number field. In the expression
∑N

j=1 aij , the addition follows
modular arithmetic. L can be defined as the Laplacian matrix in Fp.

Definition 1. For multi-agent system (6) with control protocol (7) over Fp, the sta-
bilizability problem of multi-agent system (6) is said to be solvable, if there exists a
series of feedback gain matrices Ki, i = 0, 1, . . . , µ such that closed-loop system (10) is
asymptotically stable.

From the above conclusion, closed-loop system (10) is asymptotically stable if and
only if D ⊗ K̂ + D̄ ⊗ Â− L⊗ K̄ is nilpotent in Fp.

It can be seen if the matrix K0 = 0, which means there is no information interaction
among these neighbors. The stabilizability problem of system (6) can be converted to
the stabilizability problem of several sub-systems (2). If there exists external control
in each sub-systems, according to full-actuation property of each HOFA system in (6),
closed-loop system (10) can be stable. Then there is the following assumption.

Assumption 2. Matrix K0 ̸= 0.

The topology graph G among the N agents is assumed to satisfy the following as-
sumption, which was proposed in some studies of multi-agent systems over real number
field [2, 3] and finite fields [45].

Assumption 3. Graph G is a DAG.

If Assumptions 3 holds, then there exists nonsingular matrix P such that PAP−1 is
strict upper-triangular. Let Ā = PAP−1 and ∆̄ = P∆P−1 = diag{δ̄1, δ̄2, . . . δ̄N},

(P ⊗ Inµ)(D ⊗ K̂ + D̄ ⊗ Â− L⊗ K̄)(P ⊗ Inµ)
−1

=(D ⊗ K̂ + D̄ ⊗ Â− L̄⊗ K̄),
(11)

where L̄ = PLP−1 = ∆̄− Ā, Ā is strictly upper-triangular, and ∆̄ is diagonal. Besides,
D and D̄ represent whether these agents receive information from the external control.
Let Ȳ (t) = (P ⊗ Inµ)Y (t), where Ȳ (t) = [ȳT1 (t), ȳ

T
2 (t), . . . , ȳ

T
N (t)]T. Without loss of

generality, closed-loop system (10) can be rewritten as follows:

ȳ(t+ 1) = Ψȳ(t), (12)
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where

Ψ =


K̂ − δ̄1K̄ ∗ . . . ∗

0 Â− δ̄2K̄ . . . ∗
...

...
. . .

...

0 0 . . . K̂ − δ̄NK̄

 .

Theorem 1. Under Assumptions 2-3, there exists a series of feedback gain matrices
Ks, s = 0, 1, . . . , µ such that HOFA multi-agent system (6) with control protocol (7)
over Fp is stabilizable if and only if K̂i = K̂ − δ̄iK̄, i ∈ Γ1 and Âi = Â − δ̄iK̄, i ∈ Γ2

are nilpotent. The upper bound of settling time for system (12) is T =
∑N

i=1 τi, where

τi = min{max{k̂1, . . . , k̂N+1−i}, max{k̂i, . . . , k̂N}}, k̂i, i = 1, . . . , N are the nilpotency
indices of K̂i and Âi.

P r o o f . (D⊗K̂+D̄⊗Â−L̄⊗K̄) is nilpotent if and only if its characteristic polynomial
det(λINµr − (D ⊗ K̂ + D̄ ⊗ Â− L̄⊗ K̄)) = λNµr. According to the form of closed-loop

system (12), (D⊗ K̂+ D̄⊗ Â− L̄⊗ K̄) is block upper-triangular, det(λINµr − (D⊗ K̂+

D̄⊗ Â− L̄⊗ K̄)) = det(λIµr − K̂ − δ̄1K̄)det(λIµr − Â− δ̄2K̄) . . . det(λIµr − K̂ − δ̄NK̄).

Then det(λINµr−(D⊗K̂+D̄⊗Â−L̄⊗K̄)) = λNµr if and only if det(λIµr−K̂− δ̄iK̄) =

λµr, i ∈ Γ1 and det(λIµr − Â − δ̄iK̄) = λµr, i ∈ Γ2, that is, K̂i = K̂ − δ̄iK̄, i ∈ Γ1 and

Âi = Â − δ̄iK̄, i ∈ Γ2 are nilpotent. According to Lemma 4.3 of [45], for any t ≥ T ,
D ⊗ K̂ + D̄ ⊗ Â− L̄⊗ K̄ = 0Nµr, so the upper bound of settling time for (12) is T . □

Remark 2. In this paper, the settling time refers to the duration within which the state
of the multi-agent system reaches a fixed point from any initial state. This concept is
essential in various fields and is widely applied in numerous control problems [41].

Theorem 2. Under Assumptions 2-3, there exists a series of feedback gain matrices
Ks, s = 0, 1, . . . , µ such that HOFA multi-agent system (6) with control protocol (7)
over Fp is stabilizable if and only if one of the following statements holds

1. δ̄i ≡ c ∈ Fp, i = 1, . . . , N ,

2. δ̄i ≡ c1 ∈ Fp, i ∈ Γ1 and δ̄i ≡ c2 ∈ Fp, i ∈ Γ2 such that Âi, i ∈ Γ2 are nilpotent.

P r o o f . By Theorem 1, under Assumptions 2-3, HOFA multi-agent system (6) is sta-
bilizable if and only if K̂i = K̂ − δiK̄, i ∈ Γ1 and Âi = Â− δiK̄, i ∈ Γ2 are nilpotent.

Âi = Â− δ̄iK̄ =


A1 − δ̄iK0 A2 . . . Aµ

I
. . .

I 0

 , (13)

K̂i = K̂ − δ̄iK̄ =


K1 − δ̄iK0 K2 . . . Kµ

I
. . .

I 0

 , (14)
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where δ̄i are elements on the diagonal of the matrix L̄. The following three scenarios
are discussed:

1. If there exists several δ̄i ≡ c2 ∈ Fp and a matrix K̄ such that Âi = Â − δ̄iK̄

is nilpotent (Âi = Â are nilpotent if c2 = 0), these nodes are asymptotically
stable without external control. Then Γ2 represents numbers of these nodes, Γ1

represents other nodes. For i ∈ Γ1, we can find a series of feedback gain matrices
Ks, s = 0, 1, . . . , µ such that K̂i = K̂−δ̄iK̄ are nilpotent if and only if δi ≡ c1 ∈ Fp.
In this case, in-degrees of all nodes in graph G have two different values: c1, and
c2 ( c2 = 0 if Â are nilpotent ).

2. If Â is not nilpotent, and there does not exist δ̄i ≡ c2 ∈ Fp such that Âi = Â− δ̄iK̄
is nilpotent, Γ2 is a empty set, which represents each nodes in graph G ( or each
agents ) all have external control. Then D = I, K̂i = K̂ − δ̄iK̄, i = 1, . . . , N are
nilpotent if and only if δ̄i ≡ c ∈ Fp, i = 1, . . . , N . In this case, in-degrees of all
nodes in graph G have the same in-degree c.

3. If in-degrees of nodes in graph G have more than two different values, K̂i = K̂ −
δ̄iK̄, i ∈ Γ1 and Âi = Â − δ̄iK̄, i ∈ Γ2 can not all be nilpotent. The nodes under
external control and the nodes without external control should each have the same
in-degree. Because there does not exist a matrix K̄ and two different in-degrees
c1 and c2, such that Âi = Â − δiK̄ and Âi = Â − δiK̄ (or K̂i = K̂ − δiK̄ and
K̂i = K̂ − δiK̄) are all nilpotent. Unless the matrix K̄ = 0, which contradicts
Assumption 2.

Based on the specific analysis of the three cases, the results can be summarized as the
theorem above. □

Remark 3. According to the aforementioned theorem, the stabilizability of HOFA
multi-agent system (6) actually depends on topology graph G. For a DAG, there can be
situations where certain nodes have equal in-degrees, allowing these agents to achieve
stabilization without external control. However, for other agents, all of them need to be
under external control, and their corresponding nodes in the graph should also have the
same in-degree. If there are no such agents present which is stabilizable solely through
interactions between neighbors and their own dynamic evolution, then in such a case,
it is required that all nodes in the communication graph of the system have equal in-
degrees, and all agents must be under external control for the stabilizability of HOFA
multi-agent system (6).

Remark 4. Graph G is assumed to be a DAG. The agents, which has no parents nodes
in the DAG, can be regarded as leaders, and all other agents can be regarded as followers.
Without loss of generality, there exists a transformation such that the adjacency matrix
of graph G becomes strictly upper triangular. In this transformed matrix, the preceding
nodes are followers, while the succeeding nodes are leaders. The indices of agents are
defined that an agent i for i ∈ {1, 2, . . . , Nf} is a follower, and an agent i for i ∈
{Nf + 1, Nf + 2, . . . , N} is a leader. Note that leaders of a multi-agent system only
transmit information to their neighbors but do not accept information from other agents,
so they all have zero in-degree. Therefore, if the in-degrees of nodes in a DAG are all
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equal, they can only be equal to zero. In this case, if Âi = Â for i = 1, . . . , N , and they
are all nilpotent, then the multi-agent system is stabilizable without external control. If
they are not nilpotent, then all the agents are subject to external control in order for
the system is stabilizable. According to Theorem 2, if the in-degrees of followers are
not all zero, the in-degrees of other followers must be equal to a constant c ̸= 0 ∈ Fp.

In this case, either Â or Âi = Â− cK̄ is nilpotent. Then for the multi-agent system to
achieve stabilization, either all leaders (and some followers) or followers with a non-zero
in-degree are subject to external control.

Based on the above analysis, Theorem 2 can be rewritten as follows:

Theorem 3. Under Assumptions 2-3, there exists a series of feedback gain matrices
Ks, s = 0, 1, . . . , µ such that HOFA multi-agent system (6) with control protocol (7)
over Fp is stabilizable if and only if one of the following statements holds

1. δ̄i ≡ 0, i ∈ {1, 2, . . . , Nf},

2. δ̄i ≡ 0, i ∈ Γ1 and δ̄i ≡ c ∈ Fp, i ∈ Γ2 or δ̄i ≡ c ∈ Fp, i ∈ Γ1 and δ̄i ≡ 0 ∈ Fp, i ∈ Γ2

such that Âi, i ∈ Γ2 are nilpotent.

The following conclusion can be used for basic assessment of the stabilizability of
system (6).

Corollary 1. Under Assumptions 2-3, there does not exist a series of feedback gain
matricesKs, s = 0, 1, . . . , µ such that HOFAmulti-agent system (6) with control protocol
(7) over Fp is stabilizable if the in-degrees of nodes in graph G take on more than two
different values.

If an HOFA multi-agent system is derived from a linear multi-agent system, during
the transformation process, the dimension of the system decreases. However, according
to Remark 1, it can be proven that if the HOFA multi-agent system is stabilizable,
then the multi-agent system obtained after dimension expansion also is stabilizable. By
equation (4), if the HOFA multi-agent system reaches a steady state, the dimensionally
expanded multi-agent system is stable after iterating µ − 1 steps. Similar to Lemma
2, the stabilizability of system (5) is invariant under state transformation. When the
dimensionally expanded multi-agent system reaches a fixed point or stable state under a
given control protocol, the original linear multi-agent system also reaches a stable state.
The following theorem demonstrates the above result.

Theorem 4. If HOFA multi-agent system (6) with control protocol (7) over Fp is sta-
bilizable, then multi-agent system (5) is stabilizable, and the upper bound of settling
time for the closed-loop system of system (5) is T +µ−1, where T is defined in Theorem
1, µ = max{µi, i = 1, 2, . . . , r} is the maximum controllability index of system (5).

3.2. Stabilization protocol design

In Theorem 1, a necessary and sufficient condition for the stabilizability of the HOFA
multi-agent system is provided. Theorem 2 reveals that the stabilizability of the HOFA
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multi-agent system is closely related to the in-degrees of the nodes in graph G. Theorem
3 provides a more specific equivalence condition for stabilizability under the assumption
of a DAG. When the graph satisfies corresponding conditions, the stabilization problem
is transformed into finding a suitable sequence of matrices that render system (10)
asymptotically stable. To achieve stabilization of the HOFA multi-agent system, it may
be necessary for each agent to rely on both the interaction with its neighbors and external
control. With considerations such as resource conservation, the following stabilization
control procedure has been designed in order to reduce external control as much as
possible.

1. A controllable linear multi-agent system can be transformed into an HOFA multi-
agent system. Alternatively, for a certain class of systems existing in practice, they
can be directly modeled as HOFA multi-agent systems over Fp.

2. For topology graph G (DAG) of the HOFA multi-agent system, the following four
scenarios are discussed:

• If the in-degrees of nodes in graph G take on more than two distinct values,
the system is not stabilizable.

• If the in-degrees of all nodes are zero, that is, δ̄i ≡ 0, and Âi = Â is nilpotent,
then the system can be stable without external control.

• If the in-degrees of all nodes are zero, that is, δ̄i ≡ 0, but Âi = Â is not
nilpotent, then each agent needs to be under external control. This allows
the stabilization control problem of the HOFA multi-agent system over Fp to
be transformed into a parameter design problem of a series of matrices Ks,
s = 0, 1, . . . , µ.

• If the in-degrees of nodes take on two values 0 and c from Fp, such that either

Âi = Â or Âi = Â − cK̄ is nilpotent, then by designing appropriate a series
of matrices Ks, s = 0, 1, . . . , µ, the system is stabilizable.

3. The FAS parameter design method for the feedback gain matrices is as follows:

• First, based on different scenarios, choose a matrix K0 such that Âi is nilpo-
tent, or choose K0 arbitrarily.

• Then, determine other coefficient matrices in the control protocol, denoted
as Ks, s = 1, . . . , µ. For the given matrix J ∈ Fµr×µr

p , which is composed
of a series of nilpotent Jordan blocks, with the largest Jordan block having
dimension k̂, coefficient matrix K̂i and arbitrarily nonsingular matrix Q ∈
Fµr×µr
p satisfying

K̂i = K̂ − δ̄iK̄ = QJQ−1, δ̄i ≡ c ∈ Fp. (15)

The coefficient matrices Ks, s = 1, . . . , µ are given by[
K1 − cK0 K2 . . . Kµ

]
= ZJµQ−1(Z, J), (16)
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and

Q = Q(Z, J) =


ZJµ−1

...
ZJ
Z

 , (17)

where Z ∈ Fr×µr
p satisfies

detQ(Z, J) ̸= 0. (18)

• Finally, coefficient matrices Ks, s = 1, . . . , µ in control protocol (7) are[
K1 K2 . . . Kµ

]
=ZJµV −1(Z, J)−

[
cK0 0 . . . 0

]
.

(19)

4. The design of control protocol u is accomplished, which can solve the stabilization
problem of system (6).

5. Based on Theorem 4, system (5) is also stabilizable, and Theorem 4 provides the
upper bound of settling time for the system.

Remark 5. Based on the above stabilization control procedure and subject to certain
assumptions, it is possible to achieve stabilization of an HOFA multi-agent system,
while also determining the upper bound of settling time for the closed-loop system. As
mentioned earlier, HOFA multi-agent systems can be directly modeled based on real-
world systems. Therefore, for this type of system, the stabilization problem has already
been resolved. Moreover, HOFA multi-agent systems can also be derived from certain
systems, such as linear multi-agent system (5). It has been proven that the stabilizability
of a multi-agent system remains invariant under state transformations. When an HOFA
multi-agent system is stabilizable, the corresponding original system is also stabilizable.
The stabilization problem for a linear multi-agent system has been resolved, and the
settling time can be obtained naturally. Therefore, the proposed stabilization control
procedure in this section not only addresses the stabilization problem of HOFA multi-
agent systems directly but also provides the FAS approach for linear multi-agent systems.
By leveraging the feature of HOFA models, it facilitates the control protocol design for
stabilization problem.

4. APPLICATION TO FORMATION CONTROL

The set-point formation control problem of multi-agent systems with different dynamics
has been considered in recent research into stabilizability of multi-agent systems, such
as single integrators under fixed topology, linear dynamics under fixed and switching
topology, and discrete time linear dynamics under fixed and switching topology [14, 15,
20]. The stabilizability results from the previous section can be applied to this problem.

A set point, denoted as h0 ∈ Fr
p, along with H = [hT

1 , . . . , h
T
1 , . . . , h

T
N , . . . , hT

N ]T ∈
FNµr
p , characterizes a formation structure of a multi-agent system. hi represents the

formation vector associated with each agent i, and h0 is utilized for moving the entire
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formation to a target position. Therefore, variable hi − hj can represent the relative
position between agent i and agent j.

Then, consider the following control protocol:

ui(t) = B̂−1(ui1(t) + ui2(t))
ui1(t) = K0

∑
j∈Ni

aij((zi(t)− hi)− (zj(t)− hj))

ui2(t) = −
µ∑

s=1
Asd̄i(zi(t− s+ 1)− hi − h0)

+
µ∑

s=1
Ksdi(zi(t− s+ 1)− hi − h0).

(20)

Definition 2. For HOFA multi-agent system (6) with control protocol (20) over Fp,
the set-point formation control problem is said to be solvable, if there exists a series of
feedback gain matrices Ki, i = 0, 1, . . . , µ such that limt→∞ ∥ zi(t)− hi − h0 ∥= 0.

Let z̃i(t) = zi(t)− hi − h0, system (6) under protocol (20) can be written as

z̃i(t+ 1) =

µ∑
s=1

diKsz̃i(t− s+ 1) +

µ∑
s=1

d̄iAsz̃i(t− s+ 1)

+K0

∑
j∈Ni

aij(z̃i(t)− z̃j(t)).
(21)

Let ỹi(t) = [z̃Ti (t), z̃
T
i (t−1), . . . , z̃Ti (t−µ+1)]T ∈ Fµr

p , Ỹ (t) = [ỹT1 (t), ỹ
T
2 (t), . . . , ỹ

T
N (t)]T ∈

FNµr
p , then there is the following equivalent form:

Ỹ (t+ 1) = (D ⊗ K̂ + D̄ ⊗ Â− L⊗ K̄)Ỹ (t). (22)

The stability analysis of Ỹ (t) can be referred to the approach used for the closed-loop
system (10) in this paper.

Corollary 2. Under Assumptions 2-3, there exists a series of feedback gain matrices
Ks, s = 0, 1, . . . , µ such that the set-point formation control problem of multi-agent
system (6) over Fp is solvable if and only if K̂i = K̂−δ̄iK̄, i ∈ Γ1 and Âi = Â−δ̄iK̄, i ∈ Γ2

are nilpotent. The upper bound of time for formation control is T =
∑N

i=1 τi, where

τi = min{max{k̂1, . . . , k̂N+1−i}, max{k̂i, . . . , k̂N}}, k̂i, i = 1, . . . , N are the nilpotency
indices of K̂i and Âi.

Corollary 3. Under Assumptions 2-3, for HOFA multi-agent system (6) with control
protocol (7) over Fp, there exists a series of feedback gain matrices Ks, s = 0, 1, . . . , µ
such that the set-point formation control problem is solvable if and only if one of the
following statements holds

1. δ̄i ≡ 0, i ∈ {1, 2, . . . , Nf},

2. δ̄i ≡ 0, i ∈ Γ1 and δ̄i ≡ c ∈ Fp, i ∈ Γ2 or δ̄i ≡ c ∈ Fp, i ∈ Γ1 and δ̄i ≡ 0 ∈ Fp, i ∈ Γ2

such that Âi, i ∈ Γ2 are nilpotent.



278 Y. YANG, J. FENG AND L. JIA

The following conclusion can be utilized for a basic assessment of the solvability of
the formation control problem.

Corollary 4. Under Assumptions 2-3, consider HOFA multi-agent system (6) with
control protocol (7) over Fp, there does not exist a series of feedback gain matrices
Ks, s = 0, 1, . . . , µ such that the set-point formation control problem is solvable if the
in-degrees of nodes in graph G take on more than two different values.

5. NUMERICAL EXAMPLES

The practical applicability of the obtained results is validated through the following two
examples. The first demonstrates the efficacy of results for the stabilizability of HOFA
multi-agent systems.

Example 1. Consider HOFA multi-agent system (6) with control protocol (7) over F3

with zi =
[
zi1 zi2

]T
and µ = 2, which consists of 4 agents. The communication topol-

ogy is described in Figure 1, where blue circles (1, 2) represent followers, red circles (3, 4)
represent leaders. In the following cases, the communication topology and coefficient
matrices of the system vary, and the initial state is chosen randomly.

Fig. 1. The interaction topology among agents, with the sequence of

graphs as G1, G2, G3, and G4 (from left to right).

Case 1

The communication topology is G1,

A1 =

[
2 2
0 1

]
, A2 =

[
2 2
1 0

]
.

The in-degrees for leaders are 0, while the in-degrees for followers are 1 (where 2+2=1
(mod 3)) and 2, so in-degrees of nodes in graph G1 take on three distinct values. Â
is not nilpotent, according to Corollary 3, even if each agent is under external control
(di = 1, i = 1, . . . , 4), HOFA multi-agent system (6) is not stabilizable.

Case 2

The communication topology is G2,

A1 =

[
0 1
2 0

]
, A2 =

[
0 0
0 1

]
.
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The in-degree of each agent is 0 (where 2+1=0 (mod 3)), and Â is nilpotent. By
Theorem 3, HOFA multi-agent system (6) is stabilizable without external control, the
upper bound of settling time is T=16. Let K0 = I2,[

z1(0)
T z1(−1)T

]T
=

[
2 2 2 2

]T
,

[
z2(0)

T z2(−1)T
]T

=
[
1 1 1 2

]T
,[

z3(0)
T z3(−1)T

]T
=

[
1 2 1 2

]T
,[

z4(0)
T z4(−1)T

]T
=

[
1 2 0 1

]T
,

as shown in Figure 2, the settling time T = 8 < 16.

Case 3
The communication topology is G2,

A1 =

[
2 2
0 1

]
, A2 =

[
2 2
1 0

]
.

The in-degree of each agent is 0 (where 2+1=0 (mod 3)), but Â is not nilpotent. By
Theorem 3, HOFA multi-agent system (6) is stabilizable if each agent is under external
control. Let parameter matrices of FAS design method are

J =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Z =

[
1 0 0 0
0 1 0 1

]
,

so coefficient matrices of control protocol are

K̂i =


0 1 0 0
2 0 0 1
1 0 0 0
0 1 0 0

 , i = 1, . . . , 4,
[
K1 K2

]
=

[
1 1 0 0
2 1 0 1

]
,

and the the upper bound of settling time is T=16.
Let K0 = I2, [

z1(0)
T z1(−1)T

]T
=

[
1 2 0 2

]T
,[

z2(0)
T z2(−1)T

]T
=

[
1 1 1 2

]T
,[

z3(0)
T z3(−1)T

]T
=

[
1 2 1 0

]T
,[

z4(0)
T z4(−1)T

]T
=

[
1 2 0 1

]T
,

as shown in Figure 2, the settling time T = 9 < 16.
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Fig. 2. The state trajectories of all agents in case 1-case 5.

Case 4
The communication topology is G3,

A1 =

[
0 1
2 0

]
, A2 =

[
0 0
0 1

]
.

The in-degree of each leader is 0, and Âi = Â, i = 3, 4 is nilpotent. The in-degree of
each follower is 1 (where 2+2=1 (mod 3)), and Âi = Â − K̄, i = 1, 2 is not nilpotent.



Stabilizability of multi-agent systems over finite fields via fully actuated system approaches 281

By Theorem 3, HOFA multi-agent system (6) is stabilizable if each follower is under
external control. Let parameter matrices of FAS design method are

J =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Z =

[
1 0 0 0
0 1 0 1

]
,

so coefficient matrices of control protocol are

K̂i =


0 1 0 0
2 0 0 1
1 0 0 0
0 1 0 0

 , i = 1, 2,
[
K1 K2

]
=

[
1 1 0 0
2 1 0 1

]
,

and the upper bound of settling time is T=16. Let K0 = I2,
[
zi(0)

T zi(−1)T
]T

=[
0 1 2 0

]T
, i = 1, 2, 3, 4,, as shown in Figure 2, the settling time T = 5 < 16.

Case 5
The communication topology is G3,

A1 =

[
1 1
2 1

]
, A2 =

[
0 0
0 1

]
.

The in-degree of each leader is 0, and Âi = Â, i = 3, 4 is not nilpotent. The in-degree
of each follower is 1, and Âi = Â − K̄, i = 1, 2 can be nilpotent, where K0 = I2. By
Theorem 3, HOFA multi-agent system (6) is stabilizable if each leader is under external
control. Let parameter matrices of FAS design method are

J =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Z =

[
1 0 0 0
0 1 0 1

]
,

so coefficient matrices of control protocol are

K̂i =


0 1 0 0
2 0 0 1
1 0 0 0
0 1 0 0

 , i = 3, 4,
[
K1 K2

]
=

[
1 1 0 0
2 1 0 1

]
,

and the upper bound of settling time is T=16. Let
[
zi(0)

T zi(−1)T
]T

=
[
1 1 0 2

]T
,

i = 1, 2, 3, 4, as shown in Figure 2, the settling time T = 6 < 16.
The second example is to validate the results for formation control. In this example,

a multi-agent system is guided to transition from any given formation shape to a new
formation shape through a control protocol. To validate the effectiveness of the control
protocol, two formation control objectives are established to achieve.
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Example 2. Consider HOFA multi-agent system (6) with control protocol (7) over F5

with zi =
[
zi1 zi2

]T
and µ = 2, which consists of 4 agents. Each agent represents a

drone car, and each drone car can be controlled by input signals to move arbitrarily in
the forward, backward, left, and right directions on a fixed plane. We divide the plane
where the car is located, with the goal of moving the drone car from its initial position
to the target position in sequence under the given control, as shown in the Figure 3.

Fig. 3. Drone car formation targets.

Solid arrows represent the information transmission between drone cars, while dashed
arrows indicate the trajectory of position changes for each drone car under the given
control. The communication topology of HOFA multi-agent system (6) is described as
G4 in Figure 1,

A1 =

[
1 1
4 1

]
, A2 =

[
0 0
0 1

]
.

The in-degree of each leader is 0, and Âi = Â, i = 3, 4 is not nilpotent. The in-degree of
each follower is 1, and Âi = Â− K̄, i = 1, 2 can be nilpotent, where K0 = I2.

According to Definition 2, if limt→∞ ∥ zi(t) − hi − h0 ∥= 0, the set-point formation
control problem is solved. The two formation objectives we have set are as follows. Let

h0 =
[
0 0

]T
, H =

[
hT
1 hT

1 hT
2 hT

2 hT
3 hT

3 hT
4 hT

4

]T
, where hi =

[
hi1 hi2

]T
,

for objective 1: h1 =
[
2 2

]T
, h2 =

[
3 2

]T
, h3 =

[
2 3

]T
, h4 =

[
3 3

]T
, and for

objective 2: h1 =
[
4 1

]T
, h2 =

[
4 2

]T
, h3 =

[
4 4

]T
, h4 =

[
4 3

]T
. By Corollary

3, the set-point formation control problem is solvable if each leader is under external
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control. Let parameter matrices of FAS design method are

J =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Z =

[
1 0 0 0
0 1 0 1

]
,

so coefficient matrices of control protocol are

K̂i =


0 1 0 0
4 0 0 1
1 0 0 0
0 1 0 0

 , i = 3, 4,
[
K1 K2

]
=

[
1 1 0 0
4 1 0 1

]
,

and the upper bound of time for formation control is T=16. Let[
z1(0)

T z1(−1)T
]T

=
[
0 1 0 1

]T
,

[
z2(0)

T z2(−1)T
]T

=
[
1 0 1 0

]T
,[

z3(0)
T z3(−1)T

]T
=

[
1 2 1 2

]T
,[

z4(0)
T z4(−1)T

]T
=

[
2 1 2 1

]T
.

Figure 5 shows that the multi-agent system achieved formation control for two objectives:
The first task for each agent is to transition from a larger square formation to a smaller
square formation; The second task is to converge each agent into a straight line while
maintaining a certain spacing. Figure 4 shows that the mission time for both formation
control objectives is 6 steps, clearly less than the upper bound of time for formation
control.

Fig. 4. The relative error between agent states and the desired

formations.
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Fig. 5. The formation evolution trajectories of all agents.

6. CONCLUSION

In this paper, the stabilizability problem of HOFA multi-agent systems over finite fields
was studied. Some necessary and/or sufficient conditions for the stabilizability of HOFA
multi-agent systems have been proposed. It has been proved the stabilizability of HOFA
multi-agent systems depends on the in-degrees of nodes in the interaction graph and
coefficient matrices of systems. The general procedure of stabilization protocol design
was presented, so that the desired coefficient matrices in control protocol was acquired,
and the upper bound of settling time for the system was presented. Once an HOFA
multi-agent system, derived from a linear multi-agent system, is stabilizable, the stabi-
lizability problem of the linear multi-agent system can naturally be resolved through FAS
approach. Finally, the results were employed to solve the formation control problem,
and some sufficient and/or necessary conditions were developed. The problem of stabi-
lizability and consensus in multi-agent systems with more general topological conditions
and more complex dynamics remains to be explored.
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