Kybernetika 61 no. 1, 79-108, 2025

A generalization for the mean-square derivative of the fuzzy stochastic processes and some properties

Hadi Amirnia and Alireza KhastanDOI: 10.14736/kyb-2025-1-0079

Abstract:

The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented.

Keywords:

fuzzy numbers, Hukuhara difference, random variables, second-order fuzzy stochastic processes, mean-square calculus

Classification:

03E72, 26E50, 28E10

References:

  1. G. Anastassiou and G. S. Gal: On a fuzzy trigonometric approximation theorem of Weierstrass-type. J. Fuzzy Math. (2001), 701-708.   CrossRef
  2. B. Bede and S. G. Gal: Almost periodic fuzzy-number-valued functions. Fuzzy Sets Syst. 147 (2004), 3, 385-403.   DOI:10.1016/j.fss.2003.08.004
  3. B. Bede and S. G. Gal: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151 (2005), 3, 581-599.   DOI:10.1016/j.fss.2004.08.001
  4. B. Bede, I. J. Rudas and A. L. Bencsik: First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177 (2007), 7, 1648-1662.   DOI:10.1016/j.ins.2006.08.021
  5. Y. Chalco-Cano, G. G. Maqui-Huamán, G. Silva and M. Jimenez-Gamero: Algebra of generalized hukuhara differentiable interval-valued functions: Review and new properties. Fuzzy Sets Syst. 375 (2019), 53-69.   DOI:10.1016/j.fss.2019.04.006
  6. D. Dubois and H. Prade: Towards fuzzy differential calculus. Part 3: Differentiation. Fuzzy Sets Syst. 8 (1982), 3, 225-233.   DOI:10.1016/S0165-0114(82)80001-8
  7. Y. Feng: Mean-square integral and differential of fuzzy stochastic processes. Fuzzy Sets Syst. 102 (1999), 2, 271-280.   DOI:10.1016/S0165-0114(97)00119-X
  8. Y. Feng: Convergence theorems for fuzzy random variables and fuzzy martingales. Fuzzy Sets Syst. 103 (1999), 3, 435-441.   DOI:10.1016/S0165-0114(97)00180-2
  9. Y. Feng: Mean-square Riemann-Stieltjes integrals of fuzzy stochastic processes and their applications. Fuzzy Sets Syst. 110 (2000), 1, 27-41.   DOI:10.1016/S0165-0114(98)00035-9
  10. Y. Feng: Fuzzy stochastic differential systems. Fuzzy Sets Syst. 115 (2000), 3, 351-363.   DOI:10.1016/S0165-0114(98)00389-3
  11. Y. Feng, L. Hu and H. Shu: The variance and covariance of fuzzy random variables and their applications. Fuzzy Sets Systems 120 (2001), 3, 487-497.   DOI:10.1016/S0165-0114(99)00060-3
  12. M. Friedman, M. Ma and A. Kandel: Fuzzy derivatives and fuzzy Cauchy problems using LP metric. In: Fuzzy Logic Foundations and Industrial Applications (D. Ruan, ed.), Springer, Boston 1996, pp. 57-72.   CrossRef
  13. N. Gasilov: On exact solutions of a class of interval boundary value problems. Kybernetika 58 (2022), 376-399.   DOI:10.14736/kyb-2022-3-0376
  14. N. Gasilov, S. Emrah Amrahov and A. Golayoglu Fatullayev: Solution of linear differential equations with fuzzy boundary values. Fuzzy Sets Syst. 257 (2014), 169-183.   DOI:10.1016/j.fss.2013.08.008
  15. D. Gopal, J. M. Moreno and R. R. López: Asymptotic fuzzy contractive mappings in fuzzy metric spaces. Kybernetika 60 (2024), 394-411.   DOI:10.14736/kyb-2024-3-0394
  16. R. Goetschel and W. Voxman: Elementary fuzzy calculus. Fuzzy Sets Syst. 18 (1986), 1, 31-43.   DOI:10.1016/0165-0114(86)90026-6
  17. O. Kaleva: On the convergence of fuzzy sets. Fuzzy Sets Syst. 17 (1985), 1, 53-65.   DOI:10.1016/0165-0114(85)90006-5
  18. O. Kaleva: Fuzzy differential equations. Fuzzy Sets Syst. 24 (1987), 3, 301-317.   DOI:10.1016/0165-0114(87)90029-7
  19. V. Kratschmer: Limit theorems for fuzzy-random variables. Fuzzy Sets Syst. 126 (2002), 2, 253-263.   DOI:10.1016/S0165-0114(00)00100-7
  20. M. T. Malinowski: Some properties of strong solutions to stochastic fuzzy differential equations. Inform. Sci. 252 (2013), 62-80.   DOI:10.1016/j.ins.2013.02.053
  21. M. Mazandarani and L. Xiu: A review on fuzzy differential equations. IEEE Access 9 (2021), 62195-62211.   DOI:10.1109/ACCESS.2021.3074245
  22. M. Ming: On embedding problems of fuzzy number space: Part 5. Fuzzy Sets Syst. 55 (1993), 3, 313-318.   DOI:10.1016/0165-0114(93)90258-J
  23. H. T. Nguyen: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64 (1978), 2, 369-380.   DOI:10.1016/0022-247X(78)90045-8
  24. M. L. Puri and D. A. Ralescu: Differentials of fuzzy functions. J. Math. Anal. Appl. 91 (1983), 2, 552-558.   DOI:10.1016/0022-247X(83)90169-5
  25. M. L. Puri and D. A. Ralescu: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 2, 409-422.   DOI:10.1016/0022-247X(86)90093-4
  26. M. L. Puri and D. A. Ralescu: Convergence theorem for fuzzy martingales. J. Math. Anal. Appl. 160 (1991), 1, 107-122.   CrossRef
  27. M. Rojas-Medar, M. Jimenez-Gamero, Y. Chalco-Cano and A. Viera-Brandao: Fuzzy quasilinear spaces and applications. Fuzzy Sets Syst. 152 (2005), 2, 173-190.   DOI:10.1016/S0165-0114(05)00138-7
  28. S. Seikkala: On the fuzzy initial value problem. Fuzzy Sets Syst. 24 (1987), 3, 319-330.   DOI:10.1016/0165-0114(87)90030-3
  29. L. Stefanini and B. Bede: Generalized hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory Methods Appl. 71 (2009), 3, 1311-1328.   DOI:10.1016/j.na.2008.12.005