
KYBERNET IKA — VOLUME 6 1 (2 0 2 5) , NUMBER 2 , PAGES 1 4 1 – 1 6 7

HYBRID ALGORITHMS FOR FIXED CHARGE
TRANSPORTATION PROBLEM

Nermin Kartli

In this paper, we consider the fixed-cost transportation problem. This problem is known
to be NP-hard. Therefore, various heuristic and metaheuristic approaches have been proposed
to find an approximate optimal solution. In this paper, we propose three hybrid algorithms
that combine the ideas of metaheuristic and heuristic approaches in different ways. Two of the
proposed algorithms consist of the sequential implementation of metaheuristic and heuristic
algorithms, while the third one is a full hybrid algorithm designed by completely intertwining
these two approaches. Experimental results on medium-size problems show that our proposed
full hybrid algorithm provides approximately a 5% improvement over metaheuristic algorithms
and a 4% improvement over heuristic algorithms. In addition, the improvement ratio increases
as the size of the problem increases.

Keywords: genetic algorithms, transportation problem, fixed charge transportation prob-
lem, metaheuristic algorithms

Classification: 90C08, 90B06, 90C59, 90C10

1. INTRODUCTION

The supply chain problem refers to the global network that moves goods from producers
to consumers. Interruptions and inefficiencies in this network can cause factory closures,
labor shortages, and transportation bottlenecks. Natural disasters, epidemics, and re-
gional wars are important factors that can create significant disruptions in the supply
chain. These disruptions cause delays in production, higher transportation costs, and
shortages in goods ranging from electronics to daily consumer goods.

Many businesses have tightly coordinated logistics and implement a “just-in-time”
inventory model based on these logistics, which allows them to reduce their costs. Unex-
pected events disrupt this delicate balance, resulting in delays in production and stock
shortages. In addition, such disruptions have a ripple effect, and the negative effects
quickly spread to other businesses and consumers. This leads to inflationary pressure
and a tense global economy. Accordingly, long-term solutions such as diversifying sup-
ply chains, improving logistics technology, and creating more resilient and adaptable
systems are needed.

DOI: 10.14736/kyb-2025-2-0141

http://doi.org/10.14736/kyb-2025-2-0141

142 N. KARTLI

The transportation problem (TP) is an important part of supply chain management
and aims to minimize total transportation costs by meeting supply and demand con-
straints. In this problem, the most cost-effective way to transport goods from multiple
suppliers to multiple destinations is tried to be found. The assumption accepted for
the mathematical model of the problem is that transportation costs are linearly propor-
tional to the amount of goods transported. The transportation problem is the problem
of optimizing routes to reduce costs for a company with multiple production facilities
and distribution centers.

Fixed-charge transportation Problem (FCTP) is a problem in which transportation
companies charge an additional fee regardless of the amount of goods transported. Al-
though this demand is natural and common, it considerably increases the problem’s
difficulty, turning it into a problem that cannot be solved in polynomial time. On the
other hand, companies need to be able to solve this problem to establish a balance
between minimizing their costs and delivering their products efficiently.

The supply chain can be one, two, or multi-stage. Hitchcock [17] was the first to
describe the transportation problem as a one-stage supply chain, sometimes referred to
as the Hitchcock problem. The summary of the problem is as follows: It is desired to
make a plan to transport the products from a certain number of suppliers to a given
number of distributors at the least total cost.

In the classical transportation problem, transportation costs are directly proportional
to the product transported. In other words, the transportation problem is a linear
programming problem and Dantzig [10] made this formulation for the first time in 1947.
But the classical transportation problem has 2 most important features:

1. Generally, it is desired to transport the products as a whole without being divided;
mathematically, this means that the problem is an integer programming problem.

2. Every product is required to undergo transportation without any loss, meaning
that the overall quantity of products held by suppliers before transportation must
be equal to the total quantity of products expected to be present with distributors
after transportation. This means that there is a balance condition in the problem.

In practical scenarios, transportation firms impose a fixed charge alongside a unit-
based fee for each product. Including this condition, the challenge transforms into a
fixed-charge transportation problem (FCTP). This problem was formulated for the first
time by Hirch and Dantzig [16]. Unlike the classical version, no algorithm is known for
achieving the optimal solution of FCTP within polynomial running time.

Balinski [6] first studied FCTP as an integer programming problem and proposed
an algorithm to find the lower and upper bounds of the optimal solution. Subsequent
studies were carried out in 2 directions:

1. Studies to improve the lower and/or upper limits of Balinski suggesting heuristic
algorithms, and

2. Studies proposing various metaheuristic algorithms for FCTP. [1, 2, 3, 4, 8, 9, 42]
are the studies in the first group. The studies such as [13, 18, 21, 22, 23, 28, 33,
35, 36] are in the second group. Jo et al. [23] proposed a spanning tree-based
Genetic Algorithm (GA) to solve FCTP. Jawahar and Balaji [21] also used GA

Hybrid algorithms for fixed charge transportation problem 143

to find an approximate solution of FCTP. Jawahar et al. [22] proposed to use a
simulated annealing algorithm for the multi-period FCTP. Raj and Rajendran [36]
used GA for two-stage FCTP. El-Sherbiny and Alhamali [13] developed a hybrid
particle swarm algorithm with artificial immune learning for solving FCTP. Lotfi
and Tavakkoli–Moghaddam [28] proposed GA using priority-based encoding with
new operators for FCTP. Panicker et al. [33] used an ant colony optimization
algorithm for two-stage FCTP. Pop et al. [35] described a hybrid algorithm that
combined a steady-state GA with a local search procedure for solving two-stage
FCTP. Hong et al. [18] proposed to use an ant colony optimization algorithm for
two-stage FCTP.

If some parameters in the transportation problem contain uncertainty, modeling is
done with interval analysis, stochastic analysis, or fuzzy sets. Many successful studies
have been published in this direction recently, such as [7, 11, 14, 19, 20, 26, 29, 32, 38,
39, 40].

Recently, Kartli et al. [24, 25] proposed new heuristic algorithms for the initial feasible
and optimal solutions of the FCTP. Unlike the algorithms in the first group above, Kartli
et al.’s [25] algorithm solves the fixed charge problem without turning it into a classical
TP problem. The main idea of this algorithm is to minimize the cost corresponding to
the 2× 2 dimensional square submatrices of the feasible solution looked at each step.

In this study, we consider the one-stage fixed-charge transportation problem. We
propose a hybrid algorithm that combines Lotfi and Tavakkoli–Moghaddam’s algorithm
[28] and Kartli et al.’s [25] algorithms to find the optimal solution to the problem.
Experiments show that the proposed algorithm gives better results than both the above-
mentioned algorithms.

2. PROBLEM FORMULATION

There are m suppliers and n distributors. The cost of transporting one unit of goods
from supplier i to distributor j is cij . In addition, if at least one unit of goods has been
transported from the supplier i to the distributor j, a fixed charge aij must be paid.
The capacity of the supplier i is si and the capacity of the distributor j is dj . All given
are positive integers and the balance condition is satisfied:∑n

j=1
dj =

∑m

i=1
si. (1)

Let xij denote the quantity of product transported from supplier i to distributor j.
We can write this problem as follows:

Minimize the objective function

F (X,Y) =
∑m

i=1

∑n

j=1
(cijxij + aijyij) (2)

under constraints ∑n

j=1
xij = si (3)

∑m

i=1
xij = dj . (4)

144 N. KARTLI

For all i and j
xij ≥ 0 (5)

yij =

{
1, if xij > 0
0, if xij = 0.

(6)

3. PRIORITY-BASED GENETIC ALGORITHM

This section discusses the priority-based genetic algorithm (PbGA) proposed by Lotfi
and Tavakkoli–Moghaddam [28].

The algorithm consists of Decoding, Opex, Pex, OpexMutation, and Main functions.
The meanings of the variables used for the input of these functions are as follows:

m : number of suppliers
n : number of distributors
A : fixed charges matrix
C : transportation cost matrix for the unit goods
S : capacity vector of the suppliers
D : capacity vector of the distributors
V : chromosome representing a feasible solution

Apart from the inputs of the problem, the algorithm has 2 parameters such as pop size
and max gen. The parameter pop size indicates the number of feasible solutions (num-
ber of populations) handled in each step, and max gen indicates the maximum number
of iterations (stopping criterion). If there are m suppliers and n distributors in the
given problem, the algorithm initially generates chromosomes V1, V2, . . . , Vpop size. Each
chromosome is a random permutation of the set {1, 2, . . . ,m+ n}.

3.1. Decoding function

The Decoding function produces a feasible solution corresponding to the given chromo-
some V . This function does this by performing the following operations: Initially, all
cells of the feasible solution X = (xij) are assigned zeros. Then the index k of the max-
imum number contained in the chromosome V is found. If k ≤ m, then we assign i∗ = k
and then for every j = 1, 2, . . . , n satisfying the condition V [m+ j] ̸= 0 we calculate the
numbers

Wi∗,j = ci∗,j +
ai∗,j

min{si∗ , dj}
.

Let the smallest value of these numbers be attained for the index j = j∗. Otherwise,
that is, if k > m, then we assign j∗ = k−m and then for every i = 1, 2, . . . ,m satisfying
the condition V [i] ̸= 0 we calculate the numbers

Wi,j∗ = ci,j∗ +
ai,j∗

min{si, dj∗}
.

Let the smallest value of these numbers be attained for the index i = i∗. In the next
step, we assign

xi∗,j∗ = min{si∗ , dj∗}

Hybrid algorithms for fixed charge transportation problem 145

si∗ = si∗ − xi∗,j∗

dj∗ = dj∗ − xi∗,j∗ .

If si∗ = 0 then we put V [i∗] = 0; if dj∗ = 0 then we put V [m + j∗] = 0. If after
all these operations there is still a nonzero value among the first m coordinates of the
chromosome V , we repeat everything starting from calculating the index k.

After finding a feasible solution X corresponding to the given chromosome V with
the help of the Decoding function, the transportation cost is calculated according to
formula 2. The pseudo-code of the Decoding function is given in Algorithm 1.

Algorithm 1: Decoding(V,m, n,A,C, S,D).

1 X ← 0
2 cont← 1
3 while cont = 1 do
4 k ← argmax(V [1], . . . , V [m+ n])
5 if k ≤ m then
6 istar ← k
7 for j ← 1 to n do
8 W [istar, j]← C[istar, j] +A[istar, j]/min{S[istar], D[j]}
9 jstar ← argmin(W [istar, 1], . . . ,W [istar, n])

10 else
11 jstar ← k −m
12 for i← 1 to m do
13 W [i, jstar]← C[i, jstar] +A[i, jstar]/min{S[i], D[jstar]}
14 istar ← argmin(W [1, jstar], . . . ,W [m, jstar])

15 X[istar, jstar]← min{S[istar], D[jstar]}
16 S[istar]← S[istar]−X[istar, jstar]
17 D[jstar]← D[jstar]−X[istar, jstar]
18 if S[istar] = 0 then
19 V [istar]← 0

20 if D[jstar] = 0 then
21 V [m+ jstar]← 0

22 cont← 0
23 for i← 1 to m do
24 if V [i] > 0 then
25 cont← 1
26 break

27 f ← transportation cost for X according to (1)
28 return X and f

146 N. KARTLI

Example 3.1. We apply the Decoding function to the example from Balinski given in
Table 1. In this table, the last column shows the capacities of the suppliers, and the
bottom row shows the capacities of the distributors. The first of the numbers given at
the intersection of the row si and the column dj shows cij , and the second shows aij .

d1 d2 d3

s1 2;10 3;30 4;20 10
s2 3;10 2;30 1;20 30
s3 1;10 4;30 3;20 40
s4 4;10 5;30 2;20 20

20 50 30

Tab. 1: Input parameters of the Balinski example.

V s d Wi∗,j or Wi,j∗ i∗ j∗ xi∗,j∗

7, 3, 2, 5∥1, 4, 6 10, 30, 40, 20 20, 50, 30 3, 6, 6 1 1 10
0, 3, 2, 5∥1, 4, 6 0, 30, 40, 20 10, 50, 30 −, 1.6, 3.6, 3 2 3 30
0, 0, 2, 5∥1, 4, 0 0, 0, 40, 20 10, 50, 0 5, 6.5,− 4 1 10
0, 0, 2, 5∥0, 4, 0 0, 0, 40, 10 0, 50, 0 −, 8,− 4 2 10
0, 0, 2, 0∥0, 4, 0 0, 0, 40, 0 0, 40, 0 −, 3.75,−,− 3 2 40

Tab. 2: Step-by-step application of the Decoding function.

For this problem and the chromosome V = [7, 3, 2, 5, 1, 4, 6], the Decoding function
finds the following initial solution according to the operations performed in Table 2:

10 0 0
0 0 30
0 40 0
10 10 0

 .

The transportation cost for this solution is 400.

3.2. Opex function

The Opex function takes 2 chromosomes V1 and V2 as input and produces 2 new chro-
mosomes u1 and u2 from them. The pseudocode of this function is given in Algorithm 2:

Hybrid algorithms for fixed charge transportation problem 147

Algorithm 2: Opex(V1, V2,m, n).

1 u1[1 . . .m+ n]← 0
2 u2[1 . . .m+ n]← 0
3 p← random[1,m+ n]
4 u1[1 . . . p]← V1[1 . . . p]
5 u2[1 . . . p]← V2[1 . . . p]
6 t1 ← Sort(V1[p+ 1 . . .m+ n])
7 t2 ← Sort(V2[p+ 1 . . .m+ n])
8 k ← m+ n− p
9 for i← 1 to k do

10 for j ← 1 to k do
11 if t1[i] = V1[p+ j] then
12 q1[i]← j
13 break

14 for j ← 1 to k do
15 if t2[i] = V2[p+ j] then
16 q2[i]← j
17 break

18 for i← 1 to k do
19 u1[p+ i]← t1[q2[i]]
20 u2[p+ i]← t2[q1[i]]

21 return u1 and u2

The Opex function performs the following operations: First, the number p, a cutoff
point, is selected randomly. The first p coordinates of the given chromosomes V1 and
V2 are transferred to the chromosomes u1 and u2 as it is. Then, all the coordinates
beginning from (p+ 1)

th
of the chromosomes V1 and V2 are sorted in ascending order

and assigned to the t1 and t2, respectively. In addition, the indices of all coordinates
before they are sorted (counting (p+ 1)

th
as the first coordinate) are assigned to the q1

and q2 arrays, respectively. Finally, the values of t1 in q2 are written to the coordinates
of u1 starting from (p+ 1)

th
coordinate, and the values of t2 in q1 are written to the

coordinates of u2 starting from (p+ 1)
th

coordinate.

Example 3.2. Let the chromosomes V1 and V2 are given as follows: V1=[5, 6, 7, 4, 3, 2, 1]
and V2=[4, 3, 6, 5, 1, 7, 2]. Assume that p is equal to 2. Then after steps 3-4 of the
Algorithm 2 we have u1 = [5, 6, 0, 0, 0, 0, 0] and u2 = [4, 3, 0, 0, 0, 0, 0]. After the steps
5-6 the sorted arrays are t1 = [1, 2, 3, 4, 7] and t2 = [1, 2, 5, 6, 7]. In steps 7-20, the
algorithm created the corresponding arrays q1 and q2 as follows: q1 = [5, 4, 3, 2, 1] and
q2 = [3, 5, 2, 1, 4]. Therefore, we get the new chromosomes u1 = [5, 6, 3, 7, 2, 1, 4] and
u2 = [4, 3, 7, 6, 5, 2, 1].

148 N. KARTLI

3.3. Pex function

The Pex function takes 2 chromosomes such as V1 and V2 as input and produces 2 new
chromosomes u1 and u2 from them. The problem’s size that is the number of suppliers
and distributors is the input data for this function. The pseudocode of the function is
given in Algorithm 3:

Example 3.3. Let V1 = [5, 6, 3, 7, 2, 1, 4], V2 = [4, 3, 7, 6, 5, 2, 1] and m = 4, n = 3.
Initially, u1 = [0, 0, 0, 0, 0, 0, 0] and u2 = [0, 0, 0, 0, 0, 0, 0]. In the first 2 for loops, it is
checked whether the values after the mth coordinate of V1 exist after the mth coordinate
of V2. In this example, the value 2, which is the fifth coordinate of V1, is the sixth
coordinate of V2, so the value 2 is written to the sixth coordinate of u1 and the fifth
coordinate of u2. Similarly, the value 1 is written at the seventh coordinate of u1 and
the sixth coordinate of u2. After these 2 for loops it becomes u1 = [0, 0, 0, 0, 0, 2, 1] and
u2 = [0, 0, 0, 0, 2, 1, 0]. Apart from that, the appropriate indices of V1 and V2 are reset,
that is V1 = [5, 6, 3, 7, 0, 0, 4] and V2 = [4, 3, 7, 6, 5, 0, 0].

In the next 2 for loops, starting from the (m+ 1)th coordinate of V1 and V2, looking
at the values that are both non-zero, these values are written into the arrays q1 and q2,
and the appropriate values of V1 and V2 are reset. In this example, since V1 for i = 5, 6
and V2 for j = 6, 7 are zero, only i = 7 and j = 5 will both be non-zero. So k = 1,
q1 = 4, q2 = 5 and also V1[7] = 0, V2[5] = 0.

In the next 2 loops, the values of the arrays q1 and q2 are searched in the first m
coordinates of V2 and V1, respectively, and written to u1 and u2 in their index. In this
example, the number 4 is in the first place in V2, so u1[1] = 4. The number 5 is in
the 1st place in V1, so u2[1] = 5. After this step it becomes u1 = [4, 0, 0, 0, 0, 2, 1] and
u2 = [5, 0, 0, 0, 2, 1, 0]. In the next stage, zeros after mth coordinate of u1 and u2 are
replaced with the values q2 and q1, respectively. After this step; u1 = [4, 0, 0, 0, 5, 2, 1]
and u2 = [5, 0, 0, 0, 2, 1, 4]. Finally, the corresponding values of V1 and V2 are written as
they are into places of u1 and u2 equal to 0, respectively. In this example, we obtain
u1 = [4, 6, 3, 7, 5, 2, 1] and u2 = [5, 3, 7, 6, 2, 1, 4].

3.4. OpexMutation function

The OpexMutation function takes a chromosome V and produces a chromosome u from
it. The dimensions of the problem are also inputs to this function. The pseudocode of
this function is given in Algorithm 4.

Example 3.4. Let V = [5, 3, 7, 6, 2, 1, 4], m = 4 and n = 3. Also let the random
numbers be p = 3, k1 = 2 and k2 = 5. Initially it becomes u = V = [5, 3, 7, 6, 2, 1, 4].
Starting from the k1 = 2nd coordinate, we sort the p = 3 elements of V and write them
to t1. Similarly, starting from the k2 = 5th coordinate, we sort the p = 3 elements
of V and write them to t2. In result, we get t1 = [3, 6, 7] and t2 = [1, 2, 4]. The
indices of these elements in V (appropriately after k1 and k2) are kept in the q1 and
q2 arrays, respectively. Accordingly, q1 = [1, 3, 2] and q2 = [2, 1, 3]. In the last loop of
the pseudocode, the values of t1 in q2 are written to the elements of u after k1 − 1, and
the values of t2 in q1 are written to the elements after k2 − 1, respectively. In result, it
becomes u = [5, 6, 3, 7, 1, 4, 2].

Hybrid algorithms for fixed charge transportation problem 149

Algorithm 3: Pex(V1, V2,m, n).

1 u1[1 . . .m+ n]← 0; u2[1 . . .m+ n]← 0; k ← 0
2 for i← m+ 1 to m+ n do
3 for j ← m+ 1 to m+ n do
4 if V1[i] = V2[j] then
5 u1[j]← V2[j]; u2[i]← V1[i]
6 V1[i]← 0; V2[j]← 0
7 break

8 for i← m+ 1 to m+ n do
9 for j ← m+ 1 to m+ n do

10 if V1[i] ∗ V2[j] > 0 then
11 k ← k + 1
12 q1[k]← V1[i]; q2[k]← V2[j]
13 V1[i]← 0; V2[j]← 0
14 break

15 for i← 1 to k do
16 for j ← 1 to m do
17 if V1[j] = q2[i] then
18 u1[j]← q1[i]

19 if V2[j] = q1[i] then
20 u2[j]← q2[i]

21 k ← 0; l← 0
22 for i← m+ 1 to m+ n do
23 if u1[i] = 0 then
24 k ← k + 1; u1[i]← q2[k]

25 if u2[i] = 0 then
26 l← l + 1; u2[i]← q1[l]

27 for i← 1 to m do
28 if u1[i] = 0 then
29 u1[i]← V1[i]

30 if u2[i] = 0 then
31 u2[i]← V2[i]

32 return u1 and u2

3.5. Main function

The results and processing time of the PbGA algorithm proposed by Lotfi and Tavakkoli–
Mogaddam depend on the order in which the crossover and mutation operations are
performed on the chromosomes and the selection strategy of new and old chromosomes.

150 N. KARTLI

Algorithm 4: OpexMutation(V,m, n).

1 p← random[1,min{m,n}]
2 k1 ← random[1,m− p+ 1]
3 k2 ← m+ random[1, n− p+ 1]
4 u← V
5 t1 ← Sort(V [k1, . . . , k1 + p− 1])
6 t2 ← Sort(V [k2, . . . , k2 + p− 1])
7 for i← 1 to p do
8 for j ← 1 to p do
9 if t1[i] = V [k1 + j − 1] then

10 q1[i]← j
11 break

12 for j ← 1 to p do
13 if t2[i] = V [k2 + j − 1] then
14 q2[i]← j
15 break

16 for i← 1 to p do
17 u[k1 + i− 1]← t1[q2[i]]
18 u[k2 + i− 1]← t2[q1[i]]

19 return u

The main function written by the authors in the studies is given below in Algorithm 5.

In the Algorithm 5, P (t) and PN(t) represent a pop size number of old and new
chromosomes at step t. The authors used the roulette wheel and elitist strategy as
selection methods in the algorithm. We direct readers to the study [12] on these methods.

Algorithm 5: Main(m,n,A,C, S,D, µ, λ,max gen, pop size).

1 t← 1
2 initialize P (t) by the Decoding function
3 evaluate P (t)
4 while t ≤ max gen do
5 PN(t)← crossover P (t) by Opex and Pex and mutate by OpexMutation

functions
6 evaluate PN(t)
7 select P (t+ 1) from P (t) and PN(t) by the µ+ λ, roulette wheel selection

and elitist strategy
8 t← t+ 1

Hybrid algorithms for fixed charge transportation problem 151

As mentioned above, when genetic algorithm-style algorithms are applied to a prob-
lem, the results obtained depend on how new chromosomes are produced and the order
in which this production is carried out. It is also very important which old and new
chromosomes are accepted as the chromosomes of the next iteration.

Unfortunately, in this algorithm, it is not clear which order of operations on the
chromosomes is given priority and which selection strategy is given priority.

This function has been tried in many versions; the pseudocode of the version with
the best results is given in Algorithm 6.

In this algorithm, V [p] indicates the chromosome in the pth population; that is, for
each p, V [p] is a vector of size m+ n.

Similarly, X[p] indicates the feasible solution corresponding to the chromosome V [p]
in the pth population, that is, for each p, X[p] is a matrix of size m×n. F [p] shows the
transportation cost of the solution X[p].

The function rW used in the pseudocode indicates the roulette wheel selection method
adapted for minimization problems.

The input of this function is the value of the function F to be minimized and the
number pop size that represents the population number, and the output is the index of
a value taken by the function F .

The function rW works as follows: The probabilities of each value taken by the
function F are calculated and written to the roulette wheel.

Then, this roulette wheel is randomly rotated, and the index of the value F that
provides the probability that this probability is obtained is returned. Note that since
we are looking at the minimization problem, if F [i] < F [j], the probability of F [i] will
be greater than the probability of F [j].

The main idea of Algorithm 6 is:

First, we generate a pop size number of initial chromosomes and corresponding initial
solutions.

We calculate the transportation cost for each initial solution.

Then, we find 2 new chromosomes (2 children) by applying the Opex function to the
2 old chromosomes (parents) selected with the roulette wheel.

We generate the solutions corresponding to the children’s chromosomes and calculate
transportation costs.

If the child’s transportation cost is lower than the parent’s, we write the child instead
of the parent.

Then we do the same operations for the Pex and OpexMutation functions and repeat
all these operations for the number pop size.

152 N. KARTLI

Algorithm 6: PbGA(m,n,A,C, S,D,max gen, pop size).

1 for p← 1 to pop size do
2 Produce chromosome V [p]
3 (X[p], F [p])← Decoding(V [p])

4 for g ← 1 to max gen do
5 for p← 1 to pop size do
6 irw1← rW (F, pop size)
7 irw2← irw1
8 while irw2 = irw1 do
9 irw2← rW (F, pop size)

10 for k ← 1 to 3 do
11 V 1← V [irw1]
12 V 2← V [irw2]
13 if k = 1 then
14 (u1, u2)← Opex(V 1, V 2)
15 else
16 if k = 2 then
17 (u1, u2)← Pex(V 1, V 2)
18 else
19 u1← Opex Mutation(V 1)
20 u2← Opex Mutation(V 2)

21 (X1, f1)← Decoding(u1)
22 (X2, f2)← Decoding(u2)
23 if F [irw1] > f1 then
24 F [irw1]← f1; X[irw1]← X1; V [irw1]← u1

25 if F [irw2] > f2 then
26 F [irw2]← f2; X[irw2]← X2; V [irw2]← u2

27 imin← 1
28 for p← 1 to pop size do
29 if F [imin] > F [p] then
30 imin← p

31 return F [imin] and X[imin]

4. KARTLI ET AL.’S HEURISTIC ALGORITHM

Recently, Kartli et al. [25] have proposed a new heuristic algorithm for the optimal
solution of FCTP. At the heart of this algorithm is the Minimization function. This
function does the following:

The authors consider all possible 2×2 submatrices that have a positive product of the
elements of at least one diagonal of the feasible solution and calculate the carrying cost

Hybrid algorithms for fixed charge transportation problem 153

for this submatrix. Then they subtract the minimum element of the positive diagonal
from the elements of this diagonal and add to the elements of the other diagonal, thus
yielding another 2 × 2 dimensional submatrix. If the transportation cost for the new
submatrix is less than the cost for the old submatrix, then they keep the new 2 × 2
submatrix in memory. After looking at all possible 2 × 2 submatrices, they write the
2× 2 matrix with the minimum transportation cost in place of the corresponding 2× 2
submatrix of the feasible solution. As a result of these processes, another feasible solution
with less transportation cost is found and the same processes are repeated for this feasible
solution. The Minimization function stops working when there is no reduction for any
of the 2× 2 submatrices of the considered feasible solution.

The pseudocode of the Minimization function is given in Algorithm 6. The function
FQ(i1, i2, j1, j2, X) in this algorithm calculates the objective function value for the
appropriate 2× 2 submatrix of the matrix X.

Kartli et al.’s algorithm also has two parameters as in the genetic algorithm, one
of these parameters is pop size, which is the number of initial feasible solutions, and
the second is max nd, which indicates the maximum number of non-decreases in cost.
Initially, a pop size number of initial feasible solutions are generated.

Any of the existing initial solution algorithms for FCTP or even classical TP can
be used to create initial solutions. Note that since all the constraints of classical TP
and FCTP are the same, a feasible solution to one of these two problems will also be a
feasible solution to the other.

The Minimization function is run for each initial solution. The number of solutions
for which the Minimization function cannot reduce the value of the optimization function
is kept in a counter variable, and the solution with the least transportation cost is found.
If the value of the counter variable does not reach the max nd, the pop size number
initial solutions are generated again and the same operations are repeated. When the
value of the counter variable reaches max nd, the algorithm stops working and writes
the solution with the least transportation cost.

The pseudocode of the Kartli et al.’s algorithm is given in Algorithm 8. In this al-
gorithm, the variables fprebest and fbest represent the smallest transportation costs
obtained in previous and current iterations, respectively. Similarly, variables Xprebest
and Xbest denote the best solution obtained in previous and current iterations, respec-
tively.

154 N. KARTLI

Algorithm 7: Minimization(X, f,C,A,m, n).

1 df ← −1
2 while df < 0 do
3 df ← 0; k ← 0
4 for i← 1 to m do
5 for j ← 1 to n do
6 if X[i, j] > 0 then
7 Irow[k]← i; Jcol[k]← j
8 k ← k + 1

9 for i← 1 to k do
10 i1← Irow[i]; j1← Jcol[i]
11 for j ← 1 to k do
12 i2← Irow[j]; j2← Jcol[j]
13 if (i1 ̸= i2)&(j1 ̸= j2) then
14 min← X[i1, j1]
15 if min > X[i2, j2] then
16 min← X[i2, j2]

17 SQ[1, 1]← X[i1, j1]−min; SQ[1, 2]← X[i1, j2] +min
18 SQ[2, 1]← X[i2, j1] +min; SQ[2, 2]← X[i2, j2]−min
19 f1← FQ[i1, i2, j1, j2, X]; f2← FQ[1, 2, 1, 2, SQ]
20 df1← f2− f1
21 if df1 < df then
22 df ← df1; f3← f + df
23 i1m← i1; i2m← i2
24 j1m← j1; j2m← j2
25 SQM ← SQ

26 if df < 0 then
27 X[i1m, j1m]← SQM [1, 1]; X[i1m, j2m]← SQM [1, 2]
28 X[i2m, j1m]← SQM [2, 1]; X[i2m, j2m]← SQM [2, 2]
29 f ← f3

30 return f and X
31 Function FQ(i1, i2, j1, j2, X)
32 f ← C[i1, j1] ∗X[i1, j1] + C[i1, j2] ∗X[i1, j2]
33 f ← f + C[i2, j1] ∗X[i2, j1] + C[i2, j2] ∗X[i2, j2]
34 if X[i1, j1] > 0 then
35 f ← f +A[i1, j1]

36 if X[i1, j2] > 0 then
37 f ← f +A[i1, j2]

38 if X[i2, j1] > 0 then
39 f ← f +A[i2, j1]

40 if X[i2, j2] > 0 then
41 f ← f +A[i2, j2]

42 return f

Hybrid algorithms for fixed charge transportation problem 155

Algorithm 8: Kartli et al. [25].

1 count← 0; fprebest←∞
2 while count < max nd do
3 fbest←∞
4 for poppar ← 1 to pop size do
5 V ← random.permutation[1,m+ n]
6 X, f1← Decoding(V,C,A, S,D,m, n)
7 f,X ←Minimization(X, f1, C,A,m, n)
8 if fbest > f then
9 fbest← f

10 Xbest← X

11 if fprebest > fbest then
12 fprebest← fbest
13 Xprebest← Xbest

14 count← count+ 1

15 return fprebest,Xprebest

5. PROPOSED HYBRID ALGORITHMS

This section proposes 3 new hybrid algorithms: H1, H2, and H3.

5.1. Hybrid algorithm H1

The algorithm H1 solves FCTP as follows: First, a certain number of feasible solutions
are found with the PbGA algorithm, and then these solutions are sent to the Minimiza-
tion function of the Kartli et al.’s algorithm as the initial feasible solutions. Among the
obtained solutions, the solution that gives the smallest value to the objective function
is accepted as the nearly optimal solution. The running time of the algorithm H1 with
the same parameters will be slightly greater than the PbGA algorithm. If we compare
Kartli et al.’s algorithm with the PbGA algorithm, we can see that both algorithms have
advantages over each other. Like every metaheuristic algorithm, the PbGA algorithm
does not perform a direct minimization process; all of these algorithms select the best
one among a large number of feasible solutions. Kartli et al.’s algorithm performs a
minimization process for each feasible solution, which makes it more advantageous than
the PbGA algorithm. On the other hand, like every metaheuristic algorithm, PbGA
also obtains new feasible solutions from the initially randomly selected feasible solutions
more intelligently than Kartli et al.’s algorithm, which is a heuristic algorithm. In the
algorithm H1, the Minimization function, which stands at the heart of Kartli et al.’s
algorithm, was applied where the PbGA algorithm stopped, and better solutions were
found.

The pseudocode of the algorithm H1 is given in Algorithm 9. This pseudocode as-
sumes that the global variables X and F keep the feasible solutions and transportation
costs found in the PbGA algorithm for all populations. Here, for each number p satis-

156 N. KARTLI

fying the condition 1 ≤ p ≤ pop size, the variable X[p] is a matrix of size m × n and
represents a feasible solution to the problem.

Algorithm 9: H1

1 fbest,Xbest← PbGA(m,n,A,C, S,D,max gen, pop size)
2 for p← 1 to pop size do
3 f1← F [p]
4 X1← X[p]
5 f,X1← Minimization(X1, f1, C,A,m, n)
6 if f < fbest then
7 f ← fbest
8 Xbest← X1

9 return f and Xbest

5.2. Hybrid algorithm H2

To design the algorithm H2, we modify the main function of the PbGA algorithm as fol-
lows: Sort the feasible solutions at each step based on the value they give to the objective
function in ascending order, eliminate the same solutions, and keep the pop size number
of feasible solutions. When the problem size is small, we can sort with insertion sort or
bidirectional insertion sort algorithms [31], otherwise, with one of the optimal sorting
algorithms [5]. By applying Opex, Pex and OpexMutation functions to these solutions
circularly (1st to 2nd, 2nd to 3rd,. . . ,pop size− 1 to pop size we get new feasible solu-
tions. Then, keep the best pop size number of these solutions in memory and continue
these operations until the stopping criterion is met. In a metaheuristic algorithm, only
keeping the best solutions in memory at each step may cause us to get stuck at local
extrema. Therefore, it is difficult to expect that our modified PbGA algorithm will give
better results than Lotfi and Tavakkoli–Moghaddam’s PbGA algorithm. However, our
aim in the algorithm H2 is to obtain feasible solutions to send to the Minimization func-
tion of Kartli et al.’s algorithm. Therefore, it is not imaginary to assume that there are
problems for which the algorithm H2 will achieve better results than the algorithm H1.

The algorithm H2 solves FCTP as follows: First, a certain number of feasible solutions
are found with the Modified PbGA algorithm, and then these solutions are sent to
the Minimization function of Kartli et al.’s algorithm as initial solutions. Among the
solutions obtained, the solution that gives the smallest value to the objective function
is accepted as the nearly optimal solution. The running time of the algorithm H2 for
the same parameters will naturally, be slightly greater than the PbGA algorithm. The
pseudocode of the algorithm H2 is given in Algorithm 10. In this pseudocode, it was
assumed that all the first chromosomes produced were different from each other.

Hybrid algorithms for fixed charge transportation problem 157

Algorithm 10: H2

1 fbest,Xbest← MPbGA(m,n,A,C, S,D,max gen, pop size)
2 for p← 1 to pop size do
3 f1← F [p]; X1← X[p]
4 f,X1← Minimization(X1, f1, C,A,m, n)
5 if f < fbest then
6 f ← fbest; Xbest← X1

7 return f and Xbest
8 Function MPbGA(m,n,A,C, S,D,max gen, pop size)
9 for p← 1 to pop size do

10 Produce chromosome V [p]
11 (X[p], F [p])← Decoding(V [p])

12 for g ← 1 to max gen do
13 F0← F ; X0← X; V 0← V
14 F ← Sort(F)
15 for p← 1 to pop size do
16 for p0← 1 to pop size do
17 if F [p] = F0[p0] then
18 break

19 X[p]← X0[p0]; V [p]← V 0[p0]

20 V [pop size+ 1]← V [1]
21 for p← 1 to pop size− 1 do
22 for k ← 1 to 3 do
23 V 1← V [p]; V 2← V [p+ 1]
24 if k = 1 then
25 (u1, u2)← Opex(V 1, V 2)
26 else
27 if k = 2 then
28 (u1, u2)← Pex(V 1, V 2)
29 else
30 u1← Opex Mutation(V 1)
31 u2← Opex Mutation(V 2)

32 (X1, f1)← Decoding(u1)
33 (X2, f2)← Decoding(u2)
34 if F [p] > f1 then
35 F [p]← f1; X[p]← X1; V [p]← u1

36 if F [p+ 1] > f2 then
37 F [p+ 1]← f2; X[p+ 1]← X2; V [p+ 1]← u2

38 imin← 1
39 for p← 1 to pop size do
40 if F [imin] > F [p] then
41 imin← p

42 return F [imin] and X[imin]

158 N. KARTLI

5.3. Hybrid algorithm H3

The algorithm H3 is completely hybrid. It combines the iterative minimization feature of
the heuristic Kartli et al.’s algorithm with the metaheuristic PbGA algorithm’s feature
of obtaining new feasible solutions from existing feasible solutions by crossover and
mutation in a smarter. This algorithm uses the Decoding, Opex, Pex, OpexMutation
functions of the PbGA algorithm and the Minimization functions of the Kartli et al.’s
algorithm. First, we find pop size number of feasible solutions with the help of the
Decoding function. Then, we send these solutions to the Minimization function to
assign the best value obtained to the variable fbest and the best solution that achieves
this value to the variable Xbest. We also list all the feasible solutions in increasing
order according to their transportation cost values. Then, we apply the Opex, Pex, and
OpexMutation functions to the chromosomes corresponding to all feasible solutions in
a loop, respectively, with a circular rule, until the stopping condition is met. We send
the new chromosome resulting from each application to the Decoding function, find a
new feasible solution, and add this solution according to the transportation cost value, if
this value differs from the existing ones, without breaking the order among the feasible
solutions. We also send this new feasible solution to the Minimization function and
update the values of the variables fbest and Xbest according to the result obtained.
We keep the best solutions in memory as many as pop size and perform the same
operations until the stopping criterion is met. The pseudo-code of the algorithm H3
is given in Algorithm 11. In this algorithm, as in the algorithms H1 and H2, pop size
number chromosomes are marked with the array V . That is, for each number p, the
variable V [p] is an m+ n dimensional vector, and this vector is a permutation array of
the 1, 2, . . . ,m + n. In the algorithm, the variable X[p] is a feasible solution generated
by the Decoding function of the chromosome V [p], and F [p] is the transportation cost
corresponding to this solution.

In steps 1 – 8 of the pseudocode, pop size random chromosomes are generated, so-
lutions corresponding to these chromosomes are found, and the transportation costs of
these solutions are calculated.

In steps 9 – 15, the values of the objective function, the appropriate solution, and the
appropriate chromosome are copied to the variables F0, X0, and V 0, respectively, and
the array F is sorted. Moreover, the arrays X and V are also sorted by finding the
indices of the numbers in the array F in the array F0.

In steps 16 – 35, the following is done: Pex, Opex, OpexMutation functions are cir-
cularly applied to the chromosomes. After each application, each new chromosome
obtained is sent to the Decoding function to find a new feasible solution and its trans-
portation cost. If the transportation cost of the new feasible solution is different from
the previous ones, this solution is added to the feasible solutions list. In addition, the
new feasible solution is sent to the Minimization function, and the values of the variables
fbest and Xbest are updated according to the result obtained.

In steps 37 – 42 of the pseudo-code, the Insert function is described, which adds the
new feasible solution, its transportation cost, and the chromosome that produces it to
the appropriate place in the sorted list.

Hybrid algorithms for fixed charge transportation problem 159

Algorithm 11: H3

1 fbest←∞
2 for p← 1 to pop size do
3 Produce chromosome V [p]
4 (X[p], F [p])← Decoding(V [p])
5 f1← F [p]; X1← X[p]
6 f,X1←Minimization(X1, f1, C,A,m, n)
7 if fbest > f then
8 fbest← f ; Xbest← X1

9 F0← F ; X0← X; V 0← V
10 F ← Sort(F)
11 for p← 1 to pop size do
12 for p0← 1 to pop size do
13 if F [p] = F0[p0] then
14 break

15 X[p]← X0[p0]; V [p]← V 0[p0]

16 for g ← 1 to max gen do
17 V [pop size+ 1]← V [1]
18 for p← 1 to pop size do
19 for k ← 1 to 3 do
20 V 1← V [p]; V 2← V [p+ 1]
21 if k = 1 then
22 (u1, u2)← Opex(V 1, V 2)
23 else
24 if k = 2 then
25 (u1, u2)← Pex(V 1, V 2)
26 else
27 u1← Opex Mutation(V 1); u2← Opex Mutation(V 2)

28 (X1, f1)← Decoding(u1); (X2, f2)← Decoding(u2)
29 Insert(X1, f1, F,X, V, u1); Insert(X2, f2, F,X, V, u2)
30 f,X1←Minimization(X1, f1, C,A,m, n)
31 if fbest > f then
32 fbest← f ; Xbest← X1

33 f,X2←Minimization(X2, f2, C,A,m, n)
34 if fbest > f then
35 fbest← f ; Xbest← X2

36 return fbest and Xbest
37 Function Insert(X1, f1, F,X, V, u)
38 k ← pop size
39 while k > 0 and F [k] > f1 do
40 F [k + 1]← F [k]; k ← k − 1

41 if k < pop size and f1 > F [k] then
42 F [k + 1]← f1; V [k + 1]← u; X[k + 1]← X1

160 N. KARTLI

6. EXPERIMENTAL RESULTS

The experiments are carried out on a computer with qualifications CPU i9 12th gen-
eration 16 core 32 GB RAM GPU 3090 RTX in a Python 3.0 environment. Lotfi and
Tavakkoli–Moghaddam [28] produced 6 random problems with different dimensions; they
applied their algorithm to these problems and compared the results obtained with the
algorithm of Jo et al. [23]. The dimensions and inputs of these problems are given in
Table 1.

Problem Size Suppliers Distributors

1 4× 5 35, 27, 45, 37 33, 27, 22, 28, 34

2 5× 10 45, 27, 65, 37, 30 23, 17, 13, 28, 20, 21, 21, 20, 26, 15

3 10× 10 30, 17, 27, 29, 20, 18, 11, 15, 14, 23 23, 17, 13, 28, 20, 21, 21, 20, 26, 15

4 10× 20 45, 27, 65, 37, 30, 38, 31, 35, 24, 24 16, 17, 12, 18, 20, 21, 21, 20, 16, 15,
20, 14, 13, 22, 17, 24, 15, 18, 17, 20

5 20× 30 28, 27, 35, 26, 30, 27, 31, 22, 24, 24, 23, 17, 12, 18, 20, 21, 21, 20, 16, 15,
30, 36, 19, 32, 23, 33, 20, 16, 27, 28 20, 14, 13, 22, 17, 24, 15, 18, 24, 22

14, 13, 14, 12, 15, 20, 20, 18, 19, 21

6 30× 50 45, 27, 65, 37, 30, 38, 31, 35, 24, 24, 23, 17, 12, 18, 20, 21, 21, 20, 16, 15,
30, 36, 29, 32, 23, 33, 30, 24, 27, 28, 20, 14, 13, 22, 17, 24, 15, 18, 24, 22,
34, 22, 27, 23, 31, 25, 23, 37, 39, 36 14, 13, 14, 12, 15, 20, 20, 18, 19, 21,

14, 23, 12, 20, 21, 24, 24, 23, 26, 28,
19, 17, 23, 21, 16, 24, 17, 23, 22, 20

Tab. 3: Input data of the problems.

The matrices A and C determining the transportation cost of these problems are
taken from the study [28].

Algorithms are applied to Problems 1-6 for 10 times. Upper-left sub-matrices of
matrices C and A are taken based on the dimensions of each problem as costs. For
example, 4× 5 dimension matrices C and A are taken as below for Problem 1.

C =


25 14 34 46 45
10 47 14 20 41
22 42 38 21 46
36 20 41 38 44



A =


850 610 620 900 780
870 920 630 540 900
780 550 550 630 940
890 710 830 870 930

 .

Hybrid algorithms for fixed charge transportation problem 161

Problem pop size max gen/max nd PbGA Kartli et al. H1 H2 H3

1 10 300/30 9291 9168 9168 9168 9168
10 500/50 9222 9168 9168 9168 9168

2 10 300/30 12718 12718 12718 12718 12718
10 500/50 12718 12718 12718 12718 12718

3 20 300/30 13987 13923 13923 13923 13923
20 500/50 13934 13923 13923 13923 13923
30 500/50 13934 13923 13923 13923 13923

4 20 500/50 22095 21926 21926 21926 21926
20 700/70 22205 21908 21926 22013 21926
30 700/70 22095 21908 21908 21926 21908

5 30 500/50 33466 32616 32568 32138 31828
30 700/70 33075 32440 32460 32133 32124
40 700/70 33214 32583 32368 32098 31868

6 30 500/50 55104 53860 53329 52844 52946
40 700/70 54821 54072 53169 52612 52509
40 1000/100 54677 54195 53414 52660 52828
50 1000/100 55024 54138 53274 52791 52136

Tab. 4: Comparison of the best values obtained for objective function with algorithms
applied (After 10 trials).

Comparative results of the algorithms are given in Table 4 – 7.
Table 4 compares the best results obtained by the algorithms. For Problem 1, the

best value obtained by the PbGA algorithm was 9222, while all other algorithms reached
the value of 9168. For Problem 2, the best result obtained by all algorithms was 12718.
For Problem 3, the best value found by the PbGA algorithm was 13934, while all other
algorithms found a value of 13923.

The best values found in Problem 4 were 22095 with PbGA, 21926 with H2, and 21908
with the other algorithms. In larger problems, Problem 5 and Problem 6, the algorithm
H3 was superior. In Problem 5, PbGA found the value of 33075. In this problem, the
best value was 32440 with the Kartli et al.’s algorithm, 32368 with the algorithm H1,
and 32098 with the algorithm H2, while H3 reached the value of 31828. In Problem 6,
the best values are as follows: PbGA algorithm 54677, Kartli et al.’s algorithm 53860,
algorithm H1 53169, algorithm H2 52612, and algorithm H3 52136.

Table 5 describes the average values obtained when the algorithms were run 10 times
for each problem. All other algorithms except PbGA obtained the best value in all 10
times in Problem 1 and Problem 2, so their average values were equal to their best
values. While the best values of the PbGA algorithm in Problem 1 and Problem 2 are
9222 and 12718, respectively, the average values are 9285 and 12721, respectively. In
Problem 3, the average value of the Kartli et al.’s algorithm and the algorithm H3 is
equal to the best value, while the other algorithms, especially the PbGA algorithm, are
far from the best value. While the algorithm that obtains the best average value in
Problem 4 is the Kartli et al.’s algorithm the results of the algorithm H3 are better in
larger Problems 5 and 6.

162 N. KARTLI

Problem pop size max gen/max nd PbGA Kartli et al. H1 H2 H3

1 10 300/30 9298 9168 9168 9168 9168
10 500/50 9285 9168 9168 9168 9168

2 10 300/30 12721 12718 12718 12718 12718
10 500/10 12741 12718 12718 12718 12718

3 20 300/30 14050 13923 13964 13951 13923
20 500/50 14019 13923 13947 13947 13923
30 500/50 14005 13923 13924 13929 13923

4 20 500/50 22287 21957 22121 22106 22089
20 700/70 22392 21940 22101 22128 22096
30 700/70 22288 21940 22136 22096 22011

5 30 500/50 33952 32940 32935 32648 32391
30 700/70 33587 32820 32774 32570 32521
40 700/70 33625 32942 32755 32573 32321

6 30 500/50 55849 54627 54119 53701 53383
40 700/70 55670 54536 53690 53451 53008
40 1000/100 55580 54584 53948 53183 53306
50 1000//100 55536 54534 53875 53357 53108

Tab. 5: Comparison of the average values obtained for objective function with algorithms
applied (After 10 trials).

Problem pop size max gen/max nd PbGA Kartli et al. H1 H2 H3

1 10 300/30 9304 9168 9168 9168 9168
10 500/50 9304 9168 9168 9168 9168

2 10 300/30 12748 12718 12718 12718 12718
10 500/50 12818 12718 12718 12718 12718

3 20 300/30 14195 13923 14195 14135 13923
20 500/50 14070 13923 14019 14103 13923
30 500/50 14065 13923 13934 13987 13923

4 20 500/50 22507 22124 22198 22198 22198
20 700/70 22532 22035 22198 22198 22198
30 700/70 22436 22013 22198 22198 22155

5 30 500/50 34294 33239 33309 33031 33024
30 700/70 33902 33211 33061 33241 32924
40 700/70 33909 33248 33041 32838 32710

6 30 500/50 56578 55024 54729 54679 53973
40 700/70 56194 54898 54249 53857 53786
40 1000/100 56294 54929 54587 54260 53992
50 1000/100 56393 54822 54167 53858 53871

Tab. 6: Comparison of the worst values obtained for objective function with algorithms
applied (After 10 trials).

Hybrid algorithms for fixed charge transportation problem 163

Table 6 describes the worst-case results obtained when the algorithms are applied to
Problems 1-6. In Problems 1 and 2, the results of all algorithms except PbGA are equal
to their best results. In Problem 3, the results of Kartli et al.’s and H3 algorithms equal
the best result. In Problem 4, the best of the worst values are obtained by Kartli et al.’s
algorithm. In Problems 5 and 6, the clear superiority belongs to algorithm H3.

Problem pop size max gen/max nd PbGA Kartli et al. H1 H2 H3

1 10 300/30 1.03 0.08 1.04 0.88 0.90
10 500/50 1.81 0.14 1.81 1.49 1.53

2 10 300/30 2.41 0.30 2.41 2.12 2.25
10 500/50 3.67 0.52 3.67 3.33 3.43

3 20 300/30 7.04 1.31 7.05 6.36 6.33
20 500/50 12.64 2.38 12.64 11.09 11.19
30 500/50 18.20 3.32 18.20 14.88 15.60

4 20 500/50 24.50 8.77 24.50 21.08 22.78
20 700/70 35.51 12.28 35.51 31.42 31.44
30 700/70 52.52 17.73 52.52 45.88 46.86

5 30 500/50 101.43 52.84 101.44 85.68 86.05
30 700/70 136.41 70.96 136.42 113.00 119.76
40 700/70 184.21 92.49 184.22 150.89 155.96

6 30 500/50 232.22 188.73 232.77 203.06 229.41
40 700/70 443.51 354.48 443.56 386.31 424.63
40 1000/100 637.57 517.74 637.80 558.07 580.83
50 1000/100 789.75 623.68 789.80 673.24 742.41

Tab. 7: Comparison of the running times of the algorithms applied (After 10 trials).

Table 7 discusses the running times of the algorithms. Experimental results show that
Kartli et al.’s algorithm works faster than others. The processing times of algorithms
H1, H2, H3 are comparable to the running time of PbGA, algorithm H1 reaches the
result in slightly more time than PbGA, while algorithms H2, H3 reach the result in
slightly less time.

7. CONCLUSION

In this study, we propose three hybrid algorithms H1, H2, and H3 to find the best solution
to the fixed-charge transportation problem. Our aim in designing these algorithms is to
combine the ability of metaheuristic algorithms to intelligently generate new solutions
from existing solutions with the direct minimization feature of heuristic algorithms.
In the algorithms H1 and H2, we did this as follows: First, we applied the PbGA
(Modified PbGA) algorithm to solve the problem and sent the solutions obtained by
these algorithms as input to the Minimization function of the Kartli et al. algorithm.
In the algorithm H3, the advantages of metaheuristic and heuristic algorithms against
each other are combined in the specific case of PbGA and Kartli et al.’s algorithms.
Experimental results show that the algorithm H3 is superior to other algorithms.

In future studies, the algorithm H3 can be modified as follows: If the solution ob-
tained after applying the Minimization function is different from the initial solution,

164 N. KARTLI

the chromosome corresponding to this solution can be found and added to the chro-
mosome list. In addition, hybrid algorithms consisting of the combination of different
metaheuristic and heuristic algorithms can be designed.

Recently, it has been observed that the teaching-learning based optimization (TLBO)
algorithm [37], a metaheuristic algorithm, gives reasonable results for solving many
problems [15]. In the study [27], it has been shown that when this algorithm is applied
to FCTP, it produces solutions that are comparable to the PbGA algorithm in less
running time. For example, a hybrid algorithm designed with the help of TLBO and
Kartli et al.’s algorithm may give better results in a faster time. Therefore, studies can
be done in this direction. Dragonfly optimization algorithm [30] is also one of the newly
tried algorithms for FCTP [34]. The results of the hybrid algorithm that can be created
with the help of this algorithm may also be a matter of curiosity. While this study is
under review, an important study for 2-stage FCTP was published by Shivani et al.
[41]. They present a feasibility restoration particle swarm optimizer with chaotic maps
to solve 2-stage FCTP. In future studies, a hybrid algorithm of a heuristic approach can
be designed with this proposed method.

(Received November 11, 2024)

REFERENCES

[1] V. Adlakha and K. Kowalski: On the fixed-charge transportation problem. Omega
27 (1999), 3, 381–388. DOI:10.1016/S0305-0483(98)00064-4

[2] V. Adlakha and K. Kowalski: A simple heuristic for solving small fixed-charge
transportation problems. Omega 31 (2003), 3, 205–211. DOI:10.1016/S0305-
0483(03)00025-2

[3] V. Adlakha, K. Kowalski, and R.R. Vemuganti: Heuristic algorithms
for the fixed-charge transportation problem. Opsearch 43 (2006), 132–151.
DOI:10.1007/BF03398770

[4] V. Adlakha, K. Kowalski, and B. Lev: A branching method for
the fixed charge transportation problem. Omega 38 (2010), 5, 393–397.
DOI:10.1016/j.omega.2009.10.005

[5] S. E. Amrahov, Y. Ar, B. Tugrul, B. E. Akay, and N. Kartli: A new approach
to Mergesort algorithm: Divide smart and conquer. Future Generation Computer
Systems 157 (2024), 330–343. DOI:10.1016/j.future.2024.03.049

[6] M. L. Balinski: Fixed-cost transportation problems. Naval Research Logistics Quar-
terly 8 (1961), 1, 41–54. DOI:10.1002/nav.3800080104

[7] A. Biswas, S. Roy, and S. P. Mondal: Evolutionary algorithm based approach for
solving transportation problems in normal and pandemic scenario. Applied Soft
Computing 129 (2022), 109576. DOI:10.1016/j.asoc.2022.109576

https://doi.org/10.1016/S0305-0483(98)00064-4
https://doi.org/10.1016/S0305-0483(03)00025-2
https://doi.org/10.1016/S0305-0483(03)00025-2
https://doi.org/10.1007/BF03398770
https://doi.org/10.1016/j.omega.2009.10.005
https://doi.org/10.1016/j.future.2024.03.049
https://doi.org/10.1002/nav.3800080104
https://doi.org/10.1016/j.asoc.2022.109576

Hybrid algorithms for fixed charge transportation problem 165

[8] H. I. Calvete, C Gale, J. A. Iranzo, and P. Toth: A matheuristic for the two-stage
fixed-charge transportation problem. Computers Oper. Res. 95 (2018), 113–122.
DOI:10.1016/j.cor.2018.03.007

[9] O. Cosma, P.C. Pop, and D. Dănciulescu: A novel matheuristic approach for a two-
stage transportation problem with fixed costs associated to the routes. Computers
Oper. Res. 118 (2020), 104906. DOI:10.1016/j.cor.2020.104906

[10] G.B. Dantzig: Linear programming. Oper. Res. 50 (2002), 1, 42–47.
DOI:10.1287/opre.50.1.42.17798

[11] A. Ebrahimnejad: New method for solving fuzzy transportation problems with LR
flat fuzzy numbers. Inform. Sci. 357 (2016), 108–124. DOI:10.1016/j.ins.2016.04.008

[12] A. E. Eiben and A.E. Smith: Introduction to Evolutionary Computing. Springer-
Verlag, Berlin, Heidelberg 2015.

[13] M.M. El-Sherbiny and R.M. Alhamali: A hybrid particle swarm algorithm with
artificial immune learning for solving the fixed charge transportation problem. Com-
puters Industr. Engrg. 64 (2013), 2, 610–620. DOI:10.1016/j.cie.2012.12.001

[14] M. Hakim and R. Zitouni: An approach to solve a fuzzy bi-objective multi-
index fixed charge transportation problem. Kybernetika 60 (2024), 3, 271–292.
DOI:10.14736/kyb-2024-3-0271

[15] E. Hazrati Nejad, S. Yigit-Sert, and S. Emrah Amrahov: An effective global
path planning algorithm with teaching-learning-based optimization. Kybernetika
60 (2024), 3, 293–316. DOI:10.14736/kyb-2024-3-0293

[16] W.M. Hirsch and G.B. Dantzig: The fixed charge problem. Naval Res. Logist.
Quarterly 15 (1968), 3, 413–424. DOI:10.1002/nav.3800150306

[17] F. L. Hitchcock: Distribution of a product from several sources to numerous loca-
tions. J. Math. Physics 20 (1941), 224–230. DOI:10.1002/sapm1941201224

[18] J. Hong, A. Diabat, V.V. Panicker, Sand . Rajagopalan: A two-stage supply chain
problem with fixed costs: An ant colony optimization approach. Int. J. Product.
Econom. 204, (2018), 214–226. DOI:10.1016/j.ijpe.2018.07.019

[19] A. Hosseini and M. S. Pishvaee: Capacity reliability under uncertainty in trans-
portation networks: An optimization framework and stability assessment method-
ology. Fuzzy Optim. Decision Making 21 (2022), 3, 479–512. DOI:10.1007/s10700-
021-09374-9

[20] J. Jansi Rani, A. Manivannan, and S. Dhanasekar: Interval valued intuitionistic
fuzzy diagonal optimal algorithm to solve transportation problems. Int. J. Fuzzy
Systems 25 (2023), 4, 1465–1479. DOI:10.1007/s40815-022-01446-1

[21] N. Jawahar and A.N. Balaji: A genetic algorithm for the two-stage supply chain
distribution problem associated with a fixed charge. Eur. J. Oper. Res. 194 (2009),
2, 496–537. DOI:10.1016/j.ejor.2007.12.005

https://doi.org/10.1016/j.cor.2018.03.007
https://doi.org/10.1016/j.cor.2020.104906
https://doi.org/10.1287/opre.50.1.42.17798
https://doi.org/10.1016/j.ins.2016.04.008
https://doi.org/10.1016/j.cie.2012.12.001
https://doi.org/10.14736/kyb-2024-3-0271
https://doi.org/10.14736/kyb-2024-3-0293
https://doi.org/10.1002/nav.3800150306
https://doi.org/10.1002/sapm1941201224
https://doi.org/10.1016/j.ijpe.2018.07.019
https://doi.org/10.1007/s10700-021-09374-9
https://doi.org/10.1007/s10700-021-09374-9
https://doi.org/10.1007/s40815-022-01446-1
https://doi.org/10.1016/j.ejor.2007.12.005

166 N. KARTLI

[22] N. Jawahar, A. Gunasekaran, and N. Balaji: A simulated annealing algorithm to the
multi-period fixed charge distribution problem associated with backorder and inven-
tory. Int. J. Prod. Res. 50 (2012), 9, 2533–2554. DOI:10.1080/00207543.2011.581013

[23] J. B. Jo, Y. Li, and M. Gen: Nonlinear fixed charge transportation problem by
spanning tree-based genetic algorithm. Computers Industr. Engrg. 53 (2007), 2,
290–298. DOI:10.1016/j.cie.2007.06.022

[24] N. Kartlı, E. Bostancı, and M. S. Guzel: A new algorithm for the initial feasi-
ble solutions of fixed charge transportation problem. In: 2022 7th International
Conference on Computer Science and Engineering (UBMK), IEEE 2022, pp. 82–85.
DOI:10.1109/ubmk55850.2022.9919524

[25] N. Kartli, E. Bostanci, and M. S. Guzel: A new algorithm for optimal solu-
tion of fixed charge transportation problem. Kybernetika 59 (2023), 1, 45–63.
DOI:10.15625/2615-9023/18488

[26] N. Kartli, E. Bostanci, and M. S. Guzel: Heuristic algorithm for an optimal solu-
tion of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195–3227.
DOI:10.1007/s00607-024-01319-5

[27] N. Kartli: A Metaheuristic Algorithm for the Fixed Charge Transportation Prob-
lem. In 2024 9th International Conference on Computer Science and Engineering
(UBMK) IEEE (2024) 1030–1033. DOI:10.1109/UBMK63289.2024.10773580

[28] M.M. Lotfi and R. Tavakkoli–Moghaddam: A genetic algorithm using priority-
based encoding with new operators for fixed charge transportation problems. Appl.
Soft Comput. 13 (2013), 5, 2711–2726. DOI:10.1016/j.asoc.2012.11.016

[29] D. Mardanya and S.K. Roy: New approach to solve fuzzy multi-objective multi-
item solid transportation problem. RAIRO Oper. Res. 57 (2023), 1, 99–120.
DOI:10.1051/ro/2022211

[30] S. Mirjalili: Dragonfly algorithm: a new meta-heuristic optimization technique for
solving single-objective, discrete, and multi-objective problems. Neural Comput.
Appl. 27 (2016) 1053–1073. DOI:10.1007/s00521-015-1920-1.

[31] A. S. Mohammed, S. E. Amrahov, and F.V. Celebi: Bidirectional conditional inser-
tion sort algorithm; An efficient progress on the classical insertion sort. Future Gen-
eration Computer Systems 71 (2017), 102–112. DOI:10.1016/j.future.2017.01.034

[32] A. Mondal and S.K. Roy: Behavioural threeway decision making with Fermatean
fuzzy Mahalanobis distance: Application to the supply chain management prob-
lems. Appl. Soft Computing 151 (2024), 111182. DOI:10.1016/j.asoc.2023.111182

[33] V.V. Panicker, R. Vanga, and R. Sridharan: Ant colony Optimization al-
gorithm for distribution-allocation problem in a two-stage supply chain with
a fixed transportation charge. Int. J. Prod. Res. 51 (2013), 3, 698–717.
DOI:10.1080/00207543.2012.658118

https://doi.org/10.1080/00207543.2011.581013
https://doi.org/10.1016/j.cie.2007.06.022
https://doi.org/10.1109/ubmk55850.2022.9919524
https://doi.org/10.15625/2615-9023/18488
https://doi.org/10.1007/s00607-024-01319-5
https://doi.org/10.1109/ubmk63289.2024.10773580
https://doi.org/10.1016/j.asoc.2012.11.016
https://doi.org/10.1051/ro/2022211
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.future.2017.01.034
https://doi.org/10.1016/j.asoc.2023.111182
https://doi.org/10.1080/00207543.2012.658118

Hybrid algorithms for fixed charge transportation problem 167

[34] A.N. S. Paojiyah, A. P. Az’zahra, V. F. Aulia, and E.R. Wulan: Penerapan Dragon-
fly Optimization Algorithm (DOA) untuk Menyelesaikan Fixed Charge Transporta-
tion Problem (FCTP). KUBIK: Jurnal Publikasi Ilmiah Matematika 9 (2024), 2,
187–197.

[35] P.C. Pop, C. Sabo, B. Biesinger, B. Hu, and G.R. Raidl: Solving the two-stage
fixed charge transportation problem with a hybrid genetic algorithm. Carpathian
J. Math. 33 (2017), 3, 365–371.

[36] K.A.A. D. Raj and C. Rajendran: A genetic algorithm for solving the fixed-charge
transportation model: two-stage problem. Comput. Oper. Res. 39 (2012), 9, 2016–
2032. DOI:10.1016/j.cor.2011.09.020

[37] R.V. Rao, V. J. Savsani, and D. Vakharia: Teaching–learning-based optimization: a
novel method for constrained mechanical design optimization problems. Computer-
aided Design 43 (2011), 303–315. DOI:10.1016/j.cad.2010.12.015

[38] B. Saikia, P. Dutta, and P. Talukdar: An advanced similarity measure for
Pythagorean fuzzy sets and its applications in transportation problem. Artif. Intell.
Rev. 56 (2023), 11, 12689–12724. DOI:10.1007/s10462-023-10421-7

[39] S. Sandhiya and A. Dhanapal: Solving neutrosophic multi-dimensional fixed
charge transportation problem. Contemp. Math. 5 (2024), 3, 3601–3624.
DOI:10.37256/cm.5320244927

[40] G. Singh and A. Singh: Extension of particle swarm optimization algorithm for
solving transportation problem in fuzzy environment. Appl. Soft Comput. 110

(2021), 107619. DOI:10.1016/j.asoc.2021.107619

[41] Shivani, D. Chauhan, and D. Rani: A feasibility restoration particle swarm opti-
mizer with chaotic maps for two-stage fixed-charge transportation problems. Swarm
Evolutionary Comput. 91 (2024), 101776. DOI:10.1016/j.swevo.2024.101776

[42] M. Sun, J. E. Aronson, P.G. Mckeown, and D. Drinka: Tabu search heuristic
procedure for the fixed charge transportation problem. Eur. J. Oper. Res. 106

(1998), 2–3, 411–456.

Nermin Kartli, Computer Engineering Department, Ankara University, Ankara. Turkey.
e-mail: nermin.kartli@gmail.com

https://doi.org/10.1016/j.cor.2011.09.020
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1007/s10462-023-10421-7
https://doi.org/10.37256/cm.5320244927
https://doi.org/10.1016/j.asoc.2021.107619
https://doi.org/10.1016/j.swevo.2024.101776.

	Introduction
	Problem formulation
	Priority-based genetic algorithm
	Decoding function
	Opex function
	Pex function
	OpexMutation function
	Main function

	Kartli et al.'s heuristic algorithm
	Proposed hybrid algorithms
	Hybrid algorithm H1
	Hybrid algorithm H2
	Hybrid algorithm H3

	Experimental results
	Conclusion

