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AND H∞ DYNAMIC OUTPUT FEEDBACK CONTROLLER
FOR SYSTEMS WITH TIME-VARYING DELAYS
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The stability and stabilization of systems with time-varying delays and external disturbances
are the subject of this study. To circumvent the limitation of the Bessel-Legendre inequality,
which cannot treat a time-varying delay system because the resulting limit contains reciprocal
convexity, the generalized free-matrix-based integral inequality is used to generate less con-
servative stability criteria. Improved stabilization requirements are proposed in the form of
linear matrix inequalities by developing a new augmented Lyapuno–Krasovskii function. To
achieve resolved controller gains, a method for designing a H∞ dynamic output feedback con-
troller based on linear matrix inequalities is then provided. Finally, three examples are used to
validate the advantages of the approach over existing methods.
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1. INTRODUCTION

Delays are omnipresent in physical systems, such as biological systems, electrical sys-
tems, networked control systems and industrial automation systems. The presence of a
delay in a system degrades performance or can even lead to system instability in a closed
loop. The main focus of research into the stability of delay systems is delay-dependent
stability and stabilization, [7, 9, 14, 18, 26]. Stability analysis is performed using the
Lyapunov–Krasovskii (LK) theorem. The key elements of this strategy are choosing an
appropriate LK functional and obtaining a tighter limit for its time derivative. The in-
tegral term in the derivative of the LK functional is treated by the free weighting matrix
approach [28] and the model transformation method [3] to reduce the conservatism of the
derived stability condition. The above works use several integral inequalities to estimate
quadratic integral terms. These include Jensen’s inequality [2], the Bessel–Legendre in-
equality (BLI) [16, 20] and the Wirtinger-based integral inequality [19]. For constant
delay systems, the BLI has the potential to provide an analytical solution [21], but it has
a shortcoming in the application to time-varying delay systems as the resultant bound
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contains a reciprocal convexity [17, 33], equiring a new type of function combination.
For time-varying delay systems, the affine BLI was proposed in [9, 22]. However, this
affine version cannot cover all the vectors in the Lyapunov–Krasovskii functional, and
the derived conditions remain conservative, leaving room for improvement.

Delay-dependent stability requirements are no longer applicable and unattainable if
a variable-delay system becomes unstable. Consequently, the creation of a stabilization
controller capable of solving instability problems becomes crucial [1, 5, 10]. The same
difficulties that occur when determining stability criteria also occur when determining
stabilization criteria. In addition, a congruence transformation must be used to trans-
late bilinear matrix inequalities into Linear Matrix Inequality (LMI) in order to derive
the negative definite condition in terms of LMI. The advantage of the congruence trans-
formation is that, while retaining its sign definition, it eliminates the bilinear elements
of the inequalities [34].

The most relevant literature has assumed that state feedback control can be easily
achieved and that the state of the dynamic system is completely quantifiable [24, 25]. In
the real world, however, state information will inevitably not always be completely acces-
sible. In these circumstances, there are two main approaches to controller analysis and
design: the first is to create an observer-based controller that reconstructs the state of
the dynamic system [7, 23]. Creating an Dynamic Output Feedback Controller (DOFC)
is the second approach, in which feedback control is performed using the measured out-
put signals of the dynamic systems [11, 13, 27]. When system state is unavailable due
to the difficulty of obtaining complete state information, the output feedback control
strategy plays a critical role in practical control applications and implementations [8, 6].

In this study, we propose a new stability and stabilization criterion for linear systems
with time-varying delays and external perturbations. First, a new augmented LK func-
tion is constructed and its derivative is evaluated using the generalized free-matrix-based
Integral Inequality [31], permitting the treatment of time-varying delay systems without
recourse to the reciprocal convexity lemma. This approach overcomes the drawback of
the Bessel–Legendre inequality [15, 22], and provides less conservative stability criteria.
We then present a control design technique for linear systems with time-varying delay,
where we focus on solving a specific nonlinearity problem, which then produces DOFC
gains. Finally, we present new LMI conditions for robust stability evaluation according
to H∞ performance criteria and for DOFC design. Standard numerical packages are
used to solve the derived delay-dependent stabilization criteria. The superiority of the
proposed stabilization criterion over current criteria is demonstrated, and numerical ex-
amples are used to confirm the effectiveness of the proposed approach. The contributions
of this paper are then summarized as follows:

1. Less conservative stability criteria are obtained by introducing new state-related
terms into LK function and using generalized free-matrix-based integral inequality
to evaluate its derivative.

2. A new H∞ dynamic output feedback control algorithm for time-varying delay
systems is implemented, guaranteeing robust closed-loop system stability.

3. The proposed method improves the upper delay limits compared with current
results for different lower delay limits.
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4. Numerical examples are presented to demonstrate the validity and interest of the
proposed method.

The article is structured as follows. Some introductory lemmas used to construct
stabilization criteria are provided in section 2. Closed-loop system stability analysis
is described in section 3, where the dynamic output feedback controller is designed
for linear systems with time-varying delays and external disturbances. Two simulation
examples are performed and comparative results are presented in section 4. Finally,
section 5 presents conclusions.

In addition to the standard notations used throughout the work, diag(M,N) denotes

the matrix
[
M 0
0 N

]
for any matrices M,N . Moreover, we define He(M) = M +MT

for every square matrix M . The set Sn
+ denotes the set of symmetric positive definite

matrices. The exponents T and −1 represent the transpose and inverse of a matrix,

respectively.
(

a
b

)
represents the binomial coefficients a!

b!(a−b)! .

2. MODEL DESCRIPTION AND PRELIMINARIES

Consider a linear system with time-varying delays: ξ̇(t) = Aξ(t) +Adξ(t− d(t)) +B(u(t) + w(t)), t ≥ 0,
y(t) = Cξ(t) + w(t),
ξ(t) = ϱ(t), −d2 ≤ t ≤ 0,

(1)

where A,Ad, B,C ∈ Rn×n are the system matrices, ξ(t) ∈ Rnξ , u(t) ∈ Rnu , y(t) ∈ Rny

are, respectively, the system state, the control input, the measured output, w(t) ∈ Rn×w

is the disturbance input, which belongs to L2[0,∞) and ϱ(t) is the initial condition. The
time-varying delay d(t) is continuous and satisfies,

0 ≤ d1 ≤ d(t) ≤ d2, d12 ≜ d2 − d1. (2)

We assume that the system states (1) are not accessible, in order to implement a complete
state feedback control law. Therefore, to solve this problem, we use a DOFC described
as follows: {

ξ̇c(t) = Acξc(t) +Bcy(t),
u(t) = Ccξc(t) +Dcy(t),

(3)

where ξc(t) ∈ Rn is the controller state, and Ac, BC , Cc, Dc are controller gains with
appropriate dimensions to be determined.

The system (1) with controller (3) is provided by,{
˙̂
ξ(t) = Âξ̂(t) + Âdξ̂(t− d(t)) + B̂w(t),

ŷ(t) = Dξ̂(t),
(4)

where ξ̂(t) = col {ξ(t), ξc(t)} and Â =

[
A+BDcC BCc

BcC Ac

]
, Âd =

[
Ad 0
0 0

]
, B̂ =[

BDc +B
Bc

]
and D =

[
I 0

]
.
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For a prescribed scalar δ > 0, we define the performance index

J (ŷ(t), w(t)) =

∫ t

0

ŷT (s)ŷ(s) ds− δ2
∫ t

0

wT (s)w(s) ds. (5)

The objective of this paper is to establish new LMI conditions that ensure the asymptotic
stability of system (1) and to design a H∞ DOFC (3), such that, for any d(t) satisfying
(2),

1. The closed-loop system (4) of system (1) is asymptotically stable under the con-
dition w(t) = 0,∀t ⩾ 0.

2. The H∞ performance

∥ŷ(t)∥2 < δ∥w(t)∥2 (6)

of the closed-loop system (4) is guaranteed for all nonzero w(t) ∈ L2[0,∞) and a

prescribed δ > 0 under the condition ξ̂(t) = 0,∀t ∈ [−d2, 0].

Before presenting our main results, we introduce the following lemmas, which are
essential for the derivation of the main results.

Lemma 2.1. (Xu and Lam [29] The following inequality holds for all α, β ∈ Rn and
Q ∈ Rn×n

+ ,

−2αTβ ≤ αTQα+ βTQ−1. (7)

Lemma 2.2. (Seuret and Gouaisbaut [21]) Let ξ be a continuous and differentiable
function: [a, b] → Rn and N ∈ N. Any matrix Z ∈ Rn×n

+ satisfies the following
inequality,

−
∫ b

a

ξ̇T (s)Zξ̇(s) ds ≤ − 1

b− a
ΥT

N

[
N∑

k=0

(2k + 1)πT
N (k)ZπN (k)

]
ΥN , (8)

where

ΥN =

{ [
ξT (b) ξT (a)

]T
, N = 0,[

ξT (b) ξT (a) 1
b−aΣ

T
0 · · · 1

b−aΣ
T
N−1

]T
, N > 1,

(9)

πN (k) =

{ [
I −I

]
, N = 0,[

I (−1)k+1I σ0
NkI · · ·σ

N−1
Nk I

]
, N ≥ 1,

(10)

σj
Nk =

{
(2j + 1)

(
(−1)k+j − 1

)
, j ≤ k,

0, j > k,
(11)

Fk(s) = (−1)k
k∑

i=0

[
(−1)i

(
k
i

)(
k + i
i

)](
s− a

b− a

)i

, (12)

Σk =

∫ b

a

Fk(s)ξ(s) ds. (13)
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Lemma 2.3. (Zeng et al. [31]) Let ξ be a continuous, differentiable function: [a, b] →
Rn and N ∈ N, ψ ∈ Rm. This inequality holds for all matrices Z ∈ Rn×n

+ , M ∈
R(N+1)n×m,

−
∫ b

a

ξ̇T(s)Zξ̇(s) ds ≤ 2ΥT
NΓT

NMψ + (b− a)ψTMT Z̃Mψ, (14)

where

ΓN =
[
πT
N (0) πT

N (1) · · ·πT
N (N)

]T
, (15)

Z̃ = diag

{
1

Z
,
1

3Z
, . . . ,

1

(2N + 1)Z

}
, (16)

ΥN is defined according to Lemma 2.2 .

P r o o f . According to Lemma 2.2

−
∫ b

a

ξ̇T (s)Zξ̇(s)ds ≤ − 1

b− a
ΥT

N

[
N∑

k=0

(2k + 1)πT
N (k)ZπN (k)

]
ΥN

≤ − 1

b− a
ΥT

N

[
πT
N (0), πT

N (1), . . . , πT
N (N)

]
diag {Z, 3Z, . . . (2N + 1)Z} [πN (0), πN (1), . . . , πN (N)] ΥN

≤ − 1

b− a
ΥT

NΓT
N ẐΓNΥN ,

we apply Lemma 2.1

− 1

b− a
ΥT

NΓT
N ẐΓNΥN ≤ 1

b− a

(
2αTβ + βT Ẑ−1β

)
, (17)

let

α = ΓNΥN , (18)

β = (b− a)Mξ, (19)

Z̃ = Ẑ−1. (20)

By substituting (18), (19) and (20) into (17), inequality (14) in Lemma 2.3 is obtained.
The proof is complete. □

Remark 2.4. The disadvantage of the BLI (8), which presents a reciprocal convexity
that is difficult to handle in the resulting limit for determining stability conditions for
time-varying delay systems, is resolved by Lemma 2.3, which allows us to transform
this reciprocal convexity and using the convexity property, we obtain conditions that
are fairly easy to handle. Note that many current inequalities can be seen as particular
cases of inequality (14). Examples include Jensen’s inequality [2], the Wirtinger-based
integral inequality [19], the affine BLI [15] and the inequality based on free matrices [30].
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3. STABILITY ANALYSIS AND CONTROL SYNTHESIS

In this section, the stability and stabilization of a linear system with a time-varying
delay and an external disturbance are investigated using a generalized free-matrix-based
Integral Inequality. This section is divided into two parts. The first presents the com-
plete LK function proposed for the system with a time-varying delay and an external
disturbance. The second aims at obtaining LMI conditions for synthesizing controller
gains. The following notations will be used in this section to simplify the presentation:

êi =
[
0n×(i−1)n In 0n×(16−i)n

]
, i = 1, . . . , 16, (21)

g = Âê1 + Âdê3 − ê15 + B̂ê16,

Ē = ê15 + ê1 + ê3.

and

ϖ1(t) =
[
ξ̂T (t) ξ̂T (t− d1) ξ̂T (t− d(t)) ξ̂T (t− d2)

]T
, (22)

ϖ2(t) =
1

d1

[∫ 0

−d1

ξ̂Tt (s) ds

∫ 0

−d1

F1(s)ξ̂
T
t (s) ds

]T
,

ϖ3(t) =
1

d(t)− d1

[∫ −d1

−d(t)

ξ̂Tt (s) ds

∫ −d1

−d(t)

F2(s)ξ̂
T
t (s)ds

]T
,

ϖ4(t) =
1

d2 − d(t)

[∫ −d(t)

−d2

ξ̂Tt (s) ds

∫ −d(t)

−d2

F3(s)ξ̂
T
t (s)ds

]T
,

ϖ5(t) = (d(t)− d1)ϖ3(t), ϖ6(t) = (d2 − d(t))ϖ4(t),

ϖ7(t) =
[ ∫ −d1

−d2
ξ̂Tt (s) ds d12

∫ −d1

−d2
F4(s)ξ̂

T
t (s) ds

]T
,

ϖ8(t) =
[

˙̂
ξ(t) w(t)

]T
,

and the functions Fk (k = 1, . . . , 4), presented in Lemma 2.2, are given by,

F1(s) = 2
s+ d1
d1

− 1, F2(s) = 2
s+ d(t)

d(t)− d1
− 1, (23)

F3(s) = 2
s+ d2
d2 − d(t)

− 1, F4(s) = 2
s+ d2
d12

− 1.

3.1. Stability analysis

The stability criterion for the system (4) is presented as follows,
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Theorem 3.1. If there exist non-negative scalars d1, d2 satisfying the conditions in (2),
constant δ > 0, the matrices P ∈ S5n

+ , Q1, Q2, Z1, Z2 ∈ Sn
+, S1, S2 ∈ R16n×2n, N1, N2 ∈

R16n×3n and matrices V, Â, Âd, B̂ such that LMIs (24) and (25) hold[
Ξ(d1) d21N2

d21N
T
2 −Q̂2

]
< 0, (24)

[
Ξ(d2) d21N1

d21N
T
1 −Q̂2

]
< 0, (25)

for all θ ∈ R,

Ξ(θ) = Φ(θ) + 2ĒTV g, (26)

and

Φ(θ) =He
(
LT
1 (θ)PL0 + S1g1(θ) + S2g2(θ)

)
+ Ẑ + êT15

(
d21Q1 + d221Q2

)
ê15 (27)

−KT
0 Q̂1K0 + d21 He (N1K1 +N2K2) + êT1 ê1 − δ2êT16ê16,

Ẑ =diag (Z1,−Z1 + Z2, 0n×n,−Z2, 012n×12n) ,

Q̂i =diag (Qi, 3Qi, 5Qi) , i = 1, 2,

Q̃i =Q̂
−1
i ,

L0 =
[
êT15 êT1 − êT2 êT1 + êT2 − 2êT5 êT2 − êT4 L̂T

0

]T
,

L̂0 =d12 (ê2 + ê4)− 2 (ê11 + ê13) ,

L̂1(θ) = (d2 − θ) (ê11 + ê14) + (θ − d1) (ê12 − ê13) ,

L1(θ) =
[
êT1 d1ê

T
5 d1ê

T
6 êT11 + êT13 L̂T

1 (θ)
]T
,

K0 =
[
êT1 − êT3 êT1 + êT3 − 2êT5 êT1 − êT3 − 6êT6

]T
,

K1 =
[
êT1 − êT3 êT1 + êT3 − 2êT7 êT1 − êT3 + 6êT7 − 12êT8

]T
,

K2 =
[
êT3 − êT4 êT3 + êT4 − 2êT9 êT3 − êT4 + 6êT9 − 12êT10

]T
,

g1(θ) = (θ − d1)

[
ê7
ê8

]
−
[
ê11
ê12

]
,

g2(θ) = (d2 − θ)

[
ê9
ê10

]
−
[
ê13
ê14

]
.

Then, For any disturbance w(t) ∈ L2[0,∞), the system (4) is asymptotically stable while
ensuring an H∞ performance index δ.

P r o o f . Consider a Lyapunov functional given by

V
(
ξ̂t,

˙̂
ξt

)
= V1

(
ξ̂t

)
+ V2

(
ξ̂t

)
+ V3

(
ξ̂t,

˙̂
ξt

)
, (28)
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where

V1

(
ξ̂t

)
=ξ̄T (t)P ξ̄(t), (29)

V2

(
ξ̂t

)
=

∫ t

t−d1

ξ̂T (s)Z1ξ̂(s)ds+

∫ t−d1

t−d2

ξ̂T (s)Z2ξ̂(s) ds, (30)

V3

(
ξ̂t,

˙̂
ξt

)
=d1

∫ 0

−d1

∫ t

t+θ

˙̂
ξT (s)Q1

˙̂
ξ(s) dsdθ (31)

+ d12

∫ −d1

−d2

∫ t

t+θ

˙̂
ξT (s)Q2

˙̂
ξ(s) dsdθ,

and where d21 = d2 − d1 and ξ̄ = col
{
ξ̂1(t), d1ϖ2(t), ϖ7(t)

}
.

The derivative of V̇1(ξ̂t) satisfies the relation,

V̇1(ξ̂t) = 2ξ̄(t)TP ˙̄ξ(t). (32)

The augmented vector (33) is used to represent ξ̄(t) and ˙̄ξ(t),

ψ(t) = col {ϖ1(t), ϖ2(t), ϖ3(t), ϖ4(t), ϖ5(t), ϖ6(t), ϖ8(t)} , (33)

where ϖi(t), for i = 1, ..., 8, are given in (22),

d1ϖ2(t) = d1
[
êT5 êT6

]
ψ, (34)

ϖ7(t) =
[ ∫ −d1

−d2
ξ̂Tt (s) ds d21

∫ −d1

−d2
F4(s)ξ̂

T
t (s) ds

]T
(35)

=
[ ∫ −d1

−d2
ξ̂Tt (s) ds d21(

∫ −d

−d2
F4(s)ξ̂

T
t (s) ds+

∫ −d1

−d
F4(s)ξ̂

T
t (s) ds)

]T
,

from equation (23), we have

d21F4(s) =(d− d1)F2(s) + (d2 − d) (36)

=(d2 − d)F3(s) + (d− d1),

then

d21

∫ −d

−d2

F4(s)ξ̂
T
t (s) ds = (d2 − d)

∫ −d

−d2

F3(s)ξ̂
T
t (s)− (d− d1)

∫ −d

−d2

ξ̂Tt (s), (37)

d21

∫ −d1

−d

F4(s)ξ̂
T
t (s) ds = (d− d1)

∫ −d1

−d

F2(s)ξ̂
T
t (s)− (d2 − d)

∫ −d1

−d

ξ̂Tt (s),

by reintroducing (37) into (35), we obtain that

ϖ7(t) =
[
êT11 + êT13 (d− d1)(ê

T
12 − êT13) + (d2 − d)(êT11 + êT14)

]T
ψ, (38)
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ϖ7(t) =
[
êT11 + êT13 L̂T

1 (d)
]T
ψ,

according to equation (34) and (38), we obtain

ξ̄(t) =
[
êT1 d1ê

T
5 d1ê

T
6 êT11 + êT13 L̂T

1 (d)
]T
ψ, (39)

ξ̄(t) = L1(d),

we now calculate the derivative of ξ̄(t),

ξ̇1(t) = ê15ψ, (40)

d1ϖ̇2(t) =
[
êT1 − êT2 êT1 + êT2 − 2êT5

]T
ψ,

ϖ̇7(t) =
[
êT2 − êT4 d21(ê

T
2 + êT4 )− 2(êT11 + êT13)

]T
ψ,

=
[
êT2 − êT4 L̂T

0

]T
ψ,

then

˙̄ξ(t) =
[
êT15 êT1 − êT2 êT1 + êT2 − 2êT5 êT2 − êT4 L̂T

0

]T
ψ, (41)

˙̄ξ(t) = L0ψ,

substituting (39) and (41) into (32) gives

V̇1(ξ̂t) = 2(L1(d)ψ)
TPL0ψ(t) (42)

= ψT He
(
L1(d)

TPL0

)
ψ(t).

Additionally, we have ϖ5(t) = (d − d1)ϖ3(t) and ϖ6(t) = (d2 − d)ϖ4(t). Thus, for all
matrices S1, S2 in R16n×2n, the following equality holds using the matrices g1 and g2
described in (27),

2ψT (S1g1(d) + S2g2(d))ψ = 0,

therefore, the derivative of V1 (ξt) is given by

V̇1

(
ξ̂t

)
= ψT He

(
LT
1 (d)PL0 + S1g1(d) + S2g2(d)

)
ψ, (43)

the derivatives of V2(ξt), yields,

V̇2

(
ξ̂t

)
= ξ̂T (t)Z1ξ̂(t)− ξ̂T (t− d1)Z1ξ̂(t− d1) (44)

+ ξ̂T (t− d1)Z2ξ̂(t− d1)− ξ̂T (t− d2)Z2ξ̂(t− d2)

= ψT Ẑ,

the derivative of V3(ξ̂t,
˙̂
ξt) gives,

V̇3(ξ̂t,
˙̂
ξt) = d21

˙̂
ξ(t)TQ1

˙̂
ξ(t)− d1

∫ t

t−d1

˙̂
ξ(s)TQ1

˙̂
ξ(s) ds (45)
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+ d221
˙̂
ξ(t)TQ2

˙̂
ξ(t)− d21

∫ t−d

t−d2

˙̂
ξ(s)TQ2

˙̂
ξ(s) ds

− d21

∫ t−d1

t−d

˙̂
ξ(s)TQ2

˙̂
ξ(s) ds,

with N = 2, apply Lemma 2.2.

−
∫ t

t−d1

˙̂
ξ(s)TQ1

˙̂
ξ(s) ds ≤ − 1

d1
ΥT

2 Γ
T
2 Q̂1Γ2Υ2, (46)

where

Υ2 =
[
ξ̂T (t) ξ̂T (t− d1)

1
d1

∫ 0

−d1
ξ̂T (s) ds 1

d1

∫ 0

−d1
F1(s)ξ̂

T (s) ds
]T
,

then

ΥT
2 Γ

T
2 = ψT

[
êT1 − êT2 êT1 + êT2 − 2êT5 êT1 − êT2 − 6êT6

]
(47)

= ψTKT
0 .

Substituting (47) into (46) gives,

−
∫ t

t−d1

˙̂
ξ(s)TQ1

˙̂
ξ(s) ds ≤ − 1

d1
ψTKT

0 Q̂1K0ψ, (48)

using Lemma 2.3 with N = 2,

−
∫ t−d1

t−d

˙̂
ξT(s)Q2

˙̂
ξ(s) ds ≤ 2ΥT

2 Γ
T
2 S1ψ + (d− d1)ψ

TST
1 Q̃2S1ψ. (49)

Following the same procedure in (47), one has

ΥT
2 Γ

T
2 = ψT

[
êT1 − êT3 êT1 + êT3 − 2êT7 êT1 − êT3 + 6êT7 − 12êT8

]
(50)

= ψTKT
1 .

Substituting (50) into (49) gives,

−
∫ t−d1

t−d

˙̂xT(s)Q2
˙̂
ξ(s) ds ≤ 2ψTKT

1 S̄
T
1 ψ + (d− d1)ψ

T S̄1Q̃2S̄
T
1 ψ (51)

≤ ψT He
(
S̄1K1

)
ψ + (d− d1)ψ

T S̄1Q̃2S̄
T
1 ψ

≤ −ψT
(
He (S1K1)− (d− d1)S1Q̃2S

T
1

)
ψ

≤ −ψTΛ1(d)ψ.

Following the same procedure in (51), one has

−
∫ t−d

t−d2

˙̂
ξT(s)Q2

˙̂
ξ(s) ds ≤ −ψT

(
He (S2K2)− (d− d1)S2Q̃2S

T
2

)
ψ (52)
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≤ −ψTΛ2(d)ψ.

Substituting (48), (51) and (52) into (45) gives,

V̇3(ξ̂t,
˙̂
ξt) ≤ ψT

(
êT15(d

2
1Q1 + d221Q2)ê15 −KT

0 Q̂1K0 − d21(Λ1(d) + Λ2(d))
)
ψ. (53)

From equations (43), (44) and (53), we have,

V̇ (ξ̂t,
˙̂
ξt) ≤ V̇1(ξ̂t) + V̇2(ξ̂t) + V̇3(ξ̂t,

˙̂
ξt) (54)

= ψTΩ(d)ψ,

where

Ω(d) = He
(
LT
1 (d)PL0 + S1g1(d) + S2g2(d)

)
+ Ẑ + êT1 (d

2
1Q1 + d221Q2)ê1

−KT
0 Q̂1K0 − d21(Λ1(d) + Λ2(d)).

If g is the matrix defined in (21), then gψ(t) = 0 can be easily verified. It follows that,
for any invertible matrix V ,

2ψT (t)(ĒTV g)ψ(t) = 0, (55)

Ē is defined in (21). Summing (55) with (54) leads to,

V̇ (ξ̂t,
˙̂
ξt) ≤ ψT (t)

(
Ω(d) + 2ĒTV g

)
ψ(t). (56)

First, we analyse the asymptotic stability of the system (4) in the absence of perturba-
tion, i. e. for w(t) = 0. In this case, equation (56) is rewritten as follows:

V̇ (ξ̂t,
˙̂
ξt) ≤ ψT

0 (t)
(
Ω(d) + 2ĒTV g0

)
ψ0(t). (57)

where

ψ0 = col
{
ϖ1(t), ϖ2(t), ϖ3(t), ϖ4(t), ϖ5(t), ϖ6(t),

˙̂
ξ(t)

}
, (58)

g0 = Âê1 + Âdê3 − ê15.

Then for w(t) = 0, based on the Lyapunov–Krasovskii theorem [12], asymptotic stability
is guaranteed if Ω(d)+2ĒTV g0 < 0. According to the Schur complement, this condition
is obtained if the following LMIs are satisfied,[

Ξ0(d1) d21N2

d21N
T
2 −Q̂2

]
< 0,

[
Ξ0(d2) d21N1

d21N
T
1 −Q̂2

]
< 0, (59)

where

Ξ0(θ) = Φ0(θ) + 2ĒTV g0, (60)
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and

Φ0(θ) =He
(
LT
1 (θ)PL0 + S1g1(θ) + S2g2(θ)

)
+ Ẑ + êT15

(
d21Q1 + d221Q2

)
ê15 (61)

−KT
0 Q̂1K0 + d21 He (N1K1 +N2K2) ,

Next, assuming that ϱ(t) = 0, t ∈ [−d2, 0], we consider the performance index (5) of
system (4). From (56) one obtains

J (ŷ(t), w(t)) =

∫ ∞

0

[
ŷT (t)ŷ(t)− δ2wT (t)w(t) + V̇ (ξ̂t,

˙̂
ξt)
]
dt− V (ξ̂t,

˙̂
ξt)|t→∞ (62)

⩽
∫ ∞

0

[
ŷT (t)ŷ(t)− δ2wT (t)w(t) + V̇ (ξ̂t,

˙̂
ξt)
]
dt

=

∫ ∞

0

ψT (t)Π(d)ψ(t) dt,

where

Π(d) = Ω(d) + 2ĒTV g − δ2êT16ê16 + êT1 ê1.

By using Schur complement, we get that Π(d) < 0 if LMIs (24) and (25) are satisfied.
Then, system (1) is asymptotically stable with H∞ performance level δ if conditions
(24) and (25) are satisfied. The proof is complete. □

3.2. H∞ dynamic output feedback controller design

In this subsection, Theorem 3.1 is extended to the design of an H∞ DOFC for system
(1). The corresponding results are summarized in the following theorem.

Theorem 3.2. Given positive scalars d1, d2, δ > 0, for any disturbance w(t) ∈ L2[0,∞),
the system (4) is asymptotically stable while ensuring an H∞ performance index δ. If
there exist P ∈ S5n

+ , Q1, Q2, Z1, Z2 ∈ Sn
+, S1, S2 ∈ R16n×2n, and any matrix N1, N2 ∈

R16n×3n, F ∈ Rn×n, E ∈ Rn×n are symmetric matrices, H ∈ Rn×n, U ∈ Rn×n are any
nonsingular matrices, and matrices A,B, C,D, Ad, such that[

Ψ(d1)+ d21N2

d21N
T
2 −Q̂2

]
< 0, (63)

[
Ψ(d2) d21N1

d21N
T
1 −Q̂2

]
< 0, (64)

are valid, for all θ ∈ R,

Ψ(θ) = Φ(θ) + 2ĒT ĝ, (65)

Φ(θ), 2ĒT ĝ are defined respectively in (27) and (73).
The controller gain matrices are designed as follows,

Ac =H
−1 (A− EAF − EBDcCF )U

−T −BcCFU
−T −H−1EBCc, (66)
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Bc =H
−1 (B − EBDc) , (67)

Cc =(C −DcCF )U
−T , (68)

Dc =D. (69)

P r o o f . First, we introduce the following coordinate transformation where the stability
of the new system is the same as that of system (4),

φ(t) =
(
RV T

)−1
ξ̂(t).

Using equation (4), we obtain

RV Tφ(t) =ξ̂(t), (70)

RV T φ̇(t) =
˙̂
ξ(t),

RV T φ̇(t) =ÂRV Tφ(t) + ÂdRV
Tφ(t− d(t)) + B̂ω(t). (71)

Then, according to the previous equation, g defined in equation (21) becomes

ĝ = ÂRV T ê1 + ÂdRV
T ê3 −RV T ê15 + B̂ê16. (72)

The non-linear term (2ĒTV g) in Theorem 3.1, which calculates the controller gain, is
then as follows,

2ĒTV ĝ = 2ĒTV

(
ÂRV T ê1 + ÂdRV

T ê3 −RV T ê15 + B̂ê16

)
, (73)

we define

R−1 =

[
E ∗
HT Ê

]
, R =

[
F ∗
UT F̂

]
, V =

[
I 0
E H

]
. (74)

where F ∈ Rn×n, F̂ ∈ Rn×n, E ∈ Rn×n, Ê ∈ Rn×n are symmetric matrices and H ∈
Rn×n, U ∈ Rn×n are any nonsingular matrices. It follows that: FE + UHT = I and
UTE + F̂HT = 0. We replace the matrices R and V in equation (73),

V ÂRV T = V

[
A+BDcC BCc

BcC Ac

]
RV T =

[
AF +BC A+BDC

A EA+ BC

]
,

V ÂdRV
T = V

[
Ad 0
0 0

]
RV T =

[
AdF Ad

Ad EAd

]
,

V RV T =

[
F ∗
I E

]
,

V B̂ = V

[
BDc +B

Bc

]
=

[
BD +B
B + EB

]
,

where

Ad =EAdF,
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A =EAF + EBDcCF +HBcCF + EBCcU
T +HAcU

T ,

B =EBDc +HBc,

C =DcCF + CcU
T ,

D =Dc.

This results in the inequalities (63) and (64). Furthermore, if (63) and (64) are satisfied,
the controller gains are determined by equations (66), (67), (68) and (69). □

4. ILLUSTRATIVE EXAMPLES

In this section, three numerical cases are examined and the results are compared with
previous studies to illustrate the effectiveness of the proposed method.

Example 4.1. Consider the system studied in [32], where the system and input matrices
are as follows

A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
, B =

[
0
0

]
, C =

[
0 0

]
.

For different values of d1, the maximum upper bounds on the delay d2 obtained from
Theorem 3.1 are calculated and listed in Table 1, together with the results provided in
other works. Table 1 shows that the results obtained in this paper are less conservative
than the others in the literature.

d1 0.1 0.4 0.7 1

[16] 2.26 2.29 2.34 2.40
[32] 2.27 2.30 2.36 2.43
Theorem 3.1 2.37 2.98 3.75 3.80

Tab. 1: Admissible upper bound of d2 for different d1.

Example 4.2. Consider system (1) with

A =

[
0 0
0 1

]
, Ad =

[
−1 −1
0 −0.9

]
, B =

[
0
1

]
, C =

[
0.3 1

]
.

The system described above, in the absence of control, is unstable because the eigenvalues
of the system matrix have positive real parts (eig(A) = [0; 1]). We then apply the
controller proposed in this work to stabilize the closed-loop system using the following
simulation parameters: Time -varying delay d(t) = 0.5 + 0.345| sin(2.6087t)|, d1 = 0.5,
d2 = 1.591, the external disturbance w(t) = 0, the initial functions ξ(t) = ϱ(t) = [1 2]T

and based on Theorem 3.2 the gain matrices are given by:

Ac =

[
−0.0277 −0.3046
−0.2599 −2.8590

]
, Bc =

[
0.0841
0.7980

]
, Cc =

[
−0.0012 0.0083

]
, Dc =

[
−1.0023

]
.
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Fig. 1 illustrates the system state trajectories with the proposed controller, showing
that these trajectories converge to zero. This demonstrates the effective performance of
the controller designed in this work. Furthermore, the simulation results validate the
theoretical findings and confirm the effectiveness of the proposed method. To demon-
strate that Theorem 3.2 is less conservative than existing techniques, we calculate the
admissible upper limit of d2 for different values of d1 and compare the results with those
in [34], [26] and [7], as presented in Table 2.

Fig. 1: Closed-loop system state ξ(t) with controller.

Method d1 d2 d1 d2

[34] 0.2 0.428 0.5 0.549
[26] 0.2 0.846 0.5 0.863
[7] 0.2 0.963 0.5 0.967
Theorem 3.2 0.2 1.798 0.5 1.887

Tab. 2: Admissible upper bound of d2 for different d1.

Example 4.3. We also consider the following dynamics of an additional system (this
example is used in [26] and [7] without considering external disturbances).

A =

0 0 0
0 1 0
0 0 −1

 , Ad =

−1 −1 −1
0 −0.9 −0.1
0 0 −0.2

 , B =

01
1

 , C =
[
0.3 1 0.2

]
.

We consider a disturbance w(t) ∈ L2[0,∞) given by: w(t) = exp(−0.4t) sin(2t).
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Based on Theorem 3.2, we increase the values of the delay d1 to determine the cor-
responding upper limit of the delay d2. The results are presented in Table 3, clearly
demonstrating the superiority of the proposed approach compared to [26] and [7].
Fig. 2 shows the state trajectories with the stabilizing controller gain:

Ac =

0.0365 −0.3228 −0.2939
0.0429 −2.2444 −1.4241
0.1748 −2.1185 −1.7386

 , Bc =

−0.0329
−0.2146
−0.1400

 ,
Cc =

[
−0.0029 0.0142 0.0027

]
, Dc =

[
−0.9991

]
.

The controller gain is derived using Theorem 3.2 with the following simulation param-
eters: δ = 0.3, d1 = 0.5, d2 = 1.61, d(t) = 0.5 + 0.467| sin(1.071t)| and initial functions
ϱ(t) = [6 4 2]T .

Fig. 2: State responses of the closed-loop system.

Method d1 d2 d1 d2

[26] 0 0.851 0.5 0.902
[7] 0 0.930 0.5 0.967
Theorem 3.2 0 1.579 0.5 1.679

Tab. 3: Admissible upper bound of d2 for different d1.

5. CONCLUSION

This work proposes a new approach to stability and control design adapted to linear
systems with time-varying delay and external disturbance. By using the generalized
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free-matrix-based integral inequality to handle the integral term of the LK function, a
new and improved LK function is obtained. Then, by solving a specific nonlinearity
problem, a new LMI condition is derived to determine the gains of the DOFC. Finally,
numerical examples are provided to demonstrate the effectiveness of the results.

(Received October 19, 2024)
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