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FUZZY CLUSTERING OF FUZZY DATA CONSIDERING
THE SHAPE OF THE MEMBERSHIP FUNCTIONS USING
A NOVEL REPRESENTATION LEARNING TECHNIQUE

Alireza Khastan and Elham Eskandari

Most existing distance measures for fuzzy data do not capture differences in the shapes of the
left and right tails of membership functions. As a result, they may calculate a distance of zero
between fuzzy data even when these differences exist. Additionally, some distance measures
cannot compute distances between fuzzy data when their membership functions differ in type.

In this paper, inspired by human visual perception, we propose a fuzzy clustering method for
fuzzy data using a novel representation technique that is capable of detecting small differences
in the shapes of the left and right tails of membership functions. Moreover, it effectively
clusters fuzzy data even when their membership functions differ in type. By utilizing the pre-
trained ResNet50 network as a feature extractor and applying the FCM clustering method to
the output from the last convolutional layer, our approach achieves high accuracy in clustering
both synthetic and real data sets. Experimental results demonstrate that our method achieved
a Rand Index of 0.9965, outperforming state-of-the-art methods, making it particularly suitable
for applications that require high clustering accuracy.

Keywords: fuzzy data, resnet, representation learning, fuzzy clustering, convolutional neu-
ral networks
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1. INTRODUCTION

Clustering is one of the fundamental tasks in Machine Learning [4]. It is the task of
grouping data into clusters of similar samples, and fuzzy clustering generalizes this con-
cept by allowing a sample to belong to multiple clusters according to a certain degree,
known as the membership degree, which ranges in the unit interval [1]. Fuzzy clus-
tering has many applications, including market segmentation, forecasting, and image
segmentation [8, 18, 20].

Fuzzy numbers can model epistemic uncertainty and its propagation through calcu-
lations [16, 22, 24, 25]. The complex structure that characterizes fuzzy data implies
three possible clustering scenarios: Fuzzy data can be clustered based on their centers.
Here, dissimilarity arises from differences in the location (see Figure 1a). Another type
of dissimilarity is related to the size, where fuzzy data are clustered with respect to their
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spreads (see Figure 1b). Finally, fuzzy data can be clustered based on both location and
size (see Figure 1c).

(a) (b) (c)

Fig. 1: Fuzzy data which are clustered w.r.t. their (a) centers, (b) spreads, and (c)
centers and spreads.

Figure 2 shows three samples of one-dimensional fuzzy numbers. Without needing
additional information, a visual inspection can show that samples 2a and 2b are more
alike compared to sample 2c. Regardless of whether a representation technique or a
distance measure is used, many clustering methods in the literature are sufficiently
robust to detect significant shape differences.

(a) (b) (c)

Fig. 2: Three samples of one-dimensional fuzzy numbers.

In fuzzy data clustering, it is essential to apply methods that are capable of detecting
small shape differences. In this paper, for clustering one-dimensional fuzzy data, we
imitate the concepts of seeing, describing, and understanding. Inspired by human vi-
sual perception, we first convert one-dimensional fuzzy data into two-dimensional image
matrices by plotting them (seeing). Next, we derive feature tensors from pre-trained
CNNs in an unsupervised manner. Each feature tensor consists of several feature maps,
with each feature map detecting specific visual components of the fuzzy datum image
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(describing). Finally, we flatten the feature tensors to obtain high-dimensional repre-
sentations of the fuzzy data (understanding).

The structure of the rest of the paper is as follows. In Section 2, we briefly summarize
some preliminary concepts about fuzzy data. Section 3 reviews the related works on
fuzzy clustering of fuzzy data. Section 4 describes the proposed method. Section 5
contains a set of numerical experiments. Finally, Section 6 offers concluding remarks.

2. FUZZY DATA

Fuzzy numbers are capable of modeling epistemic uncertainty and its propagation through
calculations.

Definition 2.1. (Bede [2]) Let L,R : [0, 1] → [0, 1] be two continuous, decreasing
functions fulfilling L(0) = R(0) = 1, L(1) = R(1) = 0. The fuzzy set xi : R → [0, 1], i =
1, . . . , n is a one-dimensional L-R fuzzy number if

xi(u) =



0, u ≤ c1i − li,

L

(
c1i − u

li

)
, c1i − li ≤ u ≤ c1i,

1, c1i ≤ u ≤ c2i,

R

(
u− c2i

ri

)
, c2i ≤ u ≤ c2i + ri,

0, u ≥ c2i + ri.

We write xi = (c1i, c2i, li, ri)L,R, where L(x) and R(x) define the tail behavior of fuzzy
number, c1i and c2i (c1i ≤ c2i) are called the left and the right center, respectively, li
and ri are called the left and the right spread, respectively, and [c1i, c2i] is the core of xi.
There are essentially two types of fuzzy numbers: Singleton–core and interval–core [17].
Singleton-core fuzzy numbers have a single crisp point as their core, while interval-core
fuzzy numbers have a continuous range (interval) as their core.

In a particular case, we obtain trapezoidal fuzzy numbers (see Figure 3a) when L(x) =
R(x) = 1 − x. A trapezoidal fuzzy number xi can be represented by the quadruple
(c1i, c2i, li, ri) ∈ R4. If we have c1i = c2i, the fuzzy number is called a triangular fuzzy
number. If we have li = ri, the fuzzy number is called a symmetric fuzzy number. We
obtain parabolic fuzzy numbers (see Figure 3b) when L(x) = R(x) = 1 − x2, square
root fuzzy numbers (see Figure 3c) when L(x) = R(x) = 1 −

√
x, and Gaussian fuzzy

numbers (see Figure 3d) when L(x) = R(x) = exp(−x2).
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(a) (b)

(c) (d)

Fig. 3: The (a) trapezoidal, (b) parabolic, (c) square root, and (d) Gaussian fuzzy
numbers.

3. RELATED WORKS

In the literature on fuzzy clustering, the Fuzzy C-Means (FCM) clustering model ex-
tended by Bezdek in [3] is the most widely applied model [15]. It is formalized as follows

min :

n∑
i=1

k∑
g=1

(uig)
md2E(xi,hg),

k∑
g=1

uig = 1, uig ≥ 0, (1)

where uig is the membership degree of the ith sample in the gth cluster, m ∈ [1,∞)
denotes the fuzziness parameter, and d2E(xi,hg) = ||xi−hg||2 is the (squared) Euclidean
distance measure between the ith sample and the centroid which characterizes the gth
cluster.

In the literature, several fuzzy clustering models have been developed to handle fuzzy
data. The majority of these proposals are based on the FCM clustering model and
primarily focus on introducing suitable distance measures for fuzzy data.
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However, most existing distance measures for fuzzy data do not detect differences
in the shapes of the left (L function) and right (R function) tails of the membership
functions (MFs). As a result, they may calculate a distance of zero between fuzzy data
even when these differences exist. Moreover, some distance measures cannot compute
distances between fuzzy data when their membership functions differ in type.

Yang and Ko [26] proposed the following distance measure for each pair of one-
dimensional singleton-core L-R fuzzy numbers, denoted as xi and xi′ :

d2YK(xi, xi′) = (ci − ci′)
2 + ((ci − λli)− (ci′ − λli′))

2 + ((ci + ρri)− (ci′ + ρri′))
2, (2)

where λ =
∫ 1

0
L−1(ω)dω and ρ =

∫ 1

0
R−1(ω)dω are parameters that summarize the

shapes of the left and right tails of MFs. For each value of λ and ρ, a particular MF
is determined. For example, λ = ρ = 1

2 for trapezoidal (see Figure 3a), λ = ρ = 2
3 for

parabolic (see Figure 3b), λ = ρ = 1
3 for square root (see Figure 3c), and λ = ρ =

√
π
2

for Gaussian (see Figure 3d).

Example 3.1. The distance between the samples shown in Figures 2a and 2b cannot be
computed using the distance measure (2) because their MFs differ in type—specifically,
the membership function in Figure 2a is trapezoidal (λ = ρ = 1

2 ), while that in Figure 2b

is square root-parabolic (λ = 1
3 and ρ = 2

3 ).

Hung and Yang [21] modified the distance measure (2) and suggested the following
new robust distance measure for each pair of one-dimensional singleton-core L-R fuzzy
numbers, denoted as xi and xi′ :

d2HY(xi, xi′) = 1− exp

[
−1

3
bd2YK(xi, xi′)

]
, (3)

where b is a positive constant.
D’Urso and Giordani [10] proposed the following weighted distance measure for each

pair of multi-dimensional symmetric singleton-core L-R fuzzy numbers, denoted as xi

and xi′ :
d2DGior(xi,xi′) = w2

c ||ci − ci′ ||2 + w2
s ||si − si′ ||2, (4)

where wc and ws are weights for the center and spread, respectively. Additionally, the
following assumptions are provided: wc+ws = 1 and wc ≥ ws ≥ 0. Eskandari et al. [12]
demonstrated that the usability of the weights is confined to cases where dissimilarity
between fuzzy data arises from differences in location (see Figure 1a).

Coppi et al. [6] proposed the following weighted distance measure for each pair of
multi-dimensional L-R fuzzy numbers, denoted as xi and xi′ :

d2CDG(xi,xi′) = w2
c

[
||c1i − c1i′ ||2 + ||c2i − c2i′ ||2

]
+ w2

s

[
||li − li′ ||2 + ||ri − ri′ ||2

]
, (5)

where wc and ws are weights for the center and spread, respectively. Additionally,
the following assumptions are provided: wc + ws = 1 and wc ≥ ws ≥ 0. This distance
measure may suffer from the risk of obtaining coincident clusters—clusters characterized
by identical centroids. Moreover, it may calculate a distance of zero between fuzzy data
even when their MFs differ in the shapes of the left and right tails.
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Example 3.2. The distance measure (5) calculates a distance of zero between the sam-
ples shown in Figsures 2a and 2b, even though their MFs differ in the shapes of the left
and right tails:

w2
c

[
||2.5− 2.5||2 + ||3.5− 3.5||2

]
+ w2

s

[
||1.5− 1.5||2 + ||2.5− 2.5||2

]
= 0. (6)

D’Urso and De Giovanni [9] by considering the distance measure (5), introduced the
following robust distance measure for each pair of multi-dimensional L-R fuzzy numbers,
denoted as xi and xi′ :

d2DGiov(xi,xi′) = 1− exp{−βd2CDG(xi,xi′)} (7)

= 1− exp{−β[(1− ν)2[||c1i − c1i′ ||2 + ||c2i − c2i′ ||2]
+ ν2[||li − li′ ||2 + ||ri − ri′ ||2]]},

where ν ≤ 0.5 is the weight for the spread and β is a positive constant determined based
on the variability of the data. The clustering outcome can still be disrupted by a single
outlier datum.

D’Urso and Leski [11] extended the distance measure (2) and introduced the following
robust distance measure for each pair of multi-dimensional L-R fuzzy numbers, denoted
as xi and xi′ :

D(xi,hg) =L(c1i − c1g) + L(c2i − c2g)+

L[(c1i − λli)− (c1g − λlg)]+

L[(c2i + ρri)− (c2g + ρrg)], (8)

where L is the Squared (SQR), Linear (LIN), Huber (HUB) with parameter δ > 0,
Sigmoidal (SIG) with parameters α, β > 0, or Logarithmic (LOG) loss function:

• LSQR(e) = e2

• LLIN(e) = |e|

• LHUB(e) =


e2

δ2
, |e| ≤ δ,

|e|
δ
, |e| > δ,

• LSIG(e) =
1

1 + exp(−α(|e| − β))

• LLOG(e) = log(1 + e2).

Refer to Figure 4 for plots of the loss functions. For a vector argument e = [e1, e2, . . . , em],
the loss function takes the form L(e) =

∑m
j=1 L(ej). This distance measure has a rela-

tively high computational complexity. If L is the SQR loss function, then the distance
measure proposed by D’Urso and Leski (8) is the same as that proposed by Yang and
Ko (2).
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Fig. 4: The graphs of SQR, LIN, HUB with δ > 0, SIG with α, β > 0, and LOG loss
functions [13].

Example 3.3. The distance between the samples shown in Figures 2a and 2b cannot
be computed using the distance measure (8) because their MFs differ in type.

Eskandari and Khastan [12] proposed the following distance measure between each
pair of multi-dimensional L-R fuzzy numbers, denoted as xi and xi′ :

d2EKh(xi,xi′) =

m∑
j=1

λgj{(1−ν)2[|c1ij−c1i′j |2+|c2ij−c2i′j |2]+ν2[|lij−li′j |2+|rij−ri′j |2]},

(9)
where ν = 0.5 and λgj is a suitable parameter measuring the importance of the jth
feature with respect to the gth cluster. Additionally, the following assumptions are
provided: λgj > 0 and

∑m
j=1 λgj = 1, g = 1, 2, . . . , k.

4. PROPOSED METHOD

In this paper, we propose a fuzzy clustering method for fuzzy data using a novel repre-
sentation technique called ResFClustFD, which is capable of detecting small differences
in the shapes of the left and right tails of MFs. Moreover, it effectively clusters fuzzy
data even when their MFs differ in type, while none of the existing methods are capable
of doing so.

We begin by plotting one-dimensional fuzzy data. Each plot is sized at 224 × 224,
with a white background and black foreground, for all fuzzy data in a data set. Higher
resolutions may capture more details but could increase computational costs. The ranges
for the x-axis (width) and y-axis (height) are set based on the min and max values from
the complete set of n fuzzy data. These gray-scale images of fuzzy data are now treated
as two-dimensional matrices.
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In this work, we utilize the ResNet50 convolutional neural network [19], pre-trained
on the ImageNet data set [7], which contains millions of labeled images, as a feature
extractor. Its pre-trained weights allow for feature extraction without the need for
domain-specific training data. The objective is to learn a robust feature representation
from the fuzzy data. This differs from the purpose of the pre-trained ResNet network,
which involves mapping images to thousand classes. Thus, we discard the avgpool and
fc layers of the network and only keep the network up to the last convolutional layer.
This layer captures the information about the shape of the fuzzy numbers.

Since the network’s depth is 2,048, this results in 2,048 feature maps for each fuzzy
number image. Finally, we apply the FCM clustering method to the output from the
last convolutional layer. Figure 5 shows the overview of the proposed method.

Fig. 5: Overview of the proposed method.

A step-by-step explanation of the ResFClustFD method is as below:

1. Conversion of Fuzzy Data: One-dimensional fuzzy data are transformed into two-
dimensional image matrices by plotting their membership functions.

2. Feature Extraction: The pre-trained ResNet50 network is employed for feature
extraction.

3. Clustering: The extracted features are input to the Fuzzy C-Means (FCM) algo-
rithm.

To sum up, the key contributions of our work are the conversion of fuzzy data into two-
dimensional image matrices and the use of pre-trained ResNet50 for feature extraction.
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Scheme MF Size c1i = c2i li, ri

Centers Triangular
Class 1

(
i = 1, . . . , n

2

)
U [0, 1] U [0, 1]

Class 2
(
i = n

2 + 1, . . . , n
)

U [1.5, 2.5] U [0, 1]
Outlier data (0.1n, 0.2n, and 0.3n) N (4.5, 2) U [0, 1]

Spreads Parabolic
Class 1

(
i = 1, . . . , n

2

)
U [0, 1] U [0, 1]

Class 2
(
i = n

2 + 1, . . . , n
)

U [0, 1] U [1.5, 2.5]
Outlier data (0.1n, 0.2n, and 0.3n) U [0, 1] N (4.5, 2)

Centers and spreads Square root
Class 1

(
i = 1, . . . , n

2

)
U [0, 1] U [0, 1]

Class 2
(
i = n

2 + 1, . . . , n
)

U [1.5, 2.5] U [1.5, 2.5]
Outlier data (0.1n, 0.2n, and 0.3n) N (4.5, 2) N (4.5, 2)

Tab. 1: The D’Urso and De Giovanni data sets.

5. NUMERICAL EXPERIMENTS

Among the various distance measures, only those proposed in [11, 26] can compute
the distance for all types of L-R fuzzy data. Therefore, our proposed method will be
compared with these approaches.

5.1. Data sets

In the data design, both singleton-core and interval-core fuzzy numbers are utilized.
Additionally, five types of MFs are employed: trapezoidal, triangular, parabolic, square
root, and Gaussian (normal). The number of classes is either 2 or 3, and the ratio of
outlier data to non-outlier data ranges from 0 to 0.3. Consequently, the data sets exhibit
a suitable level of diversity.

5.1.1. Synthetic data sets

D’Urso and De Giovanni data sets [9] Forty samples (n = 40) of singleton-core
L-R fuzzy numbers were generated, with 0.1n, 0.2n, and 0.3n additional outlier data.
Three data generation schemes were considered: centers (see top of Figure 6), spreads
(see middle of Figure 6), and centers and spreads (see bottom of Figure 6). Refer to
Table 1 for details.

Yang and Ko data set [26] The 30 trapezoidal fuzzy numbers data set is shown in
Table 2.

5.1.2. Real data set

The meteorological data set [11] is presented in Table 3. We encode the data by em-
ploying an asymmetric Gaussian MF with the center set to the average temperature,
the left spread equal to the average temperature minus the min temperature, and the
right spread equal to the max temperature minus the average temperature. In the
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Fig. 6: The D’Urso and De Giovanni data sets: centers scheme (top), spreads scheme
(middle), and centers and spreads scheme (bottom). The number of outlier data from
left to right: 0.1n, 0.2n, and 0.3n.

meteorological data set, there is a clearly defined group of stations with high temper-
atures (i = 2, . . . , 41) and a clearly defined group of stations with low temperatures
(i = 43, . . . , 82). Additionally, there is a station with an extremely high temperature, a
station with a moderate temperature, and a station with an extremely low temperature
(i = 1, 42, 83, outlier data). Refer to Figure 7 for more details.

5.2. Experimental setup

All experiments were performed on the same machine (Operating System: macOS, Mem-
ory: 8GB, Processor: 1.1GHz dual-core Intel Core i3). We implemented the five pro-
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i c1i c2i li ri Class i c1i c2i li ri Class i c1i c2i li ri Class
1 32.29 35.01 1.66 1.64 1 11 45.77 47.56 1.71 0.79 1 21 3.34 5.34 1.46 1.3 3
2 32.77 34.67 0.63 0.47 1 12 19.78 22.38 1.47 0.42 2 22 9.56 11.36 0.27 1 3
3 34.88 36.89 1.08 0.66 1 13 20.67 23.57 1.34 1.1 2 23 10.56 13.79 1.95 1.93 3
4 35.45 37.87 1.48 1.26 1 14 21.45 23.67 0.92 1.6 2 24 10.89 13.24 0.56 1.17 3
5 35.88 37.89 1.79 0.16 1 15 22.34 24.57 0.04 1.58 2 25 13.89 15.25 0.89 0.88 3
6 38.88 40.56 0.66 0.64 1 16 23.47 25.47 0.81 0.51 2 26 14.78 16.34 0.12 1.21 3
7 40.25 41.78 0.52 1.71 1 17 24.67 25.25 0.14 1.09 2 27 14.9 16.89 1.19 0.41 3
8 40.47 42.35 1.95 0.15 1 18 25.78 27.88 0.39 1.51 2 28 15.67 17.02 1.82 0.9 3
9 43.56 45.79 0.92 0.63 1 19 26.45 28.34 1.61 0.92 2 29 16.87 17.54 1.9 1.85 3
10 43.98 45.67 1.74 1.69 1 20 28.34 30.56 1.95 0.12 2 30 17.45 18.14 1.79 1.95 3

Tab. 2: The Yang and Ko data set.

i aver. max min i aver. max min i aver. max min
1 43.1 50.5 35.2 31 19.3 24 15 61 0.7 2.5 -0.8
2 18.1 25.2 12.5 32 18 21.5 17 62 0.1 3 -1
3 22.6 30.6 14.4 33 19.8 24.9 15.7 63 3.9 18.3 -3.5
4 20.8 26.9 13.9 34 20.1 26.1 14.2 64 4.5 5.5 3.6
5 19.1 22.5 17.1 35 18.6 25.9 15.7 65 0.8 2.1 -0.2
6 18.5 26.5 10.6 36 18.6 22.3 15.1 66 2.9 5 -0.4
7 22.1 28.1 16.1 37 20.7 28.6 12 67 5 9.8 1.3
8 20.7 27.4 12.3 38 23 31 15.1 68 4.9 8.5 2.2
9 21.6 26.5 16.8 39 20.5 26.1 13.7 69 3.8 4.5 3
10 20.9 27.3 12.5 40 19.8 27.6 11.6 70 4.7 16.8 -3.4
11 18.1 23.9 11.2 41 21.6 29.5 16.5 71 3.3 6.2 1.3
12 21.2 26.7 18.6 42 11.7 15.5 8.8 72 4.9 8.1 0.3
13 22.9 29 15.4 43 4.2 10.4 -4.4 73 2.6 3.2 1.4
14 20.1 25.1 15.1 44 2.8 5.2 1 74 4.8 8 2
15 20.7 25.9 15.6 45 0.2 0.6 0 75 2.8 4.9 0.9
16 22.3 29.4 14 46 4.3 10.6 0.6 76 2.7 9.3 0.8
17 21.4 30.6 12.8 47 4 4.6 3.5 77 1.1 2.4 -0.3
18 22.1 28.9 15.4 48 0.4 4.7 -3.2 78 3.6 5 2.6
19 19.6 26.3 11.7 49 4.6 17.6 -5.6 79 1.7 3.6 1.1
20 18.3 27 13.5 50 4.6 14.6 -1.5 80 4.3 7.5 3
21 20.2 24.5 16.9 51 0.5 2.8 -4.4 81 1.6 5.7 -2.9
22 21.4 25.8 17.6 52 1.6 5 0.1 82 1.2 2 0
23 22.6 29 17.2 53 5 14.6 0 83 -57.9 -56.3 -60.9
24 19.1 24 10.8 54 4.7 6.4 3.8
25 22.6 28.4 15.3 55 3.3 5.4 1.4
26 20 24.8 15.9 56 1.9 5.7 -1.7
27 20.4 28.7 15 57 4.4 4.8 3.7
28 22.1 28.9 14.7 58 4.5 6.5 2.7
29 20.1 27 15 59 2 3.9 0.7
30 19.6 27 11.6 60 0.1 2.9 -2.8

Tab. 3: The meteorological data set.
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Fig. 7: The graph of meteorological data set.

posed clustering models in [11] in Google Colab, namely FcOMdC-FD SQR, FcOMdC-
FD LIN, FcOMdC-FD HUB, FcOMdC-FD SIG, and FcOMdC-FD LOG, based on the
original paper, along with our proposed clustering model.

The fuzziness parameter m plays a crucial role in fuzzy clustering. Values too close
to 1 result in a partition with memberships close to 0 or 1, while excessively large values
cause disproportionate overlap, with memberships close to 1

c (where c is the number of
clusters). Chen et al. [5] proposed an improved fuzzy c-means clustering by varying
the fuzziness parameter, to overcome the issue of tuning this parameter. In practice,
m = 1.5, 2 are the most popular choices in fuzzy clustering, which we also follow in our
experiments.

The effectiveness of the competing models is measured using the Rand Index (RI)
[23]. The closer the RI values are to 1, the better the model’s performance. The mean
RI, its confidence interval, and the mean runtime are reported for 1,000 iterations of the
experiment.

5.3. Results and discussion

The following section presents a comprehensive analysis of the effectiveness of different
methods across various data sets and outlier levels. Tables 4, 5, and 6 summarize the
results for each method. Below is a detailed discussion of the key findings:

• In the centers scheme with 30% outlier data, both the FcOMdC-FD, SQR and
FcOMdC-FD, HUB methods resulted in a mean RI of 0.4872 across 1,000 itera-
tions. Additionally, all RI values were identical at 0.4872, indicating zero variance.
As shown in Table 7, all fuzzy data in either class 1 or class 2 were clustered into
cluster 1, which can be explained by the fact that the quadratic component of the
Huber loss, similar to squared loss, penalizes outlier data. For this data set, the
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Scheme Outlier data Method Mean RI [0, 1] 95% CI for RI Mean runtime (s)

C
en
te
rs

10%

FcOMdC-FD, SQR [11, 26] 0.9574 (0.9487,0.9662) 0.5643
FcOMdC-FD, LIN [11] 0.9738 (0.9668,0.9808) 1.0740
FcOMdC-FD, HUB [11] (δ = 5) 0.9579 (0.9493,0.9665) 0.7111
FcOMdC-FD, SIG [11] (α = β = 2) 0.9477 (0.9381,0.9573) 0.7020
FcOMdC-FD, LOG [11] 0.9703 (0.9628,0.9777) 1.2104
ResFClustFD 0.9789 (0.9744,0.9835) 10.0993

20%

FcOMdC-FD, SQR [11, 26] 0.8349 (0.8230,0.8467) 1.1685
FcOMdC-FD, LIN [11] 0.8800 (0.8665,0.8935) 1.7194
FcOMdC-FD, HUB [11] (δ = 5) 0.8333 (0.8213,0.8454) 1.8639
FcOMdC-FD, SIG [11] (α = β = 2) 0.8290 (0.8167,0.8413) 0.8237
FcOMdC-FD, LOG [11] 0.9062 (0.8938,0.9185) 0.7593
ResFClustFD 0.9545 (0.9499,0.9591) 12.8348

30%

FcOMdC-FD, SQR [11, 26] 0.4872 Zero Variance 0.9199
FcOMdC-FD, LIN [11] 0.8085 (0.7932,0.8238) 2.1354
FcOMdC-FD, HUB [11] (δ = 5) 0.4872 Zero Variance 2.4856
FcOMdC-FD, SIG [11] (α = β = 2) 0.7686 (0.7543,0.7828) 0.8191
FcOMdC-FD, LOG [11] 0.8493 (0.8348,0.8637) 1.0650
ResFClustFD 0.8797 (0.8710,0.8884) 12.1248

S
p
re
ad

s

10%

FcOMdC-FD, SQR [11, 26] 0.7613 (0.7469,0.7757) 0.2974
FcOMdC-FD, LIN [11] 0.7334 (0.7211,0.7457) 1.0637
FcOMdC-FD, HUB [11] (δ = 5) 0.7697 (0.7554,0.7840) 0.4631
FcOMdC-FD, SIG [11] (α = β = 2) 0.7920 (0.7764,0.8076) 0.4087
FcOMdC-FD, LOG [11] 0.8143 (0.8015,0.8272) 0.3696
ResFClustFD 0.9965 (0.9944,0.9986) 10.5661

20%

FcOMdC-FD, SQR [11, 26] 0.6295 (0.6188,0.6402) 0.3083
FcOMdC-FD, LIN [11] 0.6677 (0.6579,0.6776) 0.8904
FcOMdC-FD, HUB [11] (δ = 5) 0.6381 (0.6269,0.6493) 0.4883
FcOMdC-FD, SIG [11] (α = β = 2) 0.7200 (0.7065,0.7335) 0.4708
FcOMdC-FD, LOG [11] 0.7518 (0.7404,0.7632) 1.0588
ResFClustFD 0.9632 (0.9565,0.9699) 13.5412

30%

FcOMdC-FD, SQR [11, 26] 0.5851 (0.5783,0.5919) 0.7298
FcOMdC-FD, LIN [11] 0.6169 (0.6060,0.6279) 0.4958
FcOMdC-FD, HUB [11] (δ = 5) 0.5860 (0.5792,0.5929) 1.1603
FcOMdC-FD, SIG [11] (α = β = 2) 0.5977 (0.5902,0.6053) 0.5846
FcOMdC-FD, LOG [11] 0.6691 (0.6565,0.6817) 0.5015
ResFClustFD 0.7419 (0.7315,0.7524) 13.7148

C
en
te
rs

a
n
d
sp
re
ad

s

10%

FcOMdC-FD, SQR [11, 26] 0.9358 (0.9256,0.9460) 0.3635
FcOMdC-FD, LIN [11] 0.9492 (0.9397,0.9587) 1.2931
FcOMdC-FD, HUB [11] (δ = 5) 0.8944 (0.8815,0.9072) 0.5650
FcOMdC-FD, SIG [11] (α = β = 2) 0.9385 (0.9281,0.9488) 2.2938
FcOMdC-FD, LOG [11] 0.9728 (0.9657,0.9799) 1.0480
ResFClustFD 0.9954 (0.9930,0.9978) 10.8193

20%

FcOMdC-FD, SQR [11, 26] 0.7565 (0.7463,0.7668) 0.8064
FcOMdC-FD, LIN [11] 0.8456 (0.8310,0.8602) 1.3559
FcOMdC-FD, HUB [11] (δ = 5) 0.8282 (0.8132,0.8432) 0.7836
FcOMdC-FD, SIG [11] (α = β = 2) 0.8056 (0.7902,0.8211) 2.5717
FcOMdC-FD, LOG [11] 0.8349 (0.8200,0.8497) 1.4341
ResFClustFD 0.9642 (0.9573,0.9712) 13.2382

30%

FcOMdC-FD, SQR [11, 26] 0.5041 (0.5027,0.5055) 0.7245
FcOMdC-FD, LIN [11] 0.7942 (0.7793,0.8090) 2.4090
FcOMdC-FD, HUB [11] (δ = 5) 0.5980 (0.5866,0.6095) 1.7847
FcOMdC-FD, SIG [11] (α = β = 2) 0.7959 (0.7811,0.8108) 0.6987
FcOMdC-FD, LOG [11] 0.8411 (0.8264,0.8558) 0.7174
ResFClustFD 0.9646 (0.9579,0.9714) 14.8094

The best result is marked in bold.

Tab. 4: Clustering results for the D’Urso and De Giovanni data sets, with m = 2.
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Method Mean RI [0, 1] 95% CI for RI Mean runtime (s)

FcOMdC-FD, SQR [11, 26] 0.9154 (0.9080,0.9228) 0.3481
FcOMdC-FD, LIN [11] 0.9107 (0.9026,0.9188) 0.4446
FcOMdC-FD, HUB [11] (δ = 5) 0.9064 (0.8986,0.9141) 0.5889
FcOMdC-FD, SIG [11] (α = β = 2) 0.8183 (0.8112,0.8253) 0.2932
FcOMdC-FD, LOG [11] 0.8339 (0.8264,0.8414) 0.3421
ResFClustFD 0.9581 (0.9577,0.9586) 10.1038

The best result is marked in bold.

Tab. 5: Clustering results for the Yang and Ko data set, with m = 1.5.

Method Mean RI [0, 1] 95% CI for RI Mean runtime (s)

FcOMdC-FD, SQR [11, 26] 0.8441 (0.8295,0.8586) 1.1227
FcOMdC-FD, LIN [11] 0.9565 (0.9476,0.9653) 5.3534
FcOMdC-FD, HUB [11] (δ = 5) 0.9797 (0.9736,0.9859) 5.1217
FcOMdC-FD, SIG [11] (α = β = 2) 0.8763 (0.8637,0.8889) 5.6343
FcOMdC-FD, LOG [11] 0.8918 (0.8797,0.9038) 6.0408
ResFClustFD 0.9938 (0.9915,0.9961) 22.7968

The best result is marked in bold.

Tab. 6: Clustering results for the meteorological data set, with m = 2.

values were TP=380, TN=0, FP=400, and FN=0 (with outlier data excluded),
resulting in an RI=0.4872.

• ResFClustFD consistently achieved the highest RI across all data sets and outlier
levels, indicating superior clustering performance and making it the best choice
for scenarios where accurate clustering is critical.

• FcOMdC-FD methods generally performed faster, with the SQR loss often being
the quickest, suggesting they are more computationally efficient.

• While ResFClustFD provides the best clustering results, its runtime is significantly
longer, which might be a limitation in real-time applications or large-scale data
analysis.

• As the percentage of outliers increases, the performance (RI) of all methods gen-
erally decreases. This trend is more pronounced in the FcOMdC-FD methods,
indicating that these methods might be less robust to higher outlier percentages
compared to ResFClustFD.

• The reduction in RI with increasing outlier percentage is less steep for ResF-
ClustFD, highlighting its robustness in handling outlier data.

• Among FcOMdC-FD variants, the LOG variant often shows better RI compared
to others, but it is not always the fastest.
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i Class Cluster i Class Cluster i Class Cluster i Class Cluster
1 - 1 14 2 1 27 2 1 40 - 1
2 2 1 15 1 1 28 2 1 41 1 1
3 2 1 16 2 1 29 2 1 42 2 1
4 1 1 17 1 1 30 2 1 43 1 1
5 1 1 18 1 1 31 1 1 44 1 1
6 - 2 19 1 1 32 - 2 45 1 1
7 - 1 20 2 1 33 - 2 46 1 1
8 - 1 21 - 2 34 2 1 47 1 1
9 2 1 22 - 2 35 2 1 48 2 1
10 2 1 23 1 1 36 - 2 49 - 2
11 1 1 24 2 1 37 1 1 50 2 1
12 2 1 25 - 2 38 1 1 51 2 1
13 1 1 26 1 1 39 1 1 52 2 1

Tab. 7: Clustering results for the centers scheme with 30% outlier data, obtained using
the FcOMdC-FD, SQR and FcOMdC-FD, HUB methods.

• The performance of different methods varies with the nature of the data set. For
instance, in data sets like the ‘centers scheme’ and ‘Yang and Ko’, where the
data might be less complex and the shape of the MF is linear, the differences
in RI between methods are smaller, making runtime a more crucial factor. In
contrast, in data sets such as the ‘spreads scheme’, ‘centers and spreads scheme’,
and ‘meteorological’, where the data is more complex and the shape of the MF is
non-linear, ResFClustFD’s RI is significantly higher than that of other methods,
emphasizing its superior effectiveness.

6. CONCLUSION

In this paper, we proposed a fuzzy clustering method called ResFClustFD, which effec-
tively detects small differences in the shapes of the left and right tails of membership
functions. We first converted one-dimensional fuzzy data into two-dimensional image
matrices and then utilized the pre-trained ResNet50 network as a feature extractor. The
FCM clustering method was applied to the output from the last convolutional layer of
ResNet50. Our experiments demonstrate that ResFClustFD achieves high accuracy in
clustering both synthetic and real data sets. It consistently produced the highest Rand
Index across various scenarios, indicating superior clustering performance, particularly
where the data is more complex and the shape of the membership function is non-linear.
For applications requiring high clustering accuracy, ResFClustFD is recommended de-
spite its longer runtime. Future research could explore alternative architectures like vgg
or densenet models for enhanced feature extraction. Additionally, extending the method
to multi-dimensional fuzzy data presents an exciting opportunity.
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