Kybernetika 61 no. 1, 109-132, 2025

Efficiency analysis of the rule-based defuzzification approach to fuzzy inference system for regression problems

Resmiye Nasiboglu and Efendi NasibovDOI: 10.14736/kyb-2025-1-0109

Abstract:

A fuzzy inference system (FIS) is an effective prediction method based on fuzzy logic. The performance of this model may vary depending on the defuzzification process. In the Mamdani-type FIS model, the defuzzification process is applied to the fuzzy output of the system only once at the last stage. In the FIS with rule-based defuzzification (FIS-RBD) model, the defuzzification process is applied to the fuzzy consequent part of each rule and the overall result of the system is calculated as the weighted average of the separately defuzzified results of the rules. Note that, the original shapes of the combined rule results are lost in the aggregated fuzzy result of the classical Mamdani-type system and the effect of each rule on the system result decreases when aggregated. However, rule results can affect the overall result more significantly in the FIS-RBD approach. In this study, a comparative analysis was made on the effectiveness of the classical Mamdani-type FIS and FIS-RBD models for regression problems. Five datasets from different domains and various defuzzification methods were used in comparisons. In the results obtained, it was observed that the The FIS-RBD model gave better results than the classical Mamdani-type FIS model. To carry out calculation experiments, a new Python package called Fuzlab was developed by modifying the existing Python library called FuzzyLab. In addition to creating the FIS-RBD model, the developed package also allows the use of the Weighted Average Based on Levels (WABL) defuzzification method in fuzzy logic-based calculations.

Keywords:

fuzzy inference system (FIS), defuzzification, rule-based defuzzification (RBD), regression, Python library

Classification:

93C42, 68T05, 68N30

References:

  1. A. Aggarwal, M. Chakradar, M. S. Bhatia, M. Kumar, T. Stephan, S. K. Gupta, H. S. Alsamhi and H. AL-Dois: COVID-19 Risk prediction for diabetic patients using fuzzy inference system and machine learning approaches. J. Healthcare Engrg. (2022), Article ID 4096950.   DOI:10.1155/2022/4096950
  2. S. E. Amrahov, Y. Ar, B. Tugrul, B. E. Akay and N. Kartli: A new approach to Mergesort algorithm: Divide smart and conquer. Future Generation Computer Systems 157 (2024), 330-343.   DOI:10.1016/j.future.2024.03.049
  3. J. Ansarifar, L. Wang and S. V. Archontoulis: An interaction regression model for crop yield prediction. Scientific Reports 11 (2021), Article ID 17754.   DOI:10.1038/s41598-021-97221-7
  4. Y. Ao, H. Li, L. Zhu, S. Ali and Z. Yang: The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Petroleum Sci. Engrg. 174 (2019), 776-789.   DOI:10.1016/J. PETROL.2018.11.067
  5. Y. Ar, S. E. Amrahov, N. A. Gasilov and S. Yigit-Sert: A new curve fitting based rating prediction algorithm for recommender systems. Kybernetika 58 (2022), 3, 440-455.   DOI:10.14736/kyb-2022-3-0440
  6. E. Avelar, O. Castillo and J. Soria: Fuzzy logic controller with fuzzylab Python library and the robot operating system for autonomous mobile robot navigation. J. Automat. Mobile Robotics Intell. Systems 14 (2019), 1, 48-54.   DOI:10.14313/JAMRIS/1-2020/6.
  7. E. Avelar: FuzzyLab.    CrossRef
  8. E. Bas and E. Egrioglu: A fuzzy regression functions approach based on Gustafson-Kessel clustering algorithm. Inform. Sci. 592 (2022), 206-214.   DOI: 10.1016/j.ins.2022.01.057
  9. E. Bas: Robust fuzzy regression functions approaches. Inform. Sci. 613 (2022), 419-434.   DOI: 10.1016/j.ins.2022.09.047
  10. C. Bejines: Aggregation of fuzzy vector spaces. Kybernetika 59 (2023), 5, 752-767.   DOI: 10.14736/kyb-2023-5-0752
  11. S. Chakraverty, D. M. Sahoo and N. R. Mahato: Defuzzification. In: Concepts of Soft Computing, Springer, Singapore 2019.   DOI:10.1007/978-981-13-7430-2.7
  12. G. Charizanos, H. Demirhan and D. İçen: A Monte Carlo fuzzy logistic regression framework against imbalance and separation. Inform. Sci. 655 (2024), 119893.   DOI: 10.1016/j.ins.2023.119893
  13. H. Cruz-Suárez, R. Montes-de-Oca and R. I. Ortega-Gutiérrez: An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 1, 160-178.   DOI:10.14736/kyb-2023-1-0160
  14. W. Ding, J. Wang, J. Huang, C. Cheng and S. Jiang: MFCA: Collaborative prediction algorithm of brain age based on multimodal fuzzy feature fusion. Inform. Sci. 687 (2025), 121376.   DOI: 10.1016/j.ins.2024.121376
  15. D. Doz, M. Cotič and D. Felda: Random forest regression in predicting students' achievements and fuzzy grades. Mathematics 11 (2023), 19, 4129.   DOI: 10.3390/math11194129
  16. R. Fiskin, O. Atik, H. Kisi, E. Nasibov and T. A. Johansen: Fuzzy domain and meta-heuristic algorithm-based collision avoidance control for ships: Experimental validation in virtual and real environment. Ocean Engrg. 220 (2021), 108502.   DOI: 10.1016/j.oceaneng.2020.108502
  17. K. Gao and L. Xu: Novel strategies based on a gradient boosting regression tree predictor for dynamic multi-objective optimization. Expert Syst. Appl. 237 (2024), 121532.   DOI: 10.1016/j.eswa.2023.121532
  18. T. Gao and J. Liu: Application of improved random forest algorithm and fuzzy mathematics in physical fitness of athletes. J. Intell. Fuzzy Syst. 40 (2021), 2, 2041-2053.   DOI: 10.3233/JIFS-189206
  19. N. A. Gasilov, S. E. Amrahov and A. G. Fatullayev: On a solution of the fuzzy Dirichlet problem for the heat equation. Int. J. Thermal Sci. 103 (2016), 67-76.   DOI: 10.1016/j.ijthermalsci.2015.12.008
  20. N. Gasilov, M. Doğan and V. Arici: Two-stage shortest path algorithm for solving optimal obstacle avoidance problem. IETE J. Res. 57 (2011), 3, 278-285.   DOI:10.4103/0377-2063.83650
  21. K. S. Gilda and S. L. Satarkar: Analytical overview of defuzzification methods. Int. J. Advance Res. Ideas Innova. Technol. 6 (2020), 2, 359-365.   CrossRef
  22. X. Gu, P. P. Angelov and Q. Shen: Semi-supervised fuzzily weighted adaptive boosting for classification. IEEE Trans. Fuzzy Systems 32 (2024), 4, 2318-2330.   CrossRef
  23. X. Guan, F. Yu, H. Xu, C. Li and Y. Guan: Flood risk assessment of urban metro system using random forest algorithm and triangular fuzzy number based analytical hierarchy process approach. Sustainable Cities Soc. 109 (2024), 105546.   CrossRef
  24. J. S. R. Jang, C. T. Sun and E. Mizutani: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, 1997.   CrossRef
  25. D. Karaboga and E. Kaya: Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey. Artif. Intell. Rev. 52 (2019), 2263-2293.   CrossRef
  26. N. Kartli, E. Bostanci and M. S. Guzel: A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 1, 45-63.   DOI: 10.14736/kyb-2023-1-0045
  27. N. Kartli, E. Bostanci and M. S. Guzel: Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227.   DOI: 10.1007/s00607-024-01319-5
  28. P. R. Kelley and R. Barry: Sparse spatial autoregressions. Statisr. Probab. Lett. 33 (1997), 3, 291-297.   CrossRef
  29. Y. Kondratenko, O. Kozlov, H. Lysiuk, V. Kryvda and O. Maksymova: Fuzzy automatic control of the pyrolysis process for the municipal solid waste of variable composition. J. Automat. Mobile Robotics Intell. Systems 16 (2022), 1, 83-94.   CrossRef
  30. S. Kusumadewi, L. Rosita and E. G. Wahyuni: Selection of aggregation function in fuzzy inference system for metabolic syndrome. Int. J. Advanced Sci. Engrg. Inform. Technol. 12 (2022), 5, 2140.   DOI: 10.1 8517/IJASEIT.12.5.15552
  31. S. Kusumadewi, L. Rosita and E. G. Wahyuni: Fuzzy linear regression based on a hybrid of fuzzy C-means and the fuzzy inference system for predicting serum iron levels in patients with chronic kidney disease. Expert Syst. Appl. 227 (2023), 120314.   DOI:10.1016/j.eswa.2023.120314
  32. G. Li, X. Hu, S. Chen, K. Chang, P. Li and Y. Wang: Peak load forecasting using grammatical evolution-based fuzzy regression approach. Int. J. Comput. Commun. Control 19 (2024), 4, 6611.   DOI: 10.15837/ijccc.2024.4.6611
  33. A. K. Mallick and A. Das: An analytical survey of defuzzification techniques. In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur 2021. pp. 1-6.   DOI: 10.1109/GUCON50781.2021.9573993
  34. Z. Mei, T. Zhao and X. Xie: Hierarchical fuzzy regression tree: A new gradient boosting approach to design a TSK fuzzy model. Inform. Sci. 652 (2024), 119740.   CrossRef
  35. A. Mert: Shannon entropy-based approach for calculating values of WABL parameters. J. Taibah Univ. Sci. 14 (2020), 1, 1100-1109.   CrossRef
  36. M. Nachaoui, A. Nachaoui, R. Y. Shikhlinskaya and A. Elmoufidi: An improved hybrid defuzzification method for fuzzy controllers. Statist. Optim. Inform. Comput. 11 (2023), 1, 29-43.   CrossRef
  37. H. Namgung and S. W. Ohn: Fuzzy inference and sequence model-based collision risk prediction system for stand-on vessel. Sensors 22 (2022), 13.   DOI: 10.3390/S22134983
  38. R. Nasiboglu and R. Abdullayeva: Analytical formulations for the level based weighted average value of discrete trapezoidal fuzzy numbers. Int. J. Soft Comput. (IJSC) 9 (2018), 2/3, 1-15.   CrossRef
  39. R. Nasiboglu and A. Akdogan: Estimation of the second hand car prices from data extracted via web scraping techniques. J. Modern Technol. Engrg. 5 (2020), 2, 157-166.   CrossRef
  40. R. Nasiboglu and Z. T. Erten: A new model to determine the hierarchical structure of the wireless sensor networks. Turkish J. Electr. Engrg. Computer Sci. 27 (2019), 6, 4023-4037.   CrossRef
  41. R. Nasiboglu and E. Nasibov: FyzzyGBR -- A gradient boosting regression software with fuzzy target values. Software Impacts 14 (2022), 100430.   CrossRef
  42. R. Nasiboglu and E. Nasibov: WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model. Expert Syst. Appl. 212 (2023), 118771.   CrossRef
  43. R. Nasiboglu: A novel fuzzy inference model with rule-based defuzzification approach. J. Modern Technol. Engrg. 7 (2022), 2, 124-133.   CrossRef
  44. R. Nasiboglu: An approach to solution of verbal stated mathematical problems. J. Modern Technol. Engrg. 5 (2020), 1, 25-35.   CrossRef
  45. R. Nasiboglu: Analysis of different approaches to regression problem with fuzzy information. J. Modern Technol. Engrg. 7 (2022), 3, 187-198.   CrossRef
  46. E. N. Nasibov and A. O. Kinay: An iterative approach for estimation of student performances based on linguistic evaluations. Inform. Sci. 179 (2009), 5, 688-698.   DOI: 10.1016/j.ins.2008.10.026
  47. E. N. Nasibov and A. Mert: On methods of defuzzification of parametrically represented fuzzy numbers. Automat. Control Computer Sci. 41 (2007), 265-273.   DOI:10.3103/S0146411607050057
  48. A. Pourabdollah, J. M. Mendel and R. I. John: Alpha-cut representation used for defuzzification in rule-based systems. Fuzzy Sets Syst. 399 (2020), 110-132.   CrossRef
  49. N. Ramly, M. S. Rusiman, E. Nasibov and R. Nasiboglu: The comparison of fuzzy regression approaches with and without clustering method in predicting manufacturing income. J. Advanced Res. Appl. Sci. Engrg. Technol. 46 (2024), 1, 218-236.   CrossRef
  50. S. Rashidi, W. Xu, D. Lin, A. Turpin, L. Kulik and K. Ehinger: An active foveated gaze prediction algorithm based on a Bayesian ideal observer. Pattern Recogn. 143 (2023), 109694.   CrossRef
  51. C. F. Riman and P. E. Abi-Char: Fuzzy logic control for mobile robot navigation in automated storage. Int. J. Mechan. Engrg. Robotics Res. 12 (2023), 5, 313-323.   CrossRef
  52. S. K. Savaş and E. N. Nasibov: A fuzzy ID3 induction for linguistic data sets. Int. J. Intell. Syst. 33 (2018), 858-878.   DOI:10.1002/int.21971
  53. R. Samet, S. E. Amrahov and A. H. Ziroğlu: Fuzzy Rule-based image segmentation technique for rock thin section images. In: 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul 2012. pp. 402-406.   DOI:10.1109/IPTA.2012.6469555
  54. Y. Tian, G. Nie, H. Tian and Q. Cui: Impact of endpoint structure attributes on local information algorithms based on link prediction. Computing 105 (2023), 1, 115-129.   CrossRef
  55. M. Vafakhah, S. M. H. Loor, H. Pourghasemi and A. Katebikord: Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping. Arabian J. Geosci. 13 (2020), 1-16.   CrossRef
  56. M. Wahba, R. Essam, M. El-Rawy, N. Al-Arifi, F. Abdalla and W. M. Elsadek: Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems. Heliyon 10 (2024), 13, e33982.   DOI:10.1016/j.heliyon.2024.e33982
  57. S. Yagiz and C. Gokceoglu: Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness. Expert Systems Appl. 37 (2010), 2265-2272.   CrossRef
  58. E. Yazid, M. Garratt and F. Santoso: Position control of a quadcopter drone using evolutionary algorithms-based self-tuning for first-order Takagi-Sugeno-Kang fuzzy logic autopilots. Appl. Soft Comput. 78 (2019), 373-392.   DOI:10.1016/j.asoc.2019.02.023
  59. H. B. Yıldırım, K. Kullu and S. E. Amrahov: A graph model and a three-stage algorithm to aid the physically disabled with navigation. Univ. Acces Inform. Soc. 23 (2024), 2, 901-911.   DOI: 10.1007/s10209-023-00981-4
  60. H. Zhang, X. Hu, X. Zhu, X. Liu and W. Pedrycz: Application of gradient boosting in the design of fuzzy rule-based regression models. IEEE Trans. Knowl. Data Engrg. 36 (2024), 5621-5632.   DOI:10.1109/tkde.2024.3392247
  61. Q. Zhang, Y. Yao, J. Kong, X. Ma and H. Zhu: A new GNSS TEC neural network prediction algorithm with the data fusion of physical observation. IEEE Trans. Geosci. Remote Sensing 61 (2023), 1-12.   DOI:10.1109/tgrs.2023.3285794
  62. X. Zhu, X. Hu, L. Yang, W. Pedrycz and Z. Li: A development of fuzzy rule-based regression models through using decision trees. IEEE Trans. Fuzzy Systems 32 (2024), 5, 2976-2986.   DOI:10.1109/tfuzz.2024.3365572
  63. K. Zimmermann: Combination of t-norms and their conorms. Kybernetika 59 (2023), 4, 527-536.   DOI:10.14736/kyb-2023-4-0527